174 research outputs found
Using coarse-grained molecular dynamics to rationalize biomolecule solubilization mechanisms in ionic liquid-based colloidal systems
Solubilizing agents are widely used to extract poorly soluble compounds from biological matrices.
Aqueous solutions of surfactants and hydrotropes are commonly used as solubilizers, however, the
underlying mechanism that determines their action is still roughly understood. Among these, ionic
liquids (IL) are often used not only for solubilization of a target compound but in liquid–liquid extraction
processes. Molecular dynamics simulations can shed light into this issue by providing a microscopic
insight of the interactions between solute and solubilising agents. In this work, a new coarse-grained
(CG) model was developed under the MARTINI framework for gallic acid (GA) while the CG models of
three quaternary ammonium ionic liquids and salts (QAILS) were obtained from literature. Three QAILS
were selected bearing in mind their potential solubilising mechanisms: trimethyl-tetradecylammonium
chloride ([N1,1,1,14]Cl) as a surfactant, tetrabutylammonium chloride ([N4,4,4,4]Cl) as a hydrotrope, and
tributyl-tetradecylammonium chloride ([N4,4,4,14]Cl) as a system combining the characteristics of the
other compounds. Throughout this hydrotrope-to-surfactant spectrum and considering the most
prevalent GA species across the pH range, the solvation of GA at two concentration levels in aqueous
QAILS solutions were studied and discussed. The results of this study indicate that dispersive interactions
between the QAILS and GA are generally the driving force in the GA solubilization. However,
electrostatic interactions play an increasingly significant role as the GA becomes deprotonated, affecting
their placement within the micelle and ultimately the solvation mechanism. The hydrotropic mechanism
seen in [N4,4,4,4]Cl corroborates recent models based on the formation of a hydrotrope-solute
aggregates driven by dispersive forces. This work contributes to the application of a transferable
approach to partition and solubilization studies using molecular dynamics, which could complement
experimental assays and quickly screen molecular candidates for these processes.publishe
Entropic Gravity, Phase-Space Noncommutativity and the Equivalence Principle
We generalize E. Verlinde's entropic gravity reasoning to a phase-space
noncommutativity set-up. This allow us to impose a bound on the product of the
noncommutative parameters based on the Equivalence Principle. The key feature
of our analysis is an effective Planck's constant that naturally arises when
accounting for the noncommutative features of the phase-space.Comment: 12 pages. Version to appear at the Classical and Quantum Gravit
Bio-based solar energy harvesting for onsite mobile optical temperature sensing in Smart Cities
The Internet of Things (IoT) fosters the development of smart city systems for sustainable living and increases comfort for people. One of the current challenges for sustainable buildings is the optimization of energy management. Temperature monitoring in buildings is of prime importance, as heating account for a great part of the total energy consumption. Here, a solar optical temperature sensor is presented with a thermal sensitivity of up to 1.23% °C-1 based on sustainable aqueous solutions of enhanced green fluorescent protein and C-phycocyanin from biological feedstocks. These photonic sensors are presented under the configuration of luminescent solar concentrators widely proposed as a solution to integrate energy-generating devices in buildings, as windows or façades. The developed mobile sensor is inserted in IoT context through the development of a self-powered system able to measure, record, and send data to a user-friendly website.publishe
Rickettsial infection in Amblyomma cajennense ticks and capybaras (Hydrochoerus hydrochaeris) in a Brazilian spotted fever-endemic area
Brazilian spotted fever (BSF), caused by the bacterium Rickettsia rickettsii, is the deadliest spotted fever of the world. In most of the BSF-endemic areas, capybaras (Hydrochoerus hydrochaeris) are the principal host for the tick Amblyomma cajennense, which is the main vector of BSF. In 2012, a BSF case was confirmed in a child that was bitten by ticks in a residential park area inhabited by A. cajennense-infested capybaras in Itú municipality, southeastern Brazil. Host questing A. cajennense adult ticks were collected in the residential park and brought alive to the laboratory, where they were macerated and intraperitoneally inoculated into guinea pigs. A tick-inoculated guinea pig that presented high fever was euthanized and its internal organs were macerated and inoculated into additional guinea pigs (guinea pig passage). Tissue samples from guinea pig passages were also used to inoculate Vero cells through the shell vial technique. Infected cells were used for molecular characterization of the rickettsial isolate through PCR and DNA sequencing of fragments of three rickettsial genes (gltA, ompA, and ompB). Blood serum samples were collected from 172 capybaras that inhabited the residential park. Sera were tested through the immunofluorescence assay using R. rickettsii antigen. A tick-inoculated guinea pig presented high fever accompanied by scrotal reactions (edema and marked redness). These signs were reproduced by consecutive guinea pig passages. Rickettsia was successfully isolated in Vero cells that were inoculated with brain homogenate derived from a 3rd passage-febrile guinea pig. Molecular characterization of this rickettsial isolate (designated as strain ITU) yielded DNA sequences that were all 100% identical to corresponding sequences of R. rickettsii in Genbank. A total of 83 (48.3%) out of 172 capybaras were seroreactive to R. rickettsii, with endpoint titers ranging from 64 to 8192. A viable isolate of R. rickettsii was obtained from the tick A. cajennense, comprising the first viable R. rickettsi isolate from this tick species during the last 60 years. Nearly half of the capybara population of the residential park was seroreactive to R. rickettsii, corroborating the findings that the local A. cajennense population was infected by R. rickettsii.We are grateful to the administrative staff of the residential park that provided logistic support for the present study, and to the “Superintendência de Controle de Endemias” of the state of São Paulo (SUCEN) for their valuable help in collecting ticks. This work was supported by the Brazilian funding agencies FAPESP, CNPq, and CAPES
Minimal Absent Words in Prokaryotic and Eukaryotic Genomes
Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we explore different sets of minimal absent words in the genomes of 22 organisms (one archaeota, thirteen bacteria and eight eukaryotes). We investigate if the mutational biases that may explain the deficit of the shortest absent words in vertebrates are also pervasive in other absent words, namely in minimal absent words, as well as to other organisms. We find that the compositional biases observed for the shortest absent words in vertebrates are not uniform throughout different sets of minimal absent words. We further investigate the hypothesis of the inheritance of minimal absent words through common ancestry from the similarity in dinucleotide relative abundances of different sets of minimal absent words, and find that this inheritance may be exclusive to vertebrates
The Trypanosoma cruzi Virulence Factor Oligopeptidase B (OPBTc) Assembles into an Active and Stable Dimer
Oligopeptidase B, a processing enzyme of the prolyl oligopeptidase family, is considered as an important virulence factor in trypanosomiasis. Trypanosoma cruzi oligopeptidase B (OPBTc) is involved in host cell invasion by generating a Ca2+-agonist necessary for recruitment and fusion of host lysosomes at the site of parasite attachment. The underlying mechanism remains unknown and further structural and functional characterization of OPBTc may help clarify its physiological function and lead to the development of new therapeutic molecules to treat Chagas disease. In the present work, size exclusion chromatography and analytical ultracentrifugation experiments demonstrate that OPBTc is a dimer in solution, an association salt and pH-resistant and independent of intermolecular disulfide bonds. The enzyme retains its dimeric structure and is fully active up to 42°C. OPBTc is inactivated and its tertiary, but not secondary, structure is disrupted at higher temperatures, as monitored by circular dichroism and fluorescence spectroscopy. It has a highly stable secondary structure over a broad range of pH, undergoes subtle tertiary structure changes at low pH and is less stable under moderate ionic strength conditions. These results bring new insights into the structural properties of OPBTc, contributing to future studies on the rational design of OPBTc inhibitors as a promising strategy for Chagas disease chemotherapy
Resting heart rate as a predictor of metabolic dysfunctions in obese children and adolescents
<p>Abstract</p> <p>Background</p> <p>Recent studies have identified that a higher resting heart rate (RHR) is associated with elevated blood pressure, independent of body fatness, age and ethnicity. However, it is still unclear whether RHR can also be applied as a screening for other risk factors, such as hyperglycemia and dyslipidemia. Thus, the purpose of the presented study was to analyze the association between RHR, lipid profile and fasting glucose in obese children and adolescents.</p> <p>Methods</p> <p>The sample was composed of 180 obese children and adolescents, aged between 7-16 years. Whole-body and segmental body composition were estimated by Dual-energy X-ray absorptiometry. Resting heart rate (RHR) was measured by heart rate monitors. The fasting blood samples were analyzed for serum triglycerides, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose, using the colorimetric method.</p> <p>Results</p> <p>Fasting glucose, TC, triglycerides, HDL-C, LDL-C and RHR were similar in both genders. The group of obese subjects with a higher RHR presented, at a lower age, higher triglycerides and TC. There was a significant relationship between RHR, triglycerides and TC. In the multivariate model, triglycerides and TC maintained a significant relationship with RHR independent of age, gender, general and trunk adiposity. The ROC curve indicated that RHR has a high potential for screening elevated total cholesterol and triglycerides as well as dyslipidemia.</p> <p>Conclusion</p> <p>Elevated RHR has the potential to identify subjects at an increased risk of atherosclerosis development.</p
- …