14,789 research outputs found
Study of e+e- -> H+H- at a 800 GeV Linear Collider
The production and decay of heavy charged Higgs bosons at a 800 GeV e+e-
linear collider have been studied. The analysis of the H+H- -> tb tb, expected
to be dominant in the MSSM, and H+H- -> W+h0 W-h0 decay modes leading to the
same final state consisting of two W bosons and four b quarks, provides with a
determination of the boson mass to 1 GeV and of the production cross section
with 10% accuracy for 500 fb-1 of data.Comment: 4 pages, 1 figure, to appear in the Proceedings of the 5th Linear
Collider Workshop Fermilab, October 200
Common-reflection-surface imaging of shallow and ultrashallow reflectors
We analyzed the feasibility of the common-reflection-surface
(CRS) stack for near-surface surveys as an alternative to the conventional
common midpoint (CMP) stacking procedure. The
data-driven, less user-interactive CRS method could be more
cost efficient for shallow surveys, where the high sensitivity
to velocity analysis makes data processing a critical step. We
compared the results for two field data sets collected to image
shallow and ultrashallow reflectors: an example of shallow Pwave
reflection for targets in the first few hundred meters,
and an example of SH-wave reflection for targets in the first
10 m. By processing the shallow P-wave records using the
CMP method, we imaged several nearly horizontal reflectors
with onsets from 60 to about 250 ms. The CRS stack produced
a stacked section more suited for a subsurface interpretation,
without any preliminary formal and time-consuming velocity analysis, because the imaged reflectors possessed greater coherency
and lateral continuity. With CMP processing of the SHwave
records, we imaged a dipping bedrock interface below
four horizontal reflectors in unconsolidated, very low velocity
sediments. The vertical and lateral resolution was very high, despite
the very shallow depth: the image showed the pinchout of
two layers at less than 10 m depth. The numerous traces used by
the CRS stack improved the continuity of the shallowest reflector,
but the deepest overburden reflectors appear unresolved,
with not well-imaged pinchouts. Using the kinematic wavefield
attributes determined for each stacking operation, we retrieved
velocity fields fitting the stacking velocities we had estimated in
the CMP processing. The use of CRS stack could be a significant
step ahead to increase the acceptance of the seismic reflection
method as a routine investigation method in shallow and
ultrashallow seismics
Hybrid Pixel Detector Development for the Linear Collider Vertex Tracker
In order to fully exploit the physics potential of the future high energy
e+e- linear collider, a Vertex Tracker able to provide particle track
extrapolation with very high resolution is needed. Hybrid Si pixel sensors are
an attractive technology due to their fast read-out capabilities and radiation
hardness. A novel pixel detector layout with interleaved cells has been
developed to improve the single point resolution. Results of the
characterisation of the first processed prototypes by electrostatic
measurements and charge collection studies are discussed.Comment: 5 pages, 1 figure, to appear in the Proceedings of the 9th Int.
Workshop on Vertex Detectors, Lake Michigan MI (USA), September~200
Converting NAD83 GPS heights into NAVD88 elevations with LVGEOID, a hybrid geoid height model for the Long Valley volcanic region, California
A GPS survey of leveling benchmarks done in Long
Valley Caldera in 1999 showed that the application of the
National Geodetic Survey (NGS) geoid model GEOID99 to
tie GPS heights to historical leveling measurements would
significantly underestimate the caldera ground deformation (known from other geodetic measurements). The NGS
geoid model was able to correctly reproduce the shape of the
deformation, but required a local adjustment to give a realistic estimate of the magnitude of the uplift. In summer 2006,
the U.S. Geological Survey conducted a new leveling survey
along two major routes crossing the Long Valley region from
north to south (Hwy 395) and from east to west (Hwy 203 â
Benton Crossing). At the same time, 25 leveling bench marks
were occupied with dual frequency GPS receivers to provide a
measurement of the ellipsoid heights. Using the heights from
these two surveys, we were able to compute a precise geoid
height model (LVGEOID) for the Long Valley volcanic region.
Our results show that although the LVGEOID and the latest
NGS GEOID03 model practically coincide in areas outside
the caldera, there is a difference of up to 0.2 m between the
two models within the caldera. Accounting for this difference
is critical when using the geoid height model to estimate the
ground deformation due to magmatic or tectonic activity in the
calder
Gamma rays from ultracompact primordial dark matter minihalos
Ultracompact minihalos have recently been proposed as a new class of dark
matter structure. These minihalos would be produced by phase transitions in the
early Universe or features in the inflaton potential, and constitute
non-baryonic massive compact halo objects (MACHOs) today. We examine the
prospect of detecting ultracompact minihalos in gamma-rays if dark matter
consists of self-annihilating particles. We compute present-day fluxes from
minihalos produced in the electron-positron annihilation epoch, and the QCD and
electroweak phase transitions in the early Universe. Even at a distance of 100
pc, minihalos produced during the electron-positron annihilation epoch should
be eminently detectable today, either by the Fermi satellite, current Air
Cherenkov telescopes, or even in archival EGRET data. Within ~1 pc, minihalos
formed in the QCD phase transition would have similar predicted fluxes to the
dwarf spheroidal galaxies targeted by current indirect dark matter searches, so
might also be detectable by present or upcoming experiments.Comment: 5 pages, 3 figures. Minor update to match published version of
erratu
Convex Polytopes and Quasilattices from the Symplectic Viewpoint
We construct, for each convex polytope, possibly nonrational and nonsimple, a
family of compact spaces that are stratified by quasifolds, i.e. each of these
spaces is a collection of quasifolds glued together in an suitable way. A
quasifold is a space locally modelled on modulo the action of a
discrete, possibly infinite, group. The way strata are glued to each other also
involves the action of an (infinite) discrete group. Each stratified space is
endowed with a symplectic structure and a moment mapping having the property
that its image gives the original polytope back. These spaces may be viewed as
a natural generalization of symplectic toric varieties to the nonrational
setting.Comment: LaTeX, 29 pages. Revised version: TITLE changed, reorganization of
notations and exposition, added remarks and reference
Attractor neural networks storing multiple space representations: a model for hippocampal place fields
A recurrent neural network model storing multiple spatial maps, or
``charts'', is analyzed. A network of this type has been suggested as a model
for the origin of place cells in the hippocampus of rodents. The extremely
diluted and fully connected limits are studied, and the storage capacity and
the information capacity are found. The important parameters determining the
performance of the network are the sparsity of the spatial representations and
the degree of connectivity, as found already for the storage of individual
memory patterns in the general theory of auto-associative networks. Such
results suggest a quantitative parallel between theories of hippocampal
function in different animal species, such as primates (episodic memory) and
rodents (memory for space).Comment: 19 RevTeX pages, 8 pes figure
Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare
We present observations of electron energization in magnetic reconnection
outflows during the pre-impulsive phase of solar flare SOL2012-07-19T05:58.
During a time-interval of about 20 minutes, starting 40 minutes before the
onset of the impulsive phase, two X-ray sources were observed in the corona,
one above the presumed reconnection region and one below. For both of these
sources, the mean electron distribution function as a function of time is
determined over an energy range from 0.1~keV up to several tens of keV, for the
first time. This is done by simultaneous forward fitting of X-ray and EUV data.
Imaging spectroscopy with RHESSI provides information on the high-energy tail
of the electron distribution in these sources while EUV images from SDO/AIA are
used to constrain the low specific electron energies. The measured electron
distribution spectrum in the magnetic reconnection outflows is consistent with
a time-evolving kappa-distribution with . The spectral
evolution suggests that electrons are accelerated to progressively higher
energies in the source above the reconnection region, while in the source
below, the spectral shape does not change but an overall increase of the
emission measure is observed, suggesting density increase due to evaporation.
The main mechanisms by which energy is transported away from the source regions
are conduction and free-streaming electrons. The latter dominates by more than
one order of magnitude and is comparable to typical non-thermal energies during
the hard X-ray peak of solar flares, suggesting efficient acceleration even
during this early phase of the event.Comment: 9 pages, 5 figures, accepted for publication in Ap
The sizes of galaxy halos in galaxy cluster Abell 1689
The multiple images observed in galaxy cluster Abell 1689 provide strong
constraints not only on the mass distribution of the cluster but also on the
ensemble properties of the cluster galaxies. Using parametric strong lensing
models for the cluster, and by assuming well motivated scaling laws between the
truncation radius s and the velocity dispersion sigma of a cluster galaxy we
are able to derive sizes of the dark matter halos of cluster galaxies.
For the scaling law expected for galaxies in the cluster environment (s
propto sigma), we obtain s = 64^{+15}_{-14} (sigma / 220 km/s) kpc. For the
scaling law used for galaxies in the field with s propto sigma^2 we find s =
66^{+18}_{-16} (sigma / 220 km/s)^2 kpc. Compared to halos of field galaxies,
the cluster galaxy halos in Abell 1689 are strongly truncated.Comment: 12 pages, 4 figures. Accepted for publication in the Ap
- âŠ