2,607 research outputs found

    Modelling localised fracture of reinforced concrete structures

    Get PDF
    This paper presents a robust finite element procedure for simulating the localised fracture of reinforced concrete members. In this new model the concrete member is modelled as an assembly of plain concrete, reinforcing steel bar and bond-link elements. The 4-node quadrilateral elements are used for 2D modelling of plain concrete elements, in which the extended finite element method is adopted to simulate the formation and growth of individual cracks. The reinforcing steel bars are modelled by using a 3-node beam-column element. 2-node bond-link elements are employed for modelling the interaction between plain concrete and reinforcing steel bar elements. It is evident that the nonlinear procedure proposed in this paper can properly model the formation and propagation of individual localised cracks within the reinforced concrete structures. The model presented in this paper enables the researchers and designers to access the integrity of reinforced concrete members under extreme loading conditions by using mesh independent extended finite element method.The support of the Engineering and Physical Sciences Research Council of Great Britain under Grant No. EP/I031553/1

    Siegert pseudostates: completeness and time evolution

    Full text link
    Within the theory of Siegert pseudostates, it is possible to accurately calculate bound states and resonances. The energy continuum is replaced by a discrete set of states. Many questions of interest in scattering theory can be addressed within the framework of this formalism, thereby avoiding the need to treat the energy continuum. For practical calculations it is important to know whether a certain subset of Siegert pseudostates comprises a basis. This is a nontrivial issue, because of the unusual orthogonality and overcompleteness properties of Siegert pseudostates. Using analytical and numerical arguments, it is shown that the subset of bound states and outgoing Siegert pseudostates forms a basis. Time evolution in the context of Siegert pseudostates is also investigated. From the Mittag-Leffler expansion of the outgoing-wave Green's function, the time-dependent expansion of a wave packet in terms of Siegert pseudostates is derived. In this expression, all Siegert pseudostates--bound, antibound, outgoing, and incoming--are employed. Each of these evolves in time in a nonexponential fashion. Numerical tests underline the accuracy of the method

    All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser

    Get PDF
    Funding Information: Deutsche Forschungsgemeinschaft (SFB 688); NIH (Prime Grant No. 5 R01 DA038882-02); University of Wuerzburg.Microscopic imaging at high spatial-temporal resolution over long time scales (minutes to hours) requires rapid and precise stabilization of the microscope focus. Conventional and commercial autofocus systems are largely based on piezoelectric stages or mechanical objective actuators. Objective to sample distance is either measured by image analysis approaches or by hardware modules measuring the intensity of reflected infrared light. We propose here a truly all-optical microscope autofocus taking advantage of an electrically tunable lens and a totally internally reflected infrared probe beam. We implement a feedback-loop based on the lateral position of a totally internally reflected infrared laser on a quadrant photodetector, as an indicator of the relative defocus. We show here how to treat the combined contributions due to mechanical defocus and deformation of the tunable lens. As a result, the sample can be kept in focus without any mechanical movement, at rates up to hundreds of Hertz. The device requires only reflective optics and can be implemented at a fraction of the cost required for a comparable piezo-based actuator.Publisher PDFPeer reviewe

    Phenotypes of Myopathy-related Actin Mutants in differentiated C2C12 Myotubes

    Get PDF
    BACKGROUND: About 20 % of nemaline myopathies are thus far related to skeletal muscle alpha-actin. Seven actin mutants located in different parts of the actin molecule and linked to different forms of the disease were selected and expressed as EGFP-tagged constructs in differentiated C2C12 mytoubes. Results were compared with phenotypes in patient skeletal muscle fibres and with previous expression studies in fibroblasts and C2C12 myoblasts/myotubes. RESULTS: Whereas EGFP wt-actin nicely incorporated into endogenous stress fibres and sarcomeric structures, the mutants showed a range of phenotypes, which generally changed upon differentiation. Many mutants appeared delocalized in myoblasts but integrated into endogenous actin structures after 4–6 days of differentiation, demonstrating a poor correlation between the appearance in myotubes and the severity of the disease. However, for some mutants, integration into stress fibres induced aberrant structures in differentiated cells, like thickening or fragmentation of stress fibres. Other mutants almost failed to integrate but formed huge aggregates in the cytoplasm of myotubes. Those did not co-stain with alpha-actinin, a main component of nemaline bodies found in patient muscle. Interestingly, nuclear aggregates as formed by two of the mutants in myoblasts were found less frequently or not at all in differentiated cells. CONCLUSION: Myotubes are a suitable system to study the capacity of a mutant to incorporate into actin structures or to form or induce pathological changes. Some of the phenotypes observed in undifferentiated myoblasts may only be in vitro effects. Other phenotypes, like aberrant stress fibres or rod formation may be more directly correlated with disease phenotypes. Some mutants did not induce any changes in the cellular actin system, indicating the importance of additional studies like functional assays to fully characterize the pathological impact of a mutant

    Linescan microscopy data to extract diffusion coefficient of a fluorescent species using a commercial confocal microscope

    Get PDF
    We report here on the measurement of the diffusion coefficient of fluorescent species using a commercial microscope possessing a resonant scanner. Sequential linescans with a rate of up to 12 kHz yield a temporal resolution of 83 μs, making the setup amenable to measure diffusion rates over a range covering at least three orders of magnitude, from 100 μm(2)/s down to 0.1 μm(2)/s. We share representative data sets covering (i) the diffusion of a dye molecule, observed in media of different viscosities and (ii) the diffusion of a prototypical membrane receptor. The data can be valuable for researchers interested in the rapid diffusion properties of nuclear, cytosolic or membrane bound proteins fused to fluorescent tags

    Theory of x-ray absorption by laser-dressed atoms

    Get PDF
    An ab initio theory is devised for the x-ray photoabsorption cross section of atoms in the field of a moderately intense optical laser (800nm, 10^13 W/cm^2). The laser dresses the core-excited atomic states, which introduces a dependence of the cross section on the angle between the polarization vectors of the two linearly polarized radiation sources. We use the Hartree-Fock-Slater approximation to describe the atomic many-particle problem in conjunction with a nonrelativistic quantum-electrodynamic approach to treat the photon-electron interaction. The continuum wave functions of ejected electrons are treated with a complex absorbing potential that is derived from smooth exterior complex scaling. The solution to the two-color (x-ray plus laser) problem is discussed in terms of a direct diagonalization of the complex symmetric matrix representation of the Hamiltonian. Alternative treatments with time-independent and time-dependent non-Hermitian perturbation theories are presented that exploit the weak interaction strength between x rays and atoms. We apply the theory to study the photoabsorption cross section of krypton atoms near the K edge. A pronounced modification of the cross section is found in the presence of the optical laser.Comment: 13 pages, 3 figures, 1 table, RevTeX4, corrected typoe

    Aeroelastic Gust Response of an Aircraft Using a Prescribed Velocity Method in Viscous Flows

    Get PDF

    Nanotechnology and diabetes

    Get PDF
    Nanotechnology offers sensing technologies that provide more accurate and timely medical information for diagnosing disease, and miniature devices that can administer treatment automatically if required. Some tests such as diabetes blood sugar levels require patients to administer the test themselves to avoid the risk of their blood glucose falling to dangerous levels. Certain users such as children and the elderly may not be able to perform the test properly, timely or without considerable pain. Nanotechnology can now offers new implantable and/or wearable sensing technologies that provide continuous and extremely accurate medical information. In the long run, nanotechnology will clearly open up many routes to treatments and cures for diabetes, as it will for many of the diseases and conditions that currently plague mankind. Nanotechnology offers some new solutions in treating diabetes mellitus. Boxes with nanopores that protect transplanted beta cells from the immune system attack, artificial pancreas and artificial beta cell instead of pancreas transplantation, nanospheres as biodegradable polymeric carriers for oral delivery of insulin are just some of them. The abilities of nanomedicine are huge, and nanotechnology could give medicine an entirely new outlook. Whilst some of these technologies are quite far-fetched, there is evidence that we will see significant advances in the treatment and management of diabetes quite soon. The purpose of this review is to throw more light on the recent advances and impact of nanotechnology on biomedical sciences to cure diabetes

    Chromatin Architecture Reconstruction

    Get PDF
    corecore