242 research outputs found

    Bioengineered embryoids mimic post-implantation development in vitro.

    Get PDF
    The difficulty of studying post-implantation development in mammals has sparked a flurry of activity to develop in vitro models, termed embryoids, based on self-organizing pluripotent stem cells. Previous approaches to derive embryoids either lack the physiological morphology and signaling interactions, or are unconducive to model post-gastrulation development. Here, we report a bioengineering-inspired approach aimed at addressing this gap. We employ a high-throughput cell aggregation approach to simultaneously coax mouse embryonic stem cells into hundreds of uniform epiblast-like aggregates in a solid matrix-free manner. When co-cultured with mouse trophoblast stem cell aggregates, the resulting hybrid structures initiate gastrulation-like events and undergo axial morphogenesis to yield structures, termed EpiTS embryoids, with a pronounced anterior development, including brain-like regions. We identify the presence of an epithelium in EPI aggregates as the major determinant for the axial morphogenesis and anterior development seen in EpiTS embryoids. Our results demonstrate the potential of EpiTS embryoids to study peri-gastrulation development in vitro

    High-Resolution Spectroscopy of FUors

    Full text link
    High-resolution spectroscopy was obtained of the FUors FU Ori and V1057 Cyg between 1995 and 2002 with SOFIN at NOT and with HIRES at Keck I. During those years FU Ori remained about 1 mag. (in B) below its 1938-39 maximum brightness, but V1057 Cyg (B ~ 10.5 at peak in 1970-71) faded from about 13.5 to 14.9 and then recovered slightly. Their photospheric spectra resemble a rotating G0 Ib supergiant, with v_eq sin i = 70 km/s for FU Ori and 55 km/s for V1057 Cyg. As V1057 Cyg faded, P Cyg structure in Halpha and the IR CaII lines strengthened and a complex shortward-displaced shell spectrum increased in strength, disappeared in 1999, and reappeared in 2001. Night-to-night changes in the wind structure of FU Ori show evidence of sporadic infall. The strength of P Cyg absorption varied cyclically with a period of 14.8 days, with phase stability maintained over 3 seasons, and is believed to be the rotation period. The structure of the photospheric lines also varies cyclically, but with a period of 3.54 days. A similar variation may be present in V1057 Cyg. As V1057 Cyg has faded, the emission lines of a pre-existing low-excitation chromosphere have emerged, so we believe the `line doubling' in V1057 Cyg is produced by these central emission cores in the absorption lines, not by orbital motion in an inclined Keplerian disk. No dependence of v_eq sin i on wavelength or excitation potential was detected in either star, again contrary to expectation for a self-luminous accretion disk. Nor are critical lines in the near infrared accounted for by synthetic disk spectra. A rapidly rotating star near the edge of stability (Larson 1980), can better explain these observations. FUor eruptions may not be a property of ordinary TTS, but may be confined to a special subspecies of rapid rotators having powerful quasi-permanent winds.Comment: 41 pages (including 32 figures and 9 tables); ApJ, in press; author affiliation, figs. 3 and 9 correcte

    The effects of disk and dust structure on observed polarimetric images of protoplanetary disks

    Full text link
    Imaging polarimetry is a powerful tool for imaging faint circumstellar material. For a correct analysis of observations we need to fully understand the effects of dust particle parameters, as well as the effects of the telescope, atmospheric seeing, and assumptions about the data reduction and processing of the observed signal. Here we study the major effects of dust particle structure, size-dependent grain settling, and instrumental properties. We performed radiative transfer modeling using different dust particle models and disk structures. To study the influence of seeing and telescope diffraction we ran the models through an instrument simulator for the ExPo dual-beam imaging polarimeter mounted at the 4.2m William Herschel Telescope (WHT). Particle shape and size have a strong influence on the brightness and detectability of the disks. In the simulated observations, the central resolution element also contains contributions from the inner regions of the protoplanetary disk besides the unpolarized central star. This causes the central resolution element to be polarized, making simple corrections for instrumental polarization difficult. This effect strongly depends on the spatial resolution, so adaptive optics systems are needed for proper polarization calibration. We find that the commonly employed homogeneous sphere model gives results that differ significantly from more realistic models. For a proper analysis of the wealth of data available now or in the near future, one must properly take the effects of particle types and disk structure into account. The observed signal depends strongly on the properties of these more realistic models, thus providing a potentially powerful diagnostic. We conclude that it is important to correctly understand telescope depolarization and calibration effects for a correct interpretation of the degree of polarization.Comment: Accepted for publication in A&

    The magnetic phase diagram of the frustrated spin chain compound linarite, PbCuSO4_4(OH)2_2, as seen by neutron diffraction and 1^1H-NMR

    Full text link
    We report on a detailed neutron diffraction and 1^1H-NMR study on the frustrated spin-1/2 chain material linarite, PbCuSO4_4(OH)2_2, where competing ferromagnetic nearest neighbor and antiferromagnetic next-nearest neighbor interactions lead to frustration. From the magnetic Bragg peak intensity studied down to 60 mK, the magnetic moment per Cu atom is obtained within the whole magnetic phase diagram for H∥bH \parallel b axis. Further, we establish the detailed configurations of the shift of the SDW propagation vector in phase V with field and temperature. Finally, combining our neutron diffraction results with those from a low-temperature/high-field NMR study we find an even more complex phase diagram close to the quasi-saturation field suggesting that bound two-magnon excitations are the lowest energy excitations close to and in the quasi-saturation regime. Qualitatively and semi-quantitatively, we relate such behavior to XYZXYZ exchange anisotropy and contributions from the Dzyaloshinsky-Moriya interaction to affect the magnetic properties of linarite

    Dilution of the magnetic lattice in the Kitaev candidate α\alpha-RuCl3_3 by Rh3+^{3+} doping

    Get PDF
    Magnetic dilution of a well-established Kitaev candidate system is realized in the substitutional Ru1−x_{1-x}Rhx_xCl3_3 series (x=0.02−0.6x = 0.02-0.6). Optimized syntheses protocols yield uniformly-doped single crystals and polycrystalline powders that are isostructural to the parental α\alpha-RuCl3_3 as per X-ray diffraction. The Rh content xx is accurately determined by the quantitative energy-dispersive X-ray spectroscopy technique with standards. We determine the magnetic phase diagram of Ru1−x_{1-x}Rhx_xCl3_3 for in-plane magnetic fields from magnetization and specific-heat measurements as a function of xx and stacking periodicity, and identify the suppression of the magnetic order at x≈0.2x \approx 0.2 towards a disordered phase, which does not show any clear signature of freezing into a spin glass. Comparing with previous studies on the substitution series Ru1−x_{1-x}Irx_xCl3_3, we propose that chemical pressure would contribute to the suppression of magnetic order especially in Ru1−x_{1-x}Irx_xCl3_3 and that the zigzag magnetic ground state appears to be relatively robust with respect to the dilution of the Kitaev--Γ\Gamma--Heisenberg magnetic lattice. We also discovered a slight dependence of the magnetic properties on thermal cycling, which would be due to an incomplete structural transition

    Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet alpha-RuCl3

    Get PDF
    Magnetization and high-resolution x-ray diffraction measurements of the Kitaev-Heisenberg material alpha-RuCl3 reveal a pressure-induced crystallographic and magnetic phase transition at a hydrostatic pressure of p=0.2 GPa. This structural transition into a triclinic phase is characterized by a very strong dimerization of the Ru-Ru bonds, accompanied by a collapse of the magnetic susceptibility. Ab initio quantum-chemistry calculations disclose a pressure-induced enhancement of the direct 4d-4d bonding on particular Ru-Ru links, causing a sharp increase of the antiferromagnetic exchange interactions. These combined experimental and computational data show that the Kitaev spin liquid phase in alpha-RuCl3 strongly competes with the crystallization of spin singlets into a valence bond solid

    Malaria transmission pattern resilience to climatic variability is mediated by insecticide-treated nets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria is an important public-health problem in the archipelago of Vanuatu and climate has been hypothesized as important influence on transmission risk. Beginning in 1988, a major intervention using insecticide-treated bed nets (ITNs) was implemented in the country in an attempt to reduce <it>Plasmodium </it>transmission. To date, no study has addressed the impact of ITN intervention in Vanuatu, how it may have modified the burden of disease, and whether there were any changes in malaria incidence that might be related to climatic drivers.</p> <p>Methods and findings</p> <p>Monthly time series (January 1983 through December 1999) of confirmed <it>Plasmodium falciparum </it>and <it>Plasmodium vivax </it>infections in the archipelago were analysed. During this 17 year period, malaria dynamics underwent a major regime shift around May 1991, following the introduction of bed nets as a control strategy in the country. By February of 1994 disease incidence from both parasites was reduced by at least 50%, when at most 20% of the population at risk was covered by ITNs. Seasonal cycles, as expected, were strongly correlated with temperature patterns, while inter-annual cycles were associated with changes in precipitation. Following the bed net intervention, the influence of environmental drivers of malaria dynamics was reduced by 30–80% for climatic forces, and 33–54% for other factors. A time lag of about five months was observed for the qualitative change ("regime shift") between the two parasites, the change occurring first for <it>P. falciparum</it>. The latter might be explained by interspecific interactions between the two parasites within the human hosts and their distinct biology, since <it>P. vivax </it>can relapse after a primary infection.</p> <p>Conclusion</p> <p>The Vanuatu ITN programme represents an excellent example of implementing an infectious disease control programme. The distribution was undertaken to cover a large, local proportion (~80%) of people in villages where malaria was present. The successful coverage was possible because of the strategy for distribution of ITNs by prioritizing the free distribution to groups with restricted means for their acquisition, making the access to this resource equitable across the population. These results emphasize the need to implement infectious disease control programmes focusing on the most vulnerable populations.</p
    • …
    corecore