14,789 research outputs found

    Study of e+e- -> H+H- at a 800 GeV Linear Collider

    Get PDF
    The production and decay of heavy charged Higgs bosons at a 800 GeV e+e- linear collider have been studied. The analysis of the H+H- -> tb tb, expected to be dominant in the MSSM, and H+H- -> W+h0 W-h0 decay modes leading to the same final state consisting of two W bosons and four b quarks, provides with a determination of the boson mass to 1 GeV and of the production cross section with 10% accuracy for 500 fb-1 of data.Comment: 4 pages, 1 figure, to appear in the Proceedings of the 5th Linear Collider Workshop Fermilab, October 200

    Common-reflection-surface imaging of shallow and ultrashallow reflectors

    Get PDF
    We analyzed the feasibility of the common-reflection-surface (CRS) stack for near-surface surveys as an alternative to the conventional common midpoint (CMP) stacking procedure. The data-driven, less user-interactive CRS method could be more cost efficient for shallow surveys, where the high sensitivity to velocity analysis makes data processing a critical step. We compared the results for two field data sets collected to image shallow and ultrashallow reflectors: an example of shallow Pwave reflection for targets in the first few hundred meters, and an example of SH-wave reflection for targets in the first 10 m. By processing the shallow P-wave records using the CMP method, we imaged several nearly horizontal reflectors with onsets from 60 to about 250 ms. The CRS stack produced a stacked section more suited for a subsurface interpretation, without any preliminary formal and time-consuming velocity analysis, because the imaged reflectors possessed greater coherency and lateral continuity. With CMP processing of the SHwave records, we imaged a dipping bedrock interface below four horizontal reflectors in unconsolidated, very low velocity sediments. The vertical and lateral resolution was very high, despite the very shallow depth: the image showed the pinchout of two layers at less than 10 m depth. The numerous traces used by the CRS stack improved the continuity of the shallowest reflector, but the deepest overburden reflectors appear unresolved, with not well-imaged pinchouts. Using the kinematic wavefield attributes determined for each stacking operation, we retrieved velocity fields fitting the stacking velocities we had estimated in the CMP processing. The use of CRS stack could be a significant step ahead to increase the acceptance of the seismic reflection method as a routine investigation method in shallow and ultrashallow seismics

    Hybrid Pixel Detector Development for the Linear Collider Vertex Tracker

    Get PDF
    In order to fully exploit the physics potential of the future high energy e+e- linear collider, a Vertex Tracker able to provide particle track extrapolation with very high resolution is needed. Hybrid Si pixel sensors are an attractive technology due to their fast read-out capabilities and radiation hardness. A novel pixel detector layout with interleaved cells has been developed to improve the single point resolution. Results of the characterisation of the first processed prototypes by electrostatic measurements and charge collection studies are discussed.Comment: 5 pages, 1 figure, to appear in the Proceedings of the 9th Int. Workshop on Vertex Detectors, Lake Michigan MI (USA), September~200

    Converting NAD83 GPS heights into NAVD88 elevations with LVGEOID, a hybrid geoid height model for the Long Valley volcanic region, California

    Get PDF
    A GPS survey of leveling benchmarks done in Long Valley Caldera in 1999 showed that the application of the National Geodetic Survey (NGS) geoid model GEOID99 to tie GPS heights to historical leveling measurements would significantly underestimate the caldera ground deformation (known from other geodetic measurements). The NGS geoid model was able to correctly reproduce the shape of the deformation, but required a local adjustment to give a realistic estimate of the magnitude of the uplift. In summer 2006, the U.S. Geological Survey conducted a new leveling survey along two major routes crossing the Long Valley region from north to south (Hwy 395) and from east to west (Hwy 203 – Benton Crossing). At the same time, 25 leveling bench marks were occupied with dual frequency GPS receivers to provide a measurement of the ellipsoid heights. Using the heights from these two surveys, we were able to compute a precise geoid height model (LVGEOID) for the Long Valley volcanic region. Our results show that although the LVGEOID and the latest NGS GEOID03 model practically coincide in areas outside the caldera, there is a difference of up to 0.2 m between the two models within the caldera. Accounting for this difference is critical when using the geoid height model to estimate the ground deformation due to magmatic or tectonic activity in the calder

    Gamma rays from ultracompact primordial dark matter minihalos

    Full text link
    Ultracompact minihalos have recently been proposed as a new class of dark matter structure. These minihalos would be produced by phase transitions in the early Universe or features in the inflaton potential, and constitute non-baryonic massive compact halo objects (MACHOs) today. We examine the prospect of detecting ultracompact minihalos in gamma-rays if dark matter consists of self-annihilating particles. We compute present-day fluxes from minihalos produced in the electron-positron annihilation epoch, and the QCD and electroweak phase transitions in the early Universe. Even at a distance of 100 pc, minihalos produced during the electron-positron annihilation epoch should be eminently detectable today, either by the Fermi satellite, current Air Cherenkov telescopes, or even in archival EGRET data. Within ~1 pc, minihalos formed in the QCD phase transition would have similar predicted fluxes to the dwarf spheroidal galaxies targeted by current indirect dark matter searches, so might also be detectable by present or upcoming experiments.Comment: 5 pages, 3 figures. Minor update to match published version of erratu

    Convex Polytopes and Quasilattices from the Symplectic Viewpoint

    Get PDF
    We construct, for each convex polytope, possibly nonrational and nonsimple, a family of compact spaces that are stratified by quasifolds, i.e. each of these spaces is a collection of quasifolds glued together in an suitable way. A quasifold is a space locally modelled on Rk\R^k modulo the action of a discrete, possibly infinite, group. The way strata are glued to each other also involves the action of an (infinite) discrete group. Each stratified space is endowed with a symplectic structure and a moment mapping having the property that its image gives the original polytope back. These spaces may be viewed as a natural generalization of symplectic toric varieties to the nonrational setting.Comment: LaTeX, 29 pages. Revised version: TITLE changed, reorganization of notations and exposition, added remarks and reference

    Attractor neural networks storing multiple space representations: a model for hippocampal place fields

    Full text link
    A recurrent neural network model storing multiple spatial maps, or ``charts'', is analyzed. A network of this type has been suggested as a model for the origin of place cells in the hippocampus of rodents. The extremely diluted and fully connected limits are studied, and the storage capacity and the information capacity are found. The important parameters determining the performance of the network are the sparsity of the spatial representations and the degree of connectivity, as found already for the storage of individual memory patterns in the general theory of auto-associative networks. Such results suggest a quantitative parallel between theories of hippocampal function in different animal species, such as primates (episodic memory) and rodents (memory for space).Comment: 19 RevTeX pages, 8 pes figure

    Electron distribution and energy release in magnetic reconnection outflow regions during the pre-impulsive phase of a solar flare

    Get PDF
    We present observations of electron energization in magnetic reconnection outflows during the pre-impulsive phase of solar flare SOL2012-07-19T05:58. During a time-interval of about 20 minutes, starting 40 minutes before the onset of the impulsive phase, two X-ray sources were observed in the corona, one above the presumed reconnection region and one below. For both of these sources, the mean electron distribution function as a function of time is determined over an energy range from 0.1~keV up to several tens of keV, for the first time. This is done by simultaneous forward fitting of X-ray and EUV data. Imaging spectroscopy with RHESSI provides information on the high-energy tail of the electron distribution in these sources while EUV images from SDO/AIA are used to constrain the low specific electron energies. The measured electron distribution spectrum in the magnetic reconnection outflows is consistent with a time-evolving kappa-distribution with Îș=3.5−5.5\kappa =3.5-5.5. The spectral evolution suggests that electrons are accelerated to progressively higher energies in the source above the reconnection region, while in the source below, the spectral shape does not change but an overall increase of the emission measure is observed, suggesting density increase due to evaporation. The main mechanisms by which energy is transported away from the source regions are conduction and free-streaming electrons. The latter dominates by more than one order of magnitude and is comparable to typical non-thermal energies during the hard X-ray peak of solar flares, suggesting efficient acceleration even during this early phase of the event.Comment: 9 pages, 5 figures, accepted for publication in Ap

    The sizes of galaxy halos in galaxy cluster Abell 1689

    Full text link
    The multiple images observed in galaxy cluster Abell 1689 provide strong constraints not only on the mass distribution of the cluster but also on the ensemble properties of the cluster galaxies. Using parametric strong lensing models for the cluster, and by assuming well motivated scaling laws between the truncation radius s and the velocity dispersion sigma of a cluster galaxy we are able to derive sizes of the dark matter halos of cluster galaxies. For the scaling law expected for galaxies in the cluster environment (s propto sigma), we obtain s = 64^{+15}_{-14} (sigma / 220 km/s) kpc. For the scaling law used for galaxies in the field with s propto sigma^2 we find s = 66^{+18}_{-16} (sigma / 220 km/s)^2 kpc. Compared to halos of field galaxies, the cluster galaxy halos in Abell 1689 are strongly truncated.Comment: 12 pages, 4 figures. Accepted for publication in the Ap
    • 

    corecore