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Aeroelastic Gust Response of an Aircraft Using a

Prescribed Velocity Method in Viscous Flows

S. J. Huntley∗, D. Jones† and A. Gaitonde†

Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TR, United Kingdom

This paper presents the extension of the prescribed velocity method, known as the

Split Velocity Method, for the purposes of modelling flexible aircraft gust responses. This

is achieved by performing aeroelastic simulations using the computational fluid dynamics

flow solver DLR-TAU coupled with a modal structural solver. This method is demonstrated

by computing the response of a wide-body aircraft to a series of 1-cosine gusts. The results

are compared to an existing prescribed velocity method, the Field Velocity Method. It is

shown that the Field Velocity Method is a simplification of the Split Velocity Method and

this results in noticeable differences in the solution for short wavelength gusts, where the

velocity gradients are greatest.

Nomenclature

ˆ̂u, ˆ̂v, ˆ̂w gust velocity components
γ ratio of specific heats
µ dynamic viscosity
ρ density
ũ, ṽ, w̃ background velocity components
c chord length
E energy
p pressure
Pr Prandtl number
Re Reynolds number
s non-dimensional time
t time
u, v, w total velocity components
uref freestream velocity
xt, yt, zt grid velocities

I. Introduction

Previous work by the authors demonstrated the applicability of the Split Velocity Method (SVM) to
improve the prediction of the rigid gust response of aircraft.1 This paper extends that work to flexible
gust responses by including a structural solver and deformation tool in the solution process to perform an
aeroelastic gust analysis.

As an aircraft encounters a gust it undergoes a large change in the loads and moments it experiences.
This in turn changes the shape of the aircraft as it responds to these forces. As the gust constitutes a
critical load case in the design of the aircraft, its accurate prediction is important for safety and certification.
Inclusion of the aeroelastic effects becomes important as the flexible dynamic response of the aircraft, that
is excited by the gust, impact on the structural design and fatigue calculations.

∗Research Associate, AIAA member
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During the detailed design stages, high fidelity solutions are required. This is achieved using Compu-
tational Fluid Dynamics (CFD). CFD simulations are associated with high computational cost, which is
especially true for unsteady applications, such as is of interest in this work. Furthermore, the accuracy
achievable in CFD is limited by numerical dissipation.2 Numerical dissipation is most prevalent in spatial
regions where the grid is not resolved enough. In these regions any disturbances, such as gusts and vortices,
are quickly diffused.3 This is often the case in the far field upstream regions. This can be overcome by using
a mesh which is fine throughout the domain, however this significantly increases the computational cost and
as such becomes an impractical solution for design purposes. An alternative to using a globally fine mesh
is to locally adapt the mesh so that the resolution is fine enough in the spatial regions of interest.4 Once
again, this increases the computational cost as a grid generator must be employed whilst the simulation is
performed. Furthermore, this method is not guaranteed to result in more accurate results as the grid can
become distorted, thus reducing its quality.5

The problem of needing to employ a fine mesh throughout the domain can be overcome by using a
prescribed velocity method. Prescribed velocity methods work by prescribing the disturbance velocities, in
this case the gust velocities, and changing the grid time metrics. In this way grid motion is simulated but the
mesh is not altered or distorted.6, 7 This is the approach taken in the Field Velocity Method (FVM).8 Here,
the concept of the surface transpiration method has been taken and extended so that velocity corrections are
not just applied on the surface but are applied throughout the flow domain.9 Numerical dissipation of the
gust disturbance is eliminated as the gust velocities are prescribed, which means that the computational cost
can be reduced as a coarser mesh can be used away from the aircraft. One further benefit to this method
is the fact that it is easily implemented as it reuses existing moving mesh Euler or Navier-Stokes codes by
setting the grid velocities to the negative of the gust velocities. In the literature, FVM has been used in
a range of applications from solving sharp edged gusts7 to modelling a step change in flow incidence6 and
for vortex interaction problems.10 It has also been validated by analytical solutions from piston and linear
compressible theories.6 However, FVM is not appropriate for modelling certain downstream problems, such
as a horizontal stabilizer as it does not include all the interactions between the aircraft and the gust, it only
accounts for the influence of the gust on the aircraft.11 The available literature for FVM does not make
clear what the underlying assumptions are and furthermore does not appear to consider the momentum and
energy components due to the external velocity field.9 The Split Velocity Method (SVM) also prescribes gust
velocities but, unlike FVM, it retains all momentum and energy components. This is done by rearranging
the unsteady governing equations on a fixed or moving mesh. The result of this is more accurate solutions
due to the inclusion of some additional source terms, which account for all the interactions between the gust
and the aircraft, which will be shown to be missing from FVM. The SVM has been applied to the simulation
of gusts in two-dimensional inviscid flows12 and two- and three-dimensional viscous flow.1 This study aims
to extend the three-dimensional viscous work, which was concerned with the rigid response, by coupling a
CFD solver employing SVM to a Computational Structural Mechanics (CSM) solver in order to investigate
the aeroelastic gust response of an aircraft. Simulations are carried out for a series of 1-cosine gusts and the
solutions are compared to those produced using FVM. The results corroborate those found in Huntley et.

al ,1 where the results using SVM are more accurate than FVM, especially for short wavelength gusts.

II. Methodology

Aeroelastic simulations involve coupling Computational Fluid Dynamics with Computational Structural
Mechanics (CFD-CSM) to get the required aerodynamic coefficients, dimensional forces and moments along
the three body axes. This work uses the CFD solver DLR-TAU coupled to a modal CSM solver written in
Python. The coupling is performed through the common interface environment provided by FlowSimulator.13

First the formulation of CFD modelling of gusts using the two prescribed velocity methods used in this work
is presented before the coupling to the structural solver is described.

II.A. CFD Modelling of gusts using prescribed velocity methods

The FVM and SVM are both prescribed velocity methods. Both use a moving mesh solver, however, the
SVM requires additional source terms. It is possible to formulate the SVM in such a way that it can be
shown that the FVM is a simplification of the SVM and that the source terms arising from rearranging the
governing equations are neglected. The flow equations may then be solved in conjunction with a structural
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solver to compute a flexible aircraft gust encounter or alone for a rigid aircraft gust encounter.

II.A.1. Field Velocity Method

The current method for simulating the gust response of aircraft in DLR-TAU uses a method known as the
Field Velocity Method (FVM). In FVM, the gust velocity is prescribed and the remaining flow field is solved;
this eliminates numerical dissipation of the disturbances. This allows for coarser meshes to be used away
from the aircraft thus significantly reducing computational cost. This method is also cost efficient since it
is based on existing moving mesh codes which are easily modified with grid velocities set to minus the gust
velocities. In this way, the grid is not actually moved and then the velocities that are computed are relative
to the gust. In other words, FVM treats the problem as if the aircraft was moving at the speed of the gust
but in the opposite direction. The main drawback of FVM is that it does not include all the interactions
between the gust and the aircraft. This has the largest effect on the downstream components and short
gusts. The FVM formulation for the Navier-Stokes equations on a fixed mesh in three dimensions are given
by Eq. (1).
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(1)

Where the equations are actually the moving mesh equations with the grid velocities set equal to the
negative gust velocities

xt = −ˆ̂u, yt = −ˆ̂v, zt = − ˆ̂w (2)

The energy and pressure are given by

E =
p

ρ(γ − 1)
+

1

2
(ũ2 + ṽ2 + w̃2) (3)

and
p = (γ − 1)(ρE −

ρ

2
(ũ2 + ṽ2 + w̃2)) (4)

respectively.
The FVM has been shown to yield accurate results for very thin aerofoils by comparing with exact flat-

plate analytical solutions from piston theory and linear steady state values.6 However, FVM is not backed
by any compelling reason or clear description of simplifications and assumptions used in its derivation.

II.A.2. Split Velocity Method

The Split Velocity Method (SVM) is another method which prescribes the gust velocities but retains all
momentum and energy components. This is achieved by decomposing the velocities and energy in the
unsteady governing equations before rearranging them. There are no simplifications or assumptions made
in the formulation of the SVM from the Navier-Stokes equations and the formulation presented here can be
compared directly to the FVM. This makes it clear that the FVM neglects additional source terms which are
present in SVM. These source terms account for influence of the aircraft on the gust, which the FVM cannot
model,14 and therefore provides more accurate solutions when this influence is significant. This is especially

3 of 18

American Institute of Aeronautics and Astronautics



true for short gusts due to the effect of spatial gradients in the source terms. For the Split Velocity Method,
the formulation begins with the unsteady Navier-Stokes equations on a fixed mesh (Eq. (5))
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(5)

and decomposes the velocities and energy as

u = ũ+ ˆ̂u v = ṽ + ˆ̂v w = w̃ + ˆ̂w E = Ẽ + ˆ̃E +
ˆ̂
E (6)

where ˆ̂u, ˆ̂v and ˆ̂w are the gust velocity components. The Energy, E, is computed by substituting the velocity
decompositions into Eq. (3), which after some manipulation gives

E =
p

ρ(γ − 1)
+

1

2
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1
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E

(7)

The pressure remains unchanged from the FVM formulation and is therefore given by Eq. (4). The
Navier-Stokes equations for the Split Velocity Method are then obtained by substituting the decompositions
in Eq. (6) into the unsteady Navier-stokes equations given by Eq. (5).

which, after some manipulation gives the Navier-Stokes equations as
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ρṽ

ρw̃

ρẼ
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(8)

where,
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ŵ

∂z

)

σyy = 2
3

µ
Re

(

2∂ṽ
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where, Pr, µ and Re are the Prandtl number, dynamic viscosity and Reynolds number respectively. The
source terms are given by
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û

∂x + σyy
∂
ˆ
v̂

∂y + σzz
∂
ˆ
ŵ

∂z + σxy

[

∂
ˆ
v̂

∂x + ∂
ˆ
û
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û

∂z

]

+ σyz

[

∂
ˆ
ŵ
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It is noted that the stress tensors, σ, in SVM are calculated based on velocity derivatives for total
velocities u, v and w meaning that they include the gust velocities for the calculation of viscous fluxes. This
is to eliminate the introduction of dissipative source terms arising from separating velocity derivatives. The
resulting equation is the Split Velocity Method equations without any underlying assumptions about the
gust. It can be readily seen that this is equivalent to standard moving mesh equations (or FVM) with grid
velocity set to minus the gust velocity, but includes additional source terms which are an important aspect
of this method as it takes into account all the interactions between the gust and the aircraft.

II.B. Coupling methodology

The flexible aircraft gust encounters were computed using FlowSimulator13 to couple the CFD solver DLR-
TAU, modified to implement SVM, to a structural solver implemented in Python. The FlowSimulator
software has been developed to enable multi-disciplinary simulations by providing a common interface for
individual computational tools in a plugin-type manner. For this work the CSM solver, CFD solver and
deformation tool all interact through this common environment.

This CSM solver uses a modal coupling technique to compute the deformations at each time-step, which
reduces the computational cost. The governing differential equation in physical coordinates is given by

[M ] {ü(t)}+ [D] {u̇(t)}+ [K] {u(t)} = {f(t)} (11)

where u is the displacement vector, M is the mass matrix, D is the damping matrix, K is the stiffness matrix
and f denotes the force vector. The modal form of the governing differential equation for motion is given by
multiplying the equation in physical coordinates (11) by the modal matrix, Φ = [X1X2 . . . XN ] and setting

{u(t)} =

N∑

r=1

{X − r} qr = [Φ] {q(t)} (12)

This gives the governing differential equation for motion as:

[Φ]T [M ][Φ] {q̈(t)} + [Φ]T [D][Φ] {q̇(t)} + [Φ]T [K][Φ] {q(t)} = [Φ]T {f(t)} (13)
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Where [Φ]T [M ][Φ] is the generalized mass matrix, [Φ]T [K][Φ] is the generalized stiffness matrix and q are
the generalized coordinates. The force vector, f(t), constitutes the aerodynamic loads, which are calculated
using DLR-TAU. The structural displacements calculated by the CSM solver must be interpolated onto the
aerodynamic surface points. This is done by linear interpolation given by

ua = [H ]us (14)

where ua are the displacements at the aerodynamic surface points, us are the structural displacements and H
is a matrix that gives the coupling between the points of the aerodynamic model and the structural model.
This interpolation is performed using an RBF deformation tool. This is a scattered data interpolation
method and uses a Wendlands C2 basis function. A conventional serial staggered algorithm15 is used to
couple the fluid system to the structural system, this is a loosely-coupled iterative procedure which means
that the accuracy that can be achieved is limited as there will always be a first order error associated with
the timestep. The structural equations themselves are integrated in time using the Newmark method.16

III. Results

The main requirements driving the investigation of gusts for aircraft are safety and certification. They
are set out by the EASA Certification Specification-25 (CS-25) or by the FAR-25 documents. Amendment
12 of CS-25 states that the shape of the gust must be:

ˆ̂v =







0 x < x′ −H x > x′

ˆ
v̂ds
2

(

1− cos
(

π(x−x′)
H

))

x′ ≥ x ≥ x′ −H
(15)

where x′ is the leading-edge position of the gust and is given by

x′ = uref t+ x0. (16)

Here, uref is the reference freestream velocity, x0 is the position of the leading edge of the gust at time zero,

H is the gust half-wavelength in metres and ˆ̂vds is the design gust velocity given by:

ˆ̂vds = urefFg(H/107)(1/6) (17)

Where Fg is the flight profile alleviation factor. The value of Fg will be increased linearly from the sea level
value to a value of 1 at the maximum operating altitude and can be calculated as directed by CS-25.341.
In the equation above, the value 107 refers to the largest half-wavelength (in metres) of importance. The
half-wavelengths that are interesting in this study range from 30 ft (9.144m) to 350 ft (106.68m).

Using these equations, the amplitudes were computed using the flight envelope for a generic wide-body
aircraft test case. Using the design cruising speed, the gust profiles and flight conditions for the cases
simulated are listed in Table 1. These were run on an unstructured mesh, generated in SOLAR,17 which
consisted of a half-model of the wide-body aircraft and contained approximately 3 million points.

The cases were simulated using both the SVM and FVM with the Spalart-Allmaras turbulence model
without the ft2 trip term.18 For all the cases, the gust was initially located outside of the farfield boundary
and convected at the freestream velocity speed. All these cases have previously been run rigid and the results
were presented by Huntley et al.1 These gusts were chosen as they represent the shortest, mid-length and
longest wavelength gust as specified by the Certification Authorities at different flight conditions. The results
are presented using a non-dimensional time given by

s =
2uref t

c
(18)

where t is the physical time step size and c is the chord length. This represents the number of semi-chords
travelled. A physical time step size of 0.0025s has been used. The results for lift and moment coefficient
(normalised by the maximum value) are presented in Figures 1, 2 and 3 for gust simulations at altitudes of
0ft, 29995ft and 43000ft, respectively. All three altitudes show that the Split Velocity Method has a larger
effect on shorter wavelength gusts. This is expected as the source terms, which are given by the velocity
gradients, are largest here. Figures 1(a), 2(a) and 3(a) show that for the shortest wavelength gusts at each
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Table 1. Gust profile data

Altitude (ft) Mach Number Reynolds number Gust length (m) Gust Velocity (m/s) Equivalent ∆α(deg)

0 0.499 11× 106 18.29 8.825 2.98

0 0.499 11× 106 91.44 11.540 3.89

0 0.499 11× 106 213.36 13.290 4.48

29995 0.860 8× 106 18.29 11.247 2.47

29995 0.860 8× 106 91.44 14.707 3.23

29995 0.860 8× 106 213.36 16.938 3.72

43000 0.860 5× 106 18.29 12.692 2.96

43000 0.860 5× 106 91.44 16.597 3.87

43000 0.860 5× 106 213.36 19.114 4.45

altitude there are two main peaks in the lift coefficient. The first peak corresponds to the gust passing over
the wing whilst the second peak is caused by the gust travelling over the tail of the aircraft.

Pressure coefficient distributions across the surface of the aircraft wing at the time of the gust peak
are shown in Figures 4, 5 and 6 for altitudes of 0ft, 29995ft and 43000ft, respectively. The corresponding
wing deformations are shown in Figures 7, 8 and 9. From these figures it is clear to see that in the main
there is very little difference between the Split Velocity Method and the Field Velocity Method. The largest
differences appear to occur for the 91.44m case at an altitude of 29995ft, where the pressure coefficient using
FVM is shown in Figure 5(c) and using SVM is shown in Figure 5(d). The corresponding wing deformations
are shown in Figure 8(c) with the close-up of the wing tip shown in Figure 8(d). Here it is possible to see
that there is greater suction across the upper surface of the wing using FVM which corresponds to a lower
deformation at the wing tip. Generally, the results appear to show that for the shortest wavelength gusts
there is very little deformation of the wing but the differences between FVM and SVM are greatest here.
Whereas for the largest wavelength gusts the deformation is greatest but the difference between FVM and
SVM is minimal. This agrees with what was found for the forces and for the rigid cases run previously and
presented in Huntley et al.1

The SVM does incur a cost penalty, this is fairly constant across all the simulations presented here, where
the SVM took on average 12.6% longer in terms of CPU time. The number of CPU hours for all cases are
given in Table 2. This table also shows the accuracy gain of using the SVM for the global peak values of lift
and moment coefficient. This is presented as a negative value if it was found that the FVM overpredicted
the peak value and a positive value if FVM underpredicted the peak value. The largest inconsistencies
are found with the coefficients of the shortest wavelength gusts. The FVM also tends to overpredict the
peak lift coefficient and underpredict the moment coefficient of the shortest wavelength gust. As the gust
length increases the differences between SVM and FVM reduce although the peak moment coefficient values
show larger differences than the lift coefficient. Furthermore, the peak moment coefficient value seems to be
overpredicted by the FVM for the larger wavelength gusts.
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Table 2. Computational cost

Altitude (ft) Gust length (m) CPU hours SVM cost (+%) SVM accuracy
improvement (%)

FVM SVM Cl Cm

0 18.29 106.8 118.7 11.1 -1.8 -9.5

0 91.44 127.2 145.3 14.2 -0.7 0.3

0 213.36 243.8 274.1 12.4 -0.3 -3.3

29995 18.29 152.0 170.5 12.2 -4.1 11.5

29995 91.44 170.4 194.1 13.9 -1.2 -3.5

29995 213.36 290.4 324.4 11.7 0.2 -1.3

43000 18.29 204.1 227.6 11.5 -3.1 -6.7

43000 91.44 225.6 255.4 13.2 -1.0 -1.0

43000 213.36 340.3 382.5 12.4 0.5 0.5

IV. Conclusion

The Split Velocity Method has been used to investigate the gust response of a flexible aircraft to a series
of 1-cosine gusts. This is achieved by coupling the CFD solver DLR-TAU to a modal structural solver
to perform aeroelastic calculations. The results were compared to an existing prescribed velocity method
currently available in DLR-TAU called the field velocity method. It has been shown that the Split Velocity
Method increases the accuracy of simulations of flexible aircraft encounters with short wavelength gusts but
has less of an effect for larger wavelength gusts where the gradients are smaller. When considering the gain
in accuracy with the increase in computational cost associated with employing the Split Velocity Method, it
would suggest that SVM should only be used for the shortest wavelength gusts. The SVM has been shown
to convect gusts and disturbances without dissipation while providing far more insight into flow behaviour
and generated forces than the widely used linear panel methods. The SVM allows gusts to be resolved and
the mutual interaction of the aircraft and the gust to be simulated without requiring a fine mesh to be
employed throughout the domain. This allows for detailed modelling at low computational cost thus making
it extremely valuable in aircraft design.
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(a) Lift coefficient history an 18.28m wavelength gust (b) Moment coefficient history an 18.28m wavelength gust

(c) Lift coefficient history an 91.44m wavelength gust (d) Moment coefficient history an 91.44m wavelength gust

(e) Lift coefficient history an 213.36m wavelength gust (f) Moment coefficient history an 213.36m wavelength gust

Figure 1. Lift and moment coefficient histories at an altitude of 0ft for different wavelength gusts.
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(a) Lift coefficient history an 18.28m wavelength gust (b) Moment coefficient history an 18.28m wavelength gust

(c) Lift coefficient history an 91.44m wavelength gust (d) Moment coefficient history an 91.44m wavelength gust

(e) Lift coefficient history an 213.36m wavelength gust (f) Moment coefficient history an 213.36m wavelength gust

Figure 2. Lift and moment coefficient histories at an altitude of altitude 29995ft for different wavelength gusts.
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(a) Lift coefficient history an 18.28m wavelength gust (b) Moment coefficient history an 18.28m wavelength gust

(c) Lift coefficient history an 91.44m wavelength gust (d) Moment coefficient history an 91.44m wavelength gust

(e) Lift coefficient history an 213.36m wavelength gust (f) Moment coefficient history an 213.36m wavelength gust

Figure 3. Lift and moment coefficient histories at an altitude of altitude 43000ft for different wavelength gusts.
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(a) Wing surface Cp of an 18.28m wavelength gust using FVM (b) Wing surface Cp of an 18.28m wavelength gust using SVM

(c) Wing surface Cp of a 91.44m wavelength gust using FVM (d) Wing surface Cp of a 91.44m wavelength gust using SVM

(e) Wing surface Cp of a 213.36m wavelength gust using FVM (f) Wing surface Cp of a 213.36m wavelength gust using SVM

Figure 4. Wing pressure coefficient at gust peak at an altitude of 0ft for different wavelength gusts using SVM and

FVM. 13 of 18
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(a) Wing surface Cp of an 18.28m wavelength gust using FVM (b) Wing surface Cp of an 18.28m wavelength gust using SVM

(c) Wing surface Cp of a 91.44m wavelength gust using FVM (d) Wing surface Cp of a 91.44m wavelength gust using SVM

(e) Wing surface Cp of a 213.36m wavelength gust using FVM (f) Wing surface Cp of a 213.36m wavelength gust using SVM

Figure 5. Wing pressure coefficient at gust peak at an altitude of 29995ft for different wavelength gusts using SVM

and FVM. 14 of 18
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(a) Wing surface Cp of an 18.28m wavelength gust using FVM (b) Wing surface Cp of an 18.28m wavelength gust using SVM

(c) Wing surface Cp of a 91.44m wavelength gust using FVM (d) Wing surface Cp of a 91.44m wavelength gust using SVM

(e) Wing surface Cp of a 213.36m wavelength gust using FVM (f) Wing surface Cp of a 213.36m wavelength gust using SVM

Figure 6. Wing pressure coefficient at gust peak at an altitude of 43000ft for different wavelength gusts using SVM

and FVM. 15 of 18
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(a) Wing deformation of an 18.28m wavelength gust (b) Close up of deformation of an 18.28m wavelength gust

(c) Wing deformation of a 91.44m wavelength gust (d) Close up of deformation of a 91.44m wavelength gust

(e) Wing deformation of a 213.36m wavelength gust (f) Close up of deformation of a 213.36m wavelength gust

Figure 7. Deformation of at gust peak at an altitude of 0ft for different wavelength gusts. Blue: Initial mesh, Red:

FVM, Grey: SVM. 16 of 18
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(a) Wing deformation of an 18.28m wavelength gust (b) Close up of deformation of an 18.28m wavelength gust

(c) Wing deformation of a 91.44m wavelength gust (d) Close up of deformation of a 91.44m wavelength gust

(e) Wing deformation of a 213.36m wavelength gust (f) Close up of deformation of a 213.36m wavelength gust

Figure 8. Deformation of at gust peak at an altitude of 29995ft for different wavelength gusts. Blue: Initial mesh, Red:

FVM, Grey: SVM. 17 of 18
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(a) Wing deformation of an 18.28m wavelength gust (b) Close up of deformation of an 18.28m wavelength gust

(c) Wing deformation of a 91.44m wavelength gust (d) Close up of deformation of a 91.44m wavelength gust

(e) Wing deformation of a 213.36m wavelength gust (f) Close up of deformation of a 213.36m wavelength gust

Figure 9. Deformation of at gust peak at an altitude of 43000ft for different wavelength gusts. Blue: Initial mesh, Red:

FVM, Grey: SVM. 18 of 18
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