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Abstract: 

This paper presents a robust finite element procedure for simulating the localised fracture of 

reinforced concrete members. In this new model the concrete member is modelled as an assembly 

of plain concrete, reinforcing steel bar and bond-link elements. The 4-node quadrilateral elements 

are used for 2D modelling of plain concrete elements, in which the extended finite element method 

is adopted to simulate the formation and growth of individual cracks. The reinforcing steel bars are 

modelled by using a 3-node beam–column element. 2-node bond-link elements are employed for 

modelling the interaction between plain concrete and reinforcing steel bar elements. It is evident 

that the nonlinear procedure proposed in this paper can properly model the formation and 

propagation of individual localised cracks within the reinforced concrete structures. The model 

presented in this paper enables the researchers and designers to access the integrity of reinforced 

concrete members under extreme loading conditions by using mesh independent extended finite 

element method. 

Keywords: Computational mechanics; Concrete structures; Localised crack; extended finite 

element method. 
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Notation 

u

staB   regular strain-displacement transformation matrix 

a

enrB  enhanced strain-displacement transformation matrix
 

D   material constitutive matrix of plain concrete 

int
f   element internal force vector 

int

af  enhanced element internal force vector 

int

uf  regular element internal force vector 

int

f  element internal force vector corresponding to traction 

fG   fracture energy of concrete 

aaK  enhanced element stiffness matrix  

uuK  regular element stiffness matrix  

K  element stiffness matrix corresponding to traction 

aT             tangent stiffness of traction-separation relation  

at             traction within the cracks  

)(xsign  sign function  

contu  vector of continuous displacement field  

disu  vector of discontinuous displacement field  

)(xi  enhancement function  
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1. Introduction 

Recently, localised fracture of reinforced concrete members has been of interests by many 

researchers and engineers. In the case of the utilisation of reinforced concrete structures in the 

offshore structures, it is very important to evaluate the effect of individual crack opening on the 

corrosion of reinforced steel bars, which could cause a significant strength loss of the structural 

members. When structures are subjected to the extreme loading condition such as fire, the 

reinforced concrete beams or slabs are forced into high deformation, and large individual cracks can 

be formed within the structural members. This phenomenon was observed in some previous 

experimental tests (Bailey and Toh, 2007; Foster et al., 2004; Foster, 2006). Those large individual 

cracks influence the exposure condition of reinforcing steel bar to the fire and in some cases the 

steel reinforcements are directly exposed to the fire which significantly reduces the fire resistance of 

the structures. In the case of the FRP strength reinforced concrete beam the localised concrete 

cracking could cause possible debonding failure of externally strengthening FRP layer (Chen et al., 

2011). In addition to the global response like ultimate strength and deflection the propagation of 

localised cracks in the concrete surrounding the reinforcing steel also affects the bond-slip 

behaviour between steel bar and concrete (Rots, 1985; Cervenka et al., 2003; Gao et al., 2013). In 

the past plenty of researches have been devoted to develop the numerical models for modelling of 

the reinforced concrete structure based on a continuum approach in which smeared cracking was 

adopted to simulate the cracks (Suidan and Schnobrich, 1973; Huang et al., 2003; Vecchio and 

DeRoo, 1995). However, the smeared cracking model is not capable to capture the formations and 

propagations of individual cracks within a reinforced concrete member. At present very little 

research has been done on the modelling of localised fractures for reinforced concrete structural 

members.  

In the past, a discrete-cracking model has been used successfully for modelling the cracks in 

structural members when the crack path was known in advance. In these cases, the finite element 

mesh was constructed in such way that the crack path coincided with the element boundaries. 

However, this approach has to limit cracks to inter-element boundaries, or requires performing 

re-meshing during the analysis process in order to capture crack propagation. To overcome this 

problem, extended finite element method (XFEM) was developed and introduced (Belytschko and 

Black, 1999; Möes et al., 1999) based on the partition of unity theory (Mellenk and Babuŝka, 1996). 
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Recently a number of XFEM approaches in conjunction with cohesive-zone models have been 

developed to analyse localisation and fracture in engineering materials (Wells and Sluys, 2001; Zi 

and Belytschko, 2003; Verhoose et al., 2009; Möes and Belytschko, 2002). In the last decade, 

XFEM approach has been successful extended to many applications in modelling 2D and 3D 

problems (Hansbo and Hansbo, 2004; Sukumar et al., 2000; Möes et al., 2002; Gravouil et al., 

2002; Duan et al., 2009). However, so far the application of XFEM for modelling reinforced 

concrete members is still very limited.  

The main objective of this paper is to present a robust finite element procedure for modelling the 

localised fracture of reinforced concrete members. The 4-node quadrilateral elements are used for 

modelling of plain concrete part of reinforced concrete members, in which the extended finite 

element method (XFEM) is adopted to simulate the formation and growth of the cracks. The 

reinforcing steel bars are modelled by using the 3-node beam–column elements and 2-node 

bond-link elements are employed for modelling the interaction between plain concrete and 

reinforcing steel bar elements. If XFEM is applied to plain concrete element its nodal displacement 

will be divided into two parts, continuous part and discontinuous part, both of them cannot be 

coincident with the nodal displacement of steel bars. To resolve this problem a shifted enhancement 

function proposed by Zi and Belytschko (2003) is adopted so that the total nodal displacement of 

the plain concrete element can be obtained in the procedure rather than only the continuous part. In 

this way the nodal displacement of concrete and reinforcing steel bar can be coincided with each 

other in the proposed model. In this paper the influence of bond characteristic between concrete and 

reinforcing steel bar on the localised crack initiation and propagation within a reinforced concrete 

member is also examined.  

2. Nonlinear procedure 

2.1 Reinforcing steel bar and bond-link elements 

As shown in Figure 1 a reinforced concrete beam is modelled as an assembly of finite plain 

concrete, reinforcing steel bar and bond-link elements. In the present model, a general 

three-dimensional isoparametric 3-node beam-column element developed by Huang et al. (2009) is 

adopted to represent main reinforcing steel bars of reinforced concrete members. The material 

nonlinearities of concrete and steel follows the models specified in Eurocode 2 (BSI, 2004).   
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In order to model the interaction between the reinforcing steel and the concrete within the 

reinforced concrete structural members a two-node bond-link element with zero length developed 

previously by Huang (2010) was used. As shown in Figure 1(b) the bond-link elements are used to 

link 4-node quadrilateral plain concrete elements with three-node reinforcing steel bar elements. 

The bond-link element is a specialised two-node element of zero length, which has three 

translational degrees of freedom w,v,u  and three rotational degrees of freedom zyx ,,   at 

each node, where x, y, z are local coordinates of reinforcing steel element in which x is the direction 

of longitudinal axis of the reinforcing steel bar (see Figure 1(c)). It is assumed that the slip between 

reinforcing steel and concrete is only related to the longitudinal axis direction (x-direction).  

For reinforcing steel bars, apart from the relative slip along the longitudinal axis direction 

(x-direction) between concrete and steel bars the concrete prevents relative movement of reinforcing 

bars in other directions. It is therefore reasonable to assume that common nodes of the concrete and 

reinforcing bar elements have identical rotations and movements in y and z directions.  Hence, in 

this bond-link element the stiffness coefficients of the element stiffness matrix 65432 k,k,k,k,k , 

which are related to the degrees of freedom for wv,  and zyx ,,   respectively, are assumed to 

have infinite magnitude (10
15

). The stiffness coefficient 1k , which is related to the degree of 

freedom for u, can be calculated using an empirical bond stress-slip relationship given in the 

CEB-FIP Model Code (CEB-FIP, 1990).  

The bond-link element is capable to model perfect, partial and zero bond between the concrete and 

reinforcing steel bar within the reinforced concrete structures. For partial bond condition (ribbed 

steel bar and smooth steel bar) the average bond stress (τb) and stiffness coefficient 1k  of the bond 

element are calculated using the bond stress-slip curves proposed in the CEB-FIP Model Code 

(CEB-FIP, 1990). For perfect bond condition 15

1 10k (N/mm) and the no failure of the bond are 

assumed. For the zero bond condition it is assumed there is no interaction between concrete and 

reinforcing steel bars ( 0,01  bk  ). The details of the bond-link element can be found in Huang 

(2010). 

As shown in Figure 1 (b) the quadrilateral plain concrete elements and the steel bar elements are 

connected to each other by using two-node bond-link elements. As the displacement interpolation in 
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a 4-node quadrilateral element is linear (see the following sections) whilst the displacement 

interpolation in the 3-node beam element, which represents reinforcing steel bar, is quadratic. 

Therefore, there would be a displacement incompatibility between the plain concrete and the 

reinforcing bar elements. However, in the current model, the two different elements are not shared 

the same nodes (see Figure 1(b)) this will reduce the impacts of displacement incompatibility on the 

model. Also it can be seen from Figure 1(b) that, two plain concrete elements are connected to one 

steel bar element by three bond-link elements. Hence, the mesh of the quadrilateral concrete 

element has been doubly refined compared to the steel bar element, which may help to reduce the 

effect of the displacement incompatibility between the plain concrete and the reinforcing bar 

elements on the modelling results.  Generally, for FE modelling, if different elements with 

displacement incompatibility are used the fine mesh is needed to improve the accuracy of the results. 

It will be demonstrated in the validation section that the current model is not very mesh-sensitive. 

Hence, the influence of the displacement incompatibility of two different elements on the current 

model is limited.  

In order to transform 3D problem into 2D model, all reinforcing steel bars at the same height within 

the cross-section of the beam are represented by an equivalent steel bar element at the reference 

plane, as shown in Figure 1 (a). The cross-sectional area of the equivalent steel bar element equals 

to the total cross-sectional area of all real steel bars represented. Also the contact area of equivalent 

steel bar element with concrete is the summation of the total contact areas of all the real steel bars 

represented. 

2.2 Plain concrete element  

2.2.1  Finite element shape functions as partitions of unity  

A general isoparametric 4-node quadrilateral element, each node of which contains two 

translational degree freedoms, is used herein for representing of the plain 2D concrete element 

(Bathe, 1996). For modelling the concrete cracking, the extended finite element method is 

incorporated in the plain concrete element. The key idea of extended finite element method is to use 

the partition of unity to describe the discontinuous displacement and the displacement field is 

approximated by the sum of the regular displacement field and the enhancement displacement field 

(Möes et al., 1999). Considering a 4-node quadrilateral element which is crossed by a crack (Гd), as 
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shown in Figure 2, the domain is divided into two distinct domains represented as Ω
+
 and Ω

−
. Then, 

the total displacement field u consists of a continuous regular displacement field ucont and a 

discontinuous displacement field udis (Wells and Sluys, 2001): 

 
4

1

4

1

discont
)(

iiiii
NN axuuuu                                           (1)        

where Ni is the shape function, iu  is the regular node displacement, ia  is the additional node 

displacement to describe the discontinuity, and )(xi  is the enrichment function to realize the 

displacement jump over discontinuity and expressed as: 

)()()( ixsignxsigni  x  (i=1~4)                                             (2) 

in which sign is the sign function and defined as: 














x

x
xsign

if1

if1
)(                                                      (3)        

Note that the sign function enrichment is equivalent to the Heaviside function enrichment which has 

been used in many previous works of XFEM, but the sign function appear more symmetry than the 

Heaviside function H (
  xHxH if0,if1 ) (Zi and Belytschko, 2003). )( ixsign is the 

sign function of i-th node in a quadrilateral element. Taking the quadrilateral element in Figure 2 as 

an example: )( 2xsign = )( 3xsign = -1 for nodes 2 and 3 and )( 1xsign = )( 4xsign = +1 for nodes 1 and 

4, respectively. Compared with the conventional XFEM models, the sign function given in 

Equation (2) is shifted by )( ixsign . According to Zi and Belytschko (2003), using the shifted sign 

function can make the enrichment displacement field vanish outside the enhanced element but not 

alter the approximating basis. In this way, only the element cut by the crack needs to be enhanced 

rather than its adjacent elements which also contain the enhancement nodes. This method could 

greatly simplify the implementation of extended finite element model in modelling the multiple 

cracks in a reinforced concrete structure. This is because the interaction between the steel bar and 

the concrete via bond action tends to make cracks distributing more evenly within the structural 

members, unlike most of previous XFEM simulations for modelling single crack propagation within 

the brittle materials, such as plain concrete. In addition, more crucial advantage of using shifted 

enhancement function is capable to obtain the total nodal displacement directly in the procedure 

rather than only the regular part of XFEM displacement (Ahmed, 2009). This makes the 
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compatibility of total nodal displacements of plain concrete element and steel bar element feasible. 

Hence, the bond-link element can be used to link plain concrete element and steel bar element in a 

conventional way, such as continuous approach, for modelling of localised cracking within a 

reinforced concrete member.  

In many applications of the XFEM, crack tip enrichment functions such as branch function were 

used to enrich the element that contains the crack tip (Xiao et al, 2007). In this paper, for simplicity, 

it is assumed that the crack tip is always located on an edge of an element; thus, the cracked element 

can be successfully enriched by the sign function only without other enrichment functions. Thus, 

the crack branching is not included in the proposed model. It is assumed that a particular element 

contains only one crack. The main purpose of the model developed in this paper is to capture the 

major localised cracks within the concrete beam. Therefore, in order to enhance the computational 

efficiency of the proposed model, precise modelling of the crack tip and crack branching is not 

considered in this paper. It will be demonstrated in the validation section that the current model is 

not very mesh-sensitive.  

2.2.2  Element stiffness matrix, K   

In the case of two-dimensional four-node quadrilateral element as shown in Figure 2 the element 

nodal displacement vector û  can be represented as: 

 T
i

i
babababavuvuvuvu 4433221144332211

ˆ 









a

u
u                   (4)                           

where ui and νi are the regular nodal displacements related to x and y coordinates, respectively and 

ai and bi are enhancement nodal displacements related to x and y coordinates, respectively. 

The total strain within the element in which the enhancement degrees of freedom are included can 

be expressed as: 





























i

ia

enr

u

sta

xy

y

x

discont
a

u
BBuBεεε ˆ







                                             (5)                                                                                                

in which contε  is the continuous strain and disε is the discontinuous strain; u

staB is the standard 

strain-displacement transformation matrix corresponding to the regular degrees of freedom iu  and 

a

enrB  is the enrichment strain-displacement transformation matrix corresponding to the additional 
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enhancement degrees of freedom ia . 

The shape functions of a general quadrilateral element are calculated as (Bathe, 1996): 

 

 

 

 srN

srN

srN

srN









1)1(
4

1

1)1(
4

1

1)1(
4

1

1)1(
4

1

4

3

2

1

                                                       (6) 

Hence, the strain-displacement transformation matrix B including regular part and enhancement 

part can be obtained as  a

enr

u

sta BBB  , in which: 

  






























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xsta
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xsta

u
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BBBBBBBB

B

B

B

B

B

B

B

B

N

N

N

N

N

N

N

N

44332211

4

4

3

3

2

2

1

1

4

4

3

3

2

2

1

1

0
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0

0

0

0

0

0

0

0

0

0
L
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                           (7) 
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    (8)        

where )(xi (i =1~4) is the enrichment function given in Equation (2), and the matrix L contains 

differential operators. If strains are reasonably small the stresses σ can be written as: 

 iu

staii

u

stadiscont

xy

y

x

aBxuBDεεDDσ )()(ε 

























                              (9)                                                                                                

in which D is the constitutive matrix of concrete. 

In a finite element model the equilibrium conditions between internal and external ‗force‘ has to be 

satisfied. To form the element stiffness matrix and internal force vector, the virtual work equation 

without body forced reads: 
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ext
T

int
fσBf   d                                                  (10) 

where 
int

f  is the internal force vector and 
ext

f is the external force vector. As shown in Figure 2, 

for the element with crack Equation (10) can be written as: 

ext

da

Ta

enr

u

sta
d

TT

ddd ftNσBσBf  


 ,

int                              (11) 

The internal force 
int

f contains the regular part int

uf , enhancement part int

af  and traction part 
int

f  

in which the regular internal force int

uf  balances the external force 
ext

f and the enhancement part 

int

af is related to traction of crack 
int

f  only, that is: 

extint
fσBf   d

Tu

stau                                                      (12) 

 
 


d

T

da

Ta

enra dd 0
,

intint
tNσBff                                     (13) 

where at is the traction acting on the discontinuity Гd (see Figure 3) and can be written as: 



























s

nan

a

as

an

a
w

wT

t

t

00

0
wTt                                               (14) 

where tan and tas are the traction normal and tangential to a crack, respectively; wn 

(  

4

1

2)(
ii

aNnuun ) is the crack opening of the normal direction n of the discontinuity 

(Γd), and ws is the slide of two crack faces tangential to the discontinuity (Γd), respectively; and Tan 

is the tangent stiffness of the traction-separation law. Using the Principle of Virtual Work on 

Equations (12) and (13), the element stiffness matrix in terms of incremental displacements can be 

obtained: 


















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
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




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


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

 



intint

intext

,,

,

0)( ff

ff

da

du

NTNDBBDBB

DBBDBB

a

u

d
da

T
a

enr

Ta

enr

u

sta

Ta

enr

a

enr

Tu

sta

u

sta

Tu

sta

ddd

dd

  (15) 

Equation (15) can be rewritten as: 












































































intint

int

0)(

ˆ

ff

ff

da

du
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udK

a

u

ext

aaau

uauu

                            (16) 
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where uuK  is the element stiffness matrix with reference to the regular degrees of freedom, aaK  

is the element stiffness matrix with reference to the enhancement degrees of freedom, T

auua KK   

is related to both, and K is the element stiffness matrix of traction: 










A

u

sta

Tu

sta

u

sta

Tu

stauu

dxdyt

d

BDB

BDBK

                                                  (17) 














AA

a

enr

Tu

sta

a

enr

Tu

staua

dxdyt

d

,

,

BDB

BDBK

                                                (18) 














AA

u

sta

Ta

enr

u

sta

Ta

enrau

dxdyt

d

,

,

BDB

BDBK

                                                (19) 














AA

a

enr

Ta

enr

a

enr

Ta

enraa

dxdyt

d

,

,

BDB

BDBK

                                                (20) 














d

d

d

TT

da

T

dt

d

NOTON

NTNK

d

                                                   (21) 

where t is the thickness of the element, )(2 NNNN   and N is the shape function matrix 

which is defined in Equations (6) and (7). The orthogonal transformation matrix O performs the 

transformation of the local orientation of the discontinuity to the global coordinate system, as 

shown in Figure 3: 



















),cos(),cos(

),cos(),cos(

syny

sxnx

O                                                  (22) 

where ),cos( nx is the cosine of the angle between the x-axis and the normal orientation of the 

discontinuity, ),cos( sx  is the cosine of the angle between the x-axis and the tangential orientation 

of the discontinuity.  
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2.2.3  Element internal force vector, 
int

f  

Using the principle of virtual work, the internal force vectors in Equation (16) can be written as: 
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2.2.4  Constitutive modelling 

Before cracking or crushing occurs, the integral concrete is assumed to be isotropic, homogeneous, 

and linearly elastic. A biaxial concrete failure envelope proposed by Barzegar-Jamshidi (1987), 

which was based on a slight modification of the Küpfer and Gerstle (1973) expressions, was 

adopted to determine the cracking and crushing of concrete. This is illustrated in Figure 4. Within 

this model the initiation of cracking or crushing at any location occurs when the concrete principal 

stresses reach one of the failure surfaces. Before cracking or crushing, a linear elastic constitutive 

model is adopted to describe the material property of concrete. The constitutive matrix D in 

Equation (9) is the usual set of elastic constant. After crushing, concrete is assumed to lose all 

stiffness. After cracking, the constitutive model of cracked concrete in this research is based on the 

cohesive crack concept. The linear elastic material properties are still assumed in the continuous 

solid, but the enhancement internal force which is related to the traction over the crack would 

decrease with the increase of the crack opening. A concrete bi-linear softening curve is used in the 

current model, as shown in Figure 5, where ft is the tensile strength of concrete, tdn is the traction 

normal to crack, and w is the crack opening. When the crack opening exceeds the traction-free open 

width (0.68wch) the tangent stiffness is set to be zero. In the cohesive interface, the softening curve 
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is governed by the fracture energy, and the fracture energy formulation proposed by Bazant and 

Becq-Giraudon (2002) is adopted in this research. 

2.2.5  Selection of enhancement nodes and elements 

In the current model, after a certain concrete element is cracked, there are two kinds of element 

nodes, regular nodes and enhancement nodes. The regular node contains only regular degrees of 

freedom, but the enhancement function should be added to the enhanced nodes whose support the 

element crossed by a crack. This is illustrated in Figure 6, where enhanced nodes are indicated by 

the solid circles and regular nodes by the hollow circles.  

As mentioned in the previous sections, since the enhancement function (sign function) referenced to 

enhancement nodes is shifted by )( ixsign the enhanced shape function of the enhancement nodes 

only influent the displacement field inside the element crossed by the crack. Therefore, only the 

element enclosing the crack needs to be enhanced rather than all the elements that contain enhanced 

nodes. The enhanced elements shown in Figure 6 are filled with grey colour, and for other regular 

elements the element stiffness matrix K contains regular part uuK (Equation 17) only. 

In the past, for the majority of the extended finite element simulations for modelling structural 

member of brittle material only one main crack was allowed to form and propagate. This is 

reasonable to model plain concrete. However, as far as the reinforced concrete is concerned, the 

reinforcing steel bar can undertake the tensile force transferred from the cracked concrete to other 

parts of uncracked concrete within the member through bond interaction between steel bar and 

concrete. Therefore several cracks may exist within the structure member. The model developed in 

this paper allows two or more cracks initiating and propagating within a reinforced concrete 

member with following assumptions: only one crack may exist within a particular element and the 

nodes related to cracked element are enhanced once only. 

2.2.6  Crack initiation and growth 

In this research, the crack initiation and growth depend on the principal tensile stresses of concrete 

element. At each load increment every concrete element is examined one by one and the average 

principal tensile stress of all Gauss points in an element is checked to determine whether the 

concrete is cracking. Once the average concrete principal tensile stress reaches one of the failure 
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surfaces, either in the biaxial tension region (segment AB) or in the combined tension-compression 

region (segment BC), as shown in Figure 4, a straight crack is inserted through the entire element 

and the orientation of crack is normal to the maximum tensile principal stress. The initial crack is 

set to go through the centroid point of a quadrilateral element, and then when the average principal 

stress of next element reach one of the tension failure surfaces, the crack will propagate from the tip 

of the existing crack into the next element by the orientation normal to the corresponding maximum 

tensile principal stress. Figure 7 illustrates how a crack initiates and propagates. As can be seen that, 

there are two different possible ways that an initial crack cut a quadrilateral element, initial crack 1 

in Figure 7 (a) and initial crack 2 in Figure 7 (b), each of which has possibly three crack 

propagation paths within the next element when the initial crack extends from element 1 into 

element 2. The different possibilities of crack propagation in Figure 7 are all included in the current 

finite element model so that various crack patterns can be simulated in a reinforced concrete 

member (like bending cracks and shear cracks). A crack propagating depends on the location of the 

existing crack tip and the orientation of the propagated crack.  

2.2.7  Integration scheme 

In this study Gauss quadrature is employed to calculate the stiffness matrix and internal force vector 

of concrete element. All stresses, strains, and the constitutive matrix of material discussed are 

related to Gauss integration points. For the regular four-node element four Gauss integration points 

are used as recommended by Bathe (1996). For those enhanced elements containing a crack, 

integration should be performed separately on both sides (Ω
+
 and Ω

−
) of the crack, respectively, 

that means sign function sign (x) need to be applied for each Gauss point within the element.  

In order to properly integrate the field (Ω
+
 and Ω

−
) on both sides of the crack, the enhanced 

elements are partitioned into sub-triangles where usual Gauss quadrature could be used. Figure 8 

shows two possible integration schemes. It can be seen that within each sub-triangle, 3 Gauss 

integration points are used, and correspondingly each enhanced element employs 24 Gauss 

integration points to perform integration over the whole element. As shown in Figure 8 (a), a 

quadrilateral element is cut by a crack into two sub-quadrilaterals, four sub-triangles with 12 Gauss 

points are applied within each sub-quadrilateral. Figure 8 (b) shows that a quadrilateral element is 

cut by a crack into a pentagon and a triangle. In this case 15 Gauss points distributed over 5 

sub-triangles are applied within the pentagon and 9 Gauss points distributed over 3 sub-triangles are 



 16 

applied within the triangle. 

After the element is partitioned, the integration of the enhanced element is performed at 24 Gauss 

points distributed over 8 sub-triangles, each of which 3 Gauss integration points are applied, that is: 

j

j i
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where ),( j

i

j

i sr are the integration point coordinates of i-th Gauss point within j-th sub-triangle, and 

jw is the corresponding weighting factor. Bathe (1996) provided the integration point coordinates 

3,2,1),( 
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iii sr  and weight factor w of a 3-point integration over a triangular domain, where
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a
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are represented by natural coordinates (r, s) of the quadrilateral element, the integration of stiffness 

matrix and internal force has to be performed with reference to natural coordinate system of the 

quadrilateral element. Therefore, a coordinate transformation should be conducted for changing 
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where ( jsubr ,

1 ,
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1 ), ( jsubr ,

2 ,
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2 ) and ( jsubr ,

3 ,
jsubs ,

3 ) are the coordinates of three vertices of j-th 

sub-triangle in the natural coordinate system of quadrilateral element; 1tri
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)(2

i

tri
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tri

i sN  are the shape functions of 3-node triangular element recommended by 

Bathe (1996), which are represented by ),( ii sr  . The weight factor w should also be transformed to 

jw with reference to the nature coordinate system of quadrilateral element as 
sub,jj aww  2 , in 

which 
sub,ja  is the area of j-th sub-triangle and can be expressed as: 
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In the current finite element model, a crack is represented by a straight line within the enhancement 



 17 

element, thus two Gauss points are employed to integrate the discontinuity terms ( K  and 
int

f ) 

using a one-dimensional integration scheme, shown in Figure 3.  

Due to the highly non-linearity of the current model, a full Newton-Raphon solution procedure is 

adopted. In the current model a reinforced concrete member is modelled as an assembly of finite 

plain concrete, reinforcing steel bar and bond-link elements (see Figure 1). Hence, after multiple 

cracks formed within the plain concrete elements the forces originally resisted by the plain concrete 

elements can be transferred into the reinforcing steel bar element through bond-link elements. 

Hence, the modelling behaviour of the reinforced concrete member is much smooth compared to 

modelling of plain concrete elements only. The full Newton-Raphon solution procedure used in the 

current model is robust enough to deal with these convergence problems. The analysis can be 

performed until the fracture of reinforcing steel bars or the failure of bond-link elements.  

3. Numerical example and validations 

3.1  Simply supported reinforced concrete beam subjected to point load at centre 

In order to demonstrate the capability of the model described above for modelling the individual 

crack within a reinforced concrete beam, a simply supported reinforced concrete beam subjected to 

transverse point load at centre was modelled. Figure 9 shows the details of the modelled beam. The 

compressive strength of concrete is 40 MPa and the yield strength of longitudinal reinforcing steel 

bar is 460 MPa. In order to simplified the analysis the stirrups were ignored in this numerical 

example. Four real reinforcing steel bars were represented by two equivalent steel bar elements at 

the reference plane. In this example the compressive failure of concrete was not taken into account 

in order to generate a large deformation so that the localised cracking within the beam can be 

demonstrated more obviously. In this case the perfect bond between steel bars and concrete was 

assumed. The analysis was performed using full Newton-Raphon solution procedure under load 

control. The total point load was 150 kN and was applied at the mid-span of the beam. The analysis 

was completed by 94 load steps. 

Figure 10 demonstrates the process of crack propagations within the beam. It can be seen that the 

predicted flexural cracks distributed near the mid-span and the cracks were inclined near the 

supports. Generally, the predicted cracking pattern is reasonable, and it is evident that the model is 

capable to model the different kinds of cracks within a reinforced concrete beam. The cracks were 
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able to propagate freely within the beam depending on the states of principle stresses within the 

element. As shown in Figure 10 (b) and (c), after steel bar yielding the crack opening of the element 

at mid-span is significantly larger than the others. As the deformed mesh shown in Figure 11, the 

mid-span element is significantly distorted because of a big crack within the mid-span zone. It is 

evident that the numerical model developed in this paper is capable to model the big individual 

cracks and capture the localised cracking within a reinforced concrete beam. Figure 12 illustrates 

the predicted history of opening of mid-span crack in which the crack opening increased 

significantly after the steel bar at the same location yielded.  

3.2  A reinforced concrete beam tested with four-point loading 

In order to validate the model proposed in this paper, a reinforced concrete beam tested by 

Esfahania et al. (2007) was modelled herein. The reinforced concrete beam named B5-16D-0L with 

2000 mm length was tested under four-point loads. The beam having a cross-sectional dimension of 

150 mm width and 200 mm height was reinforced by two ribbed 16 mm diameter tensile steel bars 

and two ribbed 10 mm diameter compressive steel bars. The compressive strength of concrete at 

testing is 23.8 MPa. The yield strengths of 16 mm diameter bar and 10 mm diameter bar are 406 

MPa and 365 MPa, respectively. The details of the tested reinforced concrete beam are given in 

Figure 13.  Again in this case the stirrups have not been included in the modelling in order to 

simplify the analysis.  In order to examine the effects of different bond actions on the cracking 

pattern and crack opening of the beam, Four cases were modelled under perfect bond, partial bond 

(ribbed steel bar and smooth steel bar) and zero bond conditions, respectively.  Same as the 

previous examples the analyses were performed using full Newton-Raphon solution procedure 

under load control. The total load of P = 100 kN was applied with the load increment of 1 kN for 

each loading step. The analyses were completed with 91 load steps for perfect bond case; 86 load 

steps for partial bond-ribbed bar case; 58 load steps for partial bond-smooth bar case; 10 load steps 

for zero bond case; and 80 load steps for partial bond-ribbed bar case with considering compressive 

failure. 

In order to investigate the mesh sensitivity of the current model the beam was modelled using 

different meshes, i.e. 200 concrete elements plus 40 steel bar elements and 400 concrete elements 

plus 80 steel bar elements. The comparison of predicted loads versus mid-span deflection by using 
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different FE meshes is given in Figure 14. It can be seen that the results are almost identical to each 

other. Hence, the current model is not very mesh-sensitive. 

The comparisons of the load versus mid-span deflection relations predicted by the current model for 

different conditions together with the tested results are show in Figure 15. Apart from 

―Prediction-compressive failure (partial bond ribbed bar)‖ case, all the predicted curves were 

modelled without considering compressive failure of concrete. It was found that the predicted 

ultimate strength with consideration of compressive failure of concrete is around 6% lower than that 

without consideration of compressive failure, due to the fact that the extreme compressive elements 

of concrete were crushed after the tensile reinforcing steel bar yielded. The curves of the perfect 

bond case and partial bond ribbed bar case are generally smooth before the yield of reinforcing bars. 

This is due to the fact that the reinforcing bars could pick up the released tensile stresses of the 

cracked concrete. In the case of zero bonded the load versus mid-span deflection relation shows 

significantly discontinuous characteristic after concrete elements cracked. Generally, the predicted 

ultimate strengths of the beam with consideration of compressive failure and partial bond (ribbed 

steel bar) agree well with the tested results. As can be seen in Figure 15, if the concrete is assumed 

to be not cracking, the predicted result greatly overestimates the ultimate load and rigidity of the 

beam. It is obvious that the effects of bond characteristics on the structural behaviour of the beam 

are significant.  

Other than the global response of the beam, it is also interesting to see how the bond-slip 

characteristic influents the cracking pattern and crack opening of the reinforced concrete beam. 

Figure 16 illustrates the crack pattern and crack opening of the predicted beam with different 

bond-slip characteristics. The stronger the applied bond strength between steel bar and concrete, the 

wider range the cracks distributed along the length of the beam. In contrast, with the decrease of 

bond strength the number of cracks within the beam becomes fewer and correspondingly the crack 

opening becomes bigger. For the zero bond case, there are only four parallel flexural cracks within 

the beam and only the two middle cracks showed remarkable openings. It is worth to note that the 

reinforcing steel bar is more possible to fracture locally when a stronger bond action is provided, 

and oppositely if little bond force is applied between steel bar and concrete the stresses of steel bar 

tends to be uniformly distributed along the length of the bar so that the steel bar can bear a very 

large deformation before fracture. The comparison of predicted opening history is demonstrated in 
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Figure 17. The load versus maximum crack opening curves of the perfect bond case and the partial 

bond-ribbed bar case are generally close to each other. As shown in Figure 18 the partial bond 

(ribbed bar) case generally shows the flexural deformation along the longitudinal direction of the 

beam, but apparent localised fracture at mid-span can be observed in the zero bond case.  

3.3  Reinforced concrete shear panel under shear and axial stresses  

In order to validate the model in terms of modelling the propagation of shear cracks, another case 

presented herein is the shear panel tests conducted at the University of Toronto (Xie, 2009). Xie 

(2009) performed six shear panel tests under different combinations of axial stress and shear stress. 

The dimensions of the test panels were 890 mm x 890 mm x 70 mm. The panel specimens were 

reinforced by ten D8 cold-drawn deformed wires in X-direction and by five D4 cold-drawn 

deformed wires in Y-direction. The real sectional area of D8 wire and D4 wire are 51.6 mm
2 

and 

24.2 mm
2
, respectively, and the yield strength of them are 641 MPa and 581 MPa, respectively. The 

arrangements of reinforcing bars are shown in Figure 19 (a). The panel specimens were tested under 

the combination of shear stress and different levels of axial stresses, where fx/v varied from -2.8 to 

3.0, in which fx is the axial stress in X-direction (see Figure 19) and v is the shear stress, and 

negative value means compressive axial stress and positive value means tensile axial stress. Two 

specimens, i.e. the panel PL4 with fx/v = -2.8 and the panel PL6 with fx/v = 3.0, were modelled in 

this paper. The compressive strengths of concrete at testing are 43.1 MPa for PL4 and 43.5 MPa for 

PL6, respectively. The loads were applied through twenty shear keys along the perimeter of the 

panels, as shown in Figure 19 (b), each of which was connected to two hydraulic jacks. Either 

tensile force or compressive force could be applied by the hydraulic jacks, so that different 

combinations of shear force and normal force were provided by varying the relative magnitude of 

the applied forces. In the modelling two D8 bars at the same height were represented by a steel bar 

element at the reference plane. The model contained 256 quadrilateral concrete elements, 120 steel 

bar elements and 255 bond-link elements. 

Figure 20 and Figure 21 give the comparisons of predicted cracking pattern with tested result for the 

panel specimens PL4 and PL6, respectively. It can be seen that the model can reasonably predict the 

formations and propagations of shear cracks within the panels. Figure 22 shows the comparison of 

the predicted shear stress versus shear strain relations together with the tested results. It is evident 

that reasonable agreements were achieved between tested results and predictions for such complex 
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shear tests. It seems that the predicted results underestimate the shear stress whilst overestimate the 

shear strain.  

4. Conclusion   

In this paper a robust finite element procedure for modelling the localised fracture of reinforced 

concrete members has been developed. In this new model the reinforced concrete member is 

modelled as an assembly of plain concrete, reinforcing steel bar and bond-link elements. The 

extended finite element method (XFEM) is incorporated into the plain concrete elements for 

modelling the formation and growth of the individual cracks. The displacement jump over a crack is 

represented by multiplying the enhancement function to the additional nodal displacement. The 

crack initiation and growth depend on the maximum principal tensile stress of concrete element. 

Different possibilities of crack propagation are considered in the model in order to simulate various 

crack patterns in a reinforced concrete member. A special integration scheme is applied to the 

enhanced elements so that the integration can be properly performed on both sides of crack. 

The numerical example and the validations show that the model can reasonably predict the localised 

flexural cracks and shear cracks within the reinforced concrete structures. The model is robust to 

identify individual crack initiation and propagation within the structural member. Hence, the current 

model provides an excellent numerical approach for assessing both structural stability (global 

behaviour) and integrity (localised fracture) of reinforced concrete members under extreme loading 

conditions. The predicted results show that the bond characteristic between concrete and reinforcing 

bars has a significant influence on the crack pattern of reinforced concrete member. The crack 

opening of the beam increases significantly with the decrease of bond strength.  
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Figure Captions 

Figure 1  2-dimensional finite element model of reinforced concrete beam. 

Figure 2  A 4-noded quadrilateral element crossed by a discontinuity Гd. 

Figure 3  Traction of a crack. 

Figure 4  Concrete biaxial failure envelope.  

Figure 5  Bi-lineal softening curve of concrete. 

Figure 6  The finite element mesh for a plain concrete structure with a crossed crack. 

Figure 7  Crack initiation and propagation. 

Figure 8  Integration scheme for an enhanced 4-noded quadrilateral element crossed by a crack. 

Figure 9  Simply supported reinforced concrete beam subject to transverse point load at centre (all  

dimensions in mm). 

Figure 10  Predicted crack propagations in the reinforced concrete beam. 

Figure 11  Predicted results of deformed reinforced concrete beam (x-axis displacement amplified 

50 times). 

Figure 12  Relation of predicted load versus maximum crack opening. 

Figure 13  Details of tested beam under four-point loading  used for comparison (Esfahania et al., 

2007). 

Figure 14  Comparison of predicted loads versus mid-span deflection curve using different FE 

meshes. 

Figure 15  Comparison of predicted and tested loads versus mid-span deflection. 

Figure 16 Predicted cracking pattern of the reinforced concrete beam with different bond-slip 

characteristics. 

Figure 17  Comparison of predicted load versus maximum crack opening relations with different 

bond-slip characteristics. 

Figure 18  Predicted deformed mesh of the reinforced concrete beam.  

Figure 19  Details of tested shear panel used for validation (all dimensions in mm) (Xie, 2009).  

Figure 20  Comparison of predicted cracking pattern with tested result for panel PL4 (fx=-2.8v). 

Figure 21  Comparison of predicted cracking pattern with tested result for panel PL6 (fx=3.0v).  

Figure 22  Comparison of predicted shear stress versus shear strain relations with tested results. 
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Figures 

 

(a) 2-dimensional reinforced concrete beam 

 

 

(b) Concrete, steel bar and bond-link element 

 

(c) Bond-link element 

Fig. 1  2-dimensional finite element model of reinforced concrete beam. 
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Fig. 2  A 4-noded quadrilateral element crossed by a discontinuity Гd. 

 

 

 

 

 

Fig. 3 Traction of a crack. 
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Fig. 4  Concrete biaxial failure envelope. 

 

 

 

 

 

Fig. 5  Bi-lineal softening curve of concrete.  
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Fig. 6  The finite element mesh for a plain concrete structure with a crossed crack. 

 

 

 

 

 

Fig. 7  Crack initiation and propagation. 

                                  

 

 

Enhanced node 

Regular node 

Enhanced element 

Regular element 

Crack 

Centroid  
point 

 
Element 1 

 

Element 2 

1-2 

1-1 

1-3 

Initial crack1 

Crack tip 

Element 1 

 
Element 2 

2-1 

2-2 

2-3 

Centroid  
 point 

 
Initial crack 2 

Crack tip 

Initial crack 

Propagated crack 

(a) 

(b) 



 30 

                                  

Fig. 8 Integration scheme for an enhanced 4-noded quadrilateral element crossed by a crack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9  Simply supported reinforced concrete beam subject to transverse point load at center (all 

dimensions in mm). 
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                       (a) Initial cracking 

 

(b) As reinforcing bar yielding 

 

(c) Final cracking pattern 

Fig. 10 Predicted crack propagations in the reinforced concrete beam. 

 

 

  
Fig. 11  Predicted results of deformed reinforced concrete beam (x-axis displacement amplified 50 

times). 
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      Fig. 12 Relation of predicted load versus maximum crack opening.  

 

 

 

 

Fig. 13  Details of tested beam under four-point loading used for comparison (all dimensions in 

mm) (Esfahania et al. 2007). 
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       Fig. 14  Comparison of predicted loads versus mid-span deflection curve using different 

FE meshes. 
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Fig. 15 Comparison of predicted and tested loads versus mid-span deflection. 
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(a) Perfect bond 

 

(b) Partial bond (ribbed steel bar)  

 

(c) Partial bond (smooth steel bar) 

 

(d) Zero bond 

Fig. 16 Predicted cracking pattern of the reinforced concrete beam with different bond-slip 

characteristics. 
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       Fig. 17 Comparison of predicted load versus maximum crack opening relations with 

different bond-slip characteristics. 
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(a) Partial bond-ribbed steel bar (x-axe displacement has been amplified 10 times) 

 

 

 

 

(b) Localized fracture of the beam with zero bond (x-axe displacement has been amplified 5 times) 

 

Fig. 18 Predicted deformed mesh of the reinforced concrete beam.  

 

 

 

 

 

 

-50

  99.8 mm  103.2 mm 



 36 

   
                                                           

(a) Arrangement of reinforcing bars       

 

 

       (b) Loading method  

 

Fig. 19 Details of tested shear panel used for validation (all dimensions in mm) (Xie 2009).  
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                  (a)  Tested                        (b) Predicted            

 

Fig. 20 Comparison of predicted cracking pattern with tested result for panel PL4 (fx=-2.8v).  

 

 

 

 

 

                  (a)  Tested                            (b) Predicted            

 

Fig. 21 Comparison of predicted cracking pattern with tested result for panel PL6 (fx=3.0v).  
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  (a) PL4 (fx=-2.8v) 

 

 

      

(b) PL6 (fx=3.0v) 

 

Fig. 22 Comparison of predicted shear stress versus shear strain relations with tested results.  
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