179 research outputs found
Lack of Gender Differences in Prevalence of Homelessness in the LVHN Emergency Department Population
Parasitoid interactions in behavioral ecology and biological control
This thesis presents laboratory investigations on the competitive interactions which take place within and between bethylid parasitoids. Part one investigates the compatibility of three bethylids (Cephalonomia hyalinipennis, Cephalononlia stephanoderis and Prorops nasuta) for biocontrol releases against the principal pest of coffee, the coffee berry borer (CBB), Hypothenemus hampei. Cephalonomia hyalinipennis is able to hyperparasitise and consume pupae of C stephanoderis and P. nasuta. Cephalonomia stephanoderis also engages in intra-guild predation, consuming pupae of C hyalinipennis. In contests for CBB hosts, fatal fighting occurs in 69% of inter-specific replicates but never occurs in intra-specific replicates. This suggests that interspecific competition is stronger than intraspecific competition and that species coexistence may be compromised. Cephalonomia tephanoderis is the superior interspecific contestant while P. nasuta is the least successful and never kills an opponent. Where CBB infested coffee berries are provided to the three bethylids, coexistence between species is possible, but rare, within a single coffee berry. Prorops nasuta is the most successful species in interspecific replicates and replicates containing C. hyalinipennis generally have low production, regardless of the species combination added. Part two investigates contest interactions, the variables that influence contest outcome between Goniozus nephantidis females and chemical release. Prior ownership and difference in contestant weight have positive influences on contest outcome. Host weight positively influences the outcome of contests between two 'owners' and 'intruder' take-over success increases when intruders are older than owners. Seven bethylid species are found to release volatile chemicals when stressed. A pilot study identifies the volatile chemical in G. nephantidis and employs Atmospheric Pressure Chemical Ionisation-Mass Spectrometry for real-time analysis of chemical release during contest interactions. The appendix contains an advanced investigation using this technique. Bethylids are useful model organisms for the study of competitive interactions but appear to be generally ineffective as biological control agents
Why Petty IT Tyrants Are the Real Enemy of Cybersecurity, Productivity, and Innovation
Despite purportedly acting in the best interests of the organization, many Information Technology (IT) managers succumb to desires for control and power that result in behavior that is detrimental to employees and, ultimately, the organization as a whole. Drawing from Ashforth’s seminal work on petty tyranny, we highlight the unique dynamics of IT-related tyranny, characterized by micromanagement and arbitrary control over user activities. Employing models that both illustrate petty tyranny emergence and delineate the lifecycle of IT petty tyranny, this work describes how individual predispositions and organizational factors catalyze and perpetuate tyrannical behaviors. In addition, we examine the harmful effects of IT petty tyranny on employee morale, productivity, and even organizational cybersecurity. We conclude with practical advice on how organizations can recognize and mitigate IT petty tyranny to avoid negative outcomes for employees and the organization
Parasitoid interactions in behavioral ecology and biological control
This thesis presents laboratory investigations on the competitive interactions which take place within and between bethylid parasitoids. Part one investigates the compatibility of three bethylids (Cephalonomia hyalinipennis, Cephalononlia stephanoderis and Prorops nasuta) for biocontrol releases against the principal pest of coffee, the coffee berry borer (CBB), Hypothenemus hampei. Cephalonomia hyalinipennis is able to hyperparasitise and consume pupae of C stephanoderis and P. nasuta. Cephalonomia stephanoderis also engages in intra-guild predation, consuming pupae of C hyalinipennis. In contests for CBB hosts, fatal fighting occurs in 69% of inter-specific replicates but never occurs in intra-specific replicates. This suggests that interspecific competition is stronger than intraspecific competition and that species coexistence may be compromised. Cephalonomia tephanoderis is the superior interspecific contestant while P. nasuta is the least successful and never kills an opponent. Where CBB infested coffee berries are provided to the three bethylids, coexistence between species is possible, but rare, within a single coffee berry. Prorops nasuta is the most successful species in interspecific replicates and replicates containing C. hyalinipennis generally have low production, regardless of the species combination added. Part two investigates contest interactions, the variables that influence contest outcome between Goniozus nephantidis females and chemical release. Prior ownership and difference in contestant weight have positive influences on contest outcome. Host weight positively influences the outcome of contests between two 'owners' and 'intruder' take-over success increases when intruders are older than owners. Seven bethylid species are found to release volatile chemicals when stressed. A pilot study identifies the volatile chemical in G. nephantidis and employs Atmospheric Pressure Chemical Ionisation-Mass Spectrometry for real-time analysis of chemical release during contest interactions. The appendix contains an advanced investigation using this technique. Bethylids are useful model organisms for the study of competitive interactions but appear to be generally ineffective as biological control agents
Worm Monte Carlo study of the honeycomb-lattice loop model
We present a Markov-chain Monte Carlo algorithm of "worm"type that correctly
simulates the O(n) loop model on any (finite and connected) bipartite cubic
graph, for any real n>0, and any edge weight, including the fully-packed limit
of infinite edge weight. Furthermore, we prove rigorously that the algorithm is
ergodic and has the correct stationary distribution. We emphasize that by using
known exact mappings when n=2, this algorithm can be used to simulate a number
of zero-temperature Potts antiferromagnets for which the Wang-Swendsen-Kotecky
cluster algorithm is non-ergodic, including the 3-state model on the
kagome-lattice and the 4-state model on the triangular-lattice. We then use
this worm algorithm to perform a systematic study of the honeycomb-lattice loop
model as a function of n<2, on the critical line and in the densely-packed and
fully-packed phases. By comparing our numerical results with Coulomb gas
theory, we identify the exact scaling exponents governing some fundamental
geometric and dynamic observables. In particular, we show that for all n<2, the
scaling of a certain return time in the worm dynamics is governed by the
magnetic dimension of the loop model, thus providing a concrete dynamical
interpretation of this exponent. The case n>2 is also considered, and we
confirm the existence of a phase transition in the 3-state Potts universality
class that was recently observed via numerical transfer matrix calculations.Comment: 33 pages, 12 figure
Small Scale Response and Modeling of Periodically Forced Turbulence
The response of the small scales of isotropic turbulence to periodic large scale forcing is studied using two-point closures. The frequency response of the turbulent kinetic energy and dissipation rate, and the phase shifts between production, energy and dissipation are determined as functions of Reynolds number. It is observed that the amplitude and phase of the dissipation exhibit nontrivial frequency and Reynolds number dependence that reveals a filtering effect of the energy cascade. Perturbation analysis is applied to understand this behavior which is shown to depend on distant interactions between widely separated scales of motion. Finally, the extent to which finite dimensional models (standard two-equation models and various generalizations) can reproduce the observed behavior is discussed
A mathematical model for top-shelf vertigo: the role of sedimenting otoconia in BPPV
Benign Paroxysmal Positional Vertigo (BPPV) is a mechanical disorder of the
vestibular system in which calcite particles called otoconia interfere with the
mechanical functioning of the fluid-filled semicircular canals normally used to
sense rotation. Using hydrodynamic models, we examine the two mechanisms
proposed by the medical community for BPPV: cupulolithiasis, in which otoconia
attach directly to the cupula (a sensory membrane), and canalithiasis, in which
otoconia settle through the canals and exert a fluid pressure across the
cupula. We utilize known hydrodynamic calculations and make reasonable
geometric and physical approximations to derive an expression for the
transcupular pressure exerted by a settling solid particle in
canalithiasis. By tracking settling otoconia in a two-dimensional model
geometry, the cupular volume displacement and associated eye response
(nystagmus) can be calculated quantitatively. Several important features
emerge: 1) A pressure amplification occurs as otoconia enter a narrowing duct;
2) An average-sized otoconium requires approximately five seconds to settle
through the wide ampulla, where is not amplified, which suggests a
mechanism for the observed latency of BPPV; and 3) An average-sized otoconium
beginning below the center of the cupula can cause a volumetric cupular
displacement on the order of 30 pL, with nystagmus of order /s, which
is approximately the threshold for sensation. Larger cupular volume
displacement and nystagmus could result from larger and/or multiple otoconia.Comment: 15 pages, 5 Figures updated, to be published in J. Biomechanic
- …