121 research outputs found

    Avaliação da amplitude articular do joelho: correlação entre as medidas realizadas com o goniômetro universal e no dinamômetro isocinético

    Full text link
    CONTEXTUALIZAÇÃO: O instrumento mais utilizado pelos terapeutas para mensuração da amplitude de movimento (ADM) articular é o goniômetro universal. No entanto, há carência de estudos que analisem a confiabilidade das medidas da ADM do joelho realizadas no dinamômetro isocinético. OBJETIVO: O objetivo deste estudo foi analisar a correlação entre as medidas de ADM na articulação do joelho, realizadas com o goniômetro universal e no dinamômetro isocinético. MÉTODO: Foram avaliados 38 voluntários saudáveis (27 mulheres, 11 homens), com idade de 36 ± 11 anos, com limitação mínima de 20° na ADM de extensão do joelho. No membro dominante de cada sujeito foram realizadas três mensurações da ADM do joelho com o goniômetro e três mensurações no dinamômetro. RESULTADOS: Os resultados deste estudo mostraram que há alto grau de correlação entre as medidas da ADM do joelho obtidas com o goniômetro universal e no dinamômetro isocinético (Coeficiente de Correlação de Pearson = 0,90). CONCLUSÃO: Com os procedimentos realizados, tanto o goniômetro universal como o dinamômetro isocinético podem ser utilizados para avaliação da ADM do joelho, pois ambos apresentam mensurações confiáveis.<br>BACKGROUND: The instrument most often used by therapists for measuring joint range of motion (ROM) is the universal goniometer. However, there is a lack of studies analyzing the reliability of knee joint ROM measured by the isokinetic dynamometer. OBJECTIVE: The purpose of this study was to analyze the correlation between the knee joint ROM measurements made using a universal goniometer and an isokinetic dynamometer. METHOD: 38 healthy volunteers (27 women, 11 men) aged 36 ± 11 years were evaluated. All of them had a minimum knee extension ROM limitation of 20°. Three knee ROM measurements were made using the universal goniometer and another three using the isokinetic dynamometer, on each subject's dominant limb. RESULTS: The results showed a high degree of correlation between the knee ROM measurements made using the two instruments (Pearson correlation coefficient = 0.90). CONCLUSION: From the procedures performed, both the universal goniometer and the isokinetic dynamometer can be used to evaluate knee ROM, since they both present reliable measurements

    Absence of TERT promoter mutations in colorectal precursor lesions and cancer

    Get PDF
    Hotspot mutations (c.-124bp G > A and c.-146bp G > A) in the promoter region of the TERT gene have been recently described in several types of solid tumors, including glioma, bladder, thyroid, liver and skin neoplasms. However, knowledge with respect to colorectal precursor lesions and cancer is scarce. In the present study we aimed to determine the frequency of hotspot TERT promoter mutations in 145 Brazilian patients, including 103 subjects with precursor lesions and 42 with colorectal carcinomas, and we associated the presence of such mutations with the patients clinical-pathological features. The mutation analysis was conclusive in 123 cases, and none of the precursor and colorectal carcinoma cases showed TERT promoter mutations. We conclude that TERT mutations are not a driving factor in colorectal carcinogenesis.This study was financially partially supported by Barretos Cancer Hospital Internal Research Funds (PAIP) to participating authorsinfo:eu-repo/semantics/publishedVersio

    Nonadditivity of critical Casimir forces

    Get PDF
    In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces

    Characterizing early drug resistance-related events using geometric ensembles from HIV protease dynamics:

    Get PDF
    The use of antiretrovirals (ARVs) has drastically improved the life quality and expectancy of HIV patients since their introduction in health care. Several millions are still afflicted worldwide by HIV and ARV resistance is a constant concern for both healthcare practitioners and patients, as while treatment options are finite, the virus constantly adapts via complex mutation patterns to select for resistant strains under the pressure of drug treatment. The HIV protease is a crucial enzyme for viral maturation and has been a game changing drug target since the first application. Due to similarities in protease inhibitor designs, drug cross-resistance is not uncommon across ARVs of the same class

    An RIG-I-Like RNA Helicase Mediates Antiviral RNAi Downstream of Viral siRNA Biogenesis in Caenorhabditis elegans

    Get PDF
    Dicer ribonucleases of plants and invertebrate animals including Caenorhabditis elegans recognize and process a viral RNA trigger into virus-derived small interfering RNAs (siRNAs) to guide specific viral immunity by Argonaute-dependent RNA interference (RNAi). C. elegans also encodes three Dicer-related helicase (drh) genes closely related to the RIG-I-like RNA helicase receptors which initiate broad-spectrum innate immunity against RNA viruses in mammals. Here we developed a transgenic C. elegans strain that expressed intense green fluorescence from a chromosomally integrated flock house virus replicon only after knockdown or knockout of a gene required for antiviral RNAi. Use of the reporter nematode strain in a feeding RNAi screen identified drh-1 as an essential component of the antiviral RNAi pathway. However, RNAi induced by either exogenous dsRNA or the viral replicon was enhanced in drh-2 mutant nematodes, whereas exogenous RNAi was essentially unaltered in drh-1 mutant nematodes, indicating that exogenous and antiviral RNAi pathways are genetically distinct. Genetic epistatic analysis shows that drh-1 acts downstream of virus sensing and viral siRNA biogenesis to mediate specific antiviral RNAi. Notably, we found that two members of the substantially expanded subfamily of Argonautes specific to C. elegans control parallel antiviral RNAi pathways. These findings demonstrate both conserved and unique strategies of C. elegans in antiviral defense

    The Caenorhabditis elegans HEN1 Ortholog, HENN-1, Methylates and Stabilizes Select Subclasses of Germline Small RNAs

    Get PDF
    Small RNAs regulate diverse biological processes by directing effector proteins called Argonautes to silence complementary mRNAs. Maturation of some classes of small RNAs involves terminal 2′-O-methylation to prevent degradation. This modification is catalyzed by members of the conserved HEN1 RNA methyltransferase family. In animals, Piwi-interacting RNAs (piRNAs) and some endogenous and exogenous small interfering RNAs (siRNAs) are methylated, whereas microRNAs are not. However, the mechanisms that determine animal HEN1 substrate specificity have yet to be fully resolved. In Caenorhabditis elegans, a HEN1 ortholog has not been studied, but there is evidence for methylation of piRNAs and some endogenous siRNAs. Here, we report that the worm HEN1 ortholog, HENN-1 (HEN of Nematode), is required for methylation of C. elegans small RNAs. Our results indicate that piRNAs are universally methylated by HENN-1. In contrast, 26G RNAs, a class of primary endogenous siRNAs, are methylated in female germline and embryo, but not in male germline. Intriguingly, the methylation pattern of 26G RNAs correlates with the expression of distinct male and female germline Argonautes. Moreover, loss of the female germline Argonaute results in loss of 26G RNA methylation altogether. These findings support a model wherein methylation status of a metazoan small RNA is dictated by the Argonaute to which it binds. Loss of henn-1 results in phenotypes that reflect destabilization of substrate small RNAs: dysregulation of target mRNAs, impaired fertility, and enhanced somatic RNAi. Additionally, the henn-1 mutant shows a weakened response to RNAi knockdown of germline genes, suggesting that HENN-1 may also function in canonical RNAi. Together, our results indicate a broad role for HENN-1 in both endogenous and exogenous gene silencing pathways and provide further insight into the mechanisms of HEN1 substrate discrimination and the diversity within the Argonaute family

    Regulation of Heterochromatin Assembly on Unpaired Chromosomes during Caenorhabditis elegans Meiosis by Components of a Small RNA-Mediated Pathway

    Get PDF
    Many organisms have a mechanism for down regulating the expression of non-synapsed chromosomes and chromosomal regions during meiosis. This phenomenon is thought to function in genome defense. During early meiosis in Caenorhabditis elegans, unpaired chromosomes (e.g., the male X chromosome) become enriched for a modification associated with heterochromatin and transcriptional repression, dimethylation of histone H3 on lysine 9 (H3K9me2). This enrichment requires activity of the cellular RNA-directed RNA polymerase, EGO-1. Here we use genetic mutation, RNA interference, immunofluorescence microscopy, fluorescence in situ hybridization, and molecular cloning methods to identify and analyze three additional regulators of meiotic H3K9me2 distribution: CSR-1 (a Piwi/PAZ/Argonaute protein), EKL-1 (a Tudor domain protein), and DRH-3 (a DEAH/D-box helicase). In csr-1, ekl-1, and drh-3 mutant males, we observed a reduction in H3K9me2 accumulation on the unpaired X chromosome and an increase in H3K9me2 accumulation on paired autosomes relative to controls. We observed a similar shift in H3K9me2 pattern in hermaphrodites that carry unpaired chromosomes. Based on several assays, we conclude that ectopic H3K9me2 accumulates on paired and synapsed chromosomes in these mutants. We propose alternative models for how a small RNA-mediated pathway may regulate H3K9me2 accumulation during meiosis. We also describe the germline phenotypes of csr-1, ekl-1, and drh-3 mutants. Our genetic data suggest that these factors, together with EGO-1, participate in a regulatory network to promote diverse aspects of development

    Cytoskeletal control of B cell responses to antigens.

    Get PDF
    The actin cytoskeleton is essential for cell mechanics and has increasingly been implicated in the regulation of cell signalling. In B cells, the actin cytoskeleton is extensively coupled to B cell receptor (BCR) signalling pathways, and defects of the actin cytoskeleton can either promote or suppress B cell activation. Recent insights from studies using single-cell imaging and biophysical techniques suggest that actin orchestrates BCR signalling at the plasma membrane through effects on protein diffusion and that it regulates antigen discrimination through the biomechanics of immune synapses. These mechanical functions also have a role in the adaptation of B cell subsets to specialized tasks during antibody responses
    • …
    corecore