94 research outputs found

    The self and the Bayesian brain: Testing probabilistic models of body ownership through a self-localization task.

    Get PDF
    Simple multisensory manipulations can induce the illusory misattribution of external objects to one's own body, allowing to experimentally investigate body ownership. In this context, body ownership has been conceptualized as the result of the online Bayesian optimal estimation of the probability that one object belongs to the body from the congruence of multisensory inputs. This idea has been highly influential, as it provided a quantitative basis to bottom-up accounts of self-consciousness. However, empirical evidence fully supporting this view is scarce, as the optimality of the putative inference process has not been assessed rigorously. This pre-registered study aimed at filling this gap by testing a Bayesian model of hand ownership based on spatial and temporal visuo-proprioceptive congruences. Model predictions were compared to data from a virtual-reality reaching task, whereby reaching errors induced by a spatio-temporally mismatching virtual hand have been used as an implicit proxy of hand ownership. To rigorously test optimality, we compared the Bayesian model versus alternative non-Bayesian models of multisensory integration, and independently assess unisensory components and compare them to model estimates. We found that individually measured values of proprioceptive precision correlated with those fitted from our reaching task, providing compelling evidence that the underlying visuo-proprioceptive integration process approximates Bayesian optimality. Furthermore, reaching errors correlated with explicit ownership ratings at the single individual and trial level. Taken together, these results provide novel evidence that body ownership, a key component of self-consciousness, can be truly described as the bottom-up, behaviourally optimal processing of multisensory inputs

    Two-Dimensional Impulsively Stimulated Resonant Raman Spectroscopy of Molecular Excited States

    Get PDF
    Monitoring the interactions between electronic and vibrational degrees of freedom in molecules is critical to our understanding of their structural dynamics. This is typically hampered by the lack of spectroscopic probes able to detect different energy scales with high temporal and frequency resolution. Coherent Raman spectroscopy can combine the capabilities of multidimensional spectroscopy with structural sensitivity at ultrafast timescales. Here, we develop a three-color-based 2D impulsive stimulated Raman technique that can selectively probe vibrational mode couplings between different active sites in molecules by taking advantage of resonance Raman enhancement. Three temporally delayed pulses generate nuclear wave packets whose evolution reports on the underlying potential energy surface, which we decipher using a diagrammatic approach enabling us to assign the origin of the spectroscopic signatures. We benchmark the method by revealing vibronic couplings in the ultrafast dynamics following photoexcitation of the green fluorescent protein

    Two-Dimensional Impulsively Stimulated Resonant Raman Spectroscopy of Molecular Excited States

    Get PDF
    Monitoring the interactions between electronic and vibrational degrees of freedom in molecules is critical to our understanding of their structural dynamics. This is typically hampered by the lack of spectroscopic probes able to detect different energy scales with high temporal and frequency resolution. Coherent Raman spectroscopy can combine the capabilities of multidimensional spectroscopy with structural sensitivity at ultrafast timescales. Here, we develop a three-color-based 2D impulsive stimulated Raman technique that can selectively probe vibrational mode couplings between different active sites in molecules by taking advantage of resonance Raman enhancement. Three temporally delayed pulses generate nuclear wave packets whose evolution reports on the underlying potential energy surface, which we decipher using a diagrammatic approach enabling us to assign the origin of the spectroscopic signatures. We benchmark the method by revealing vibronic couplings in the ultrafast dynamics following photoexcitation of the green fluorescent protein.C. S. acknowledges financial support by the Royal Commission for the Exhibition of 1851. G. Bat. acknowledges the “Avvio Alla Ricerca 2018” grant by Sapienza Universitá di Roma. T. W. acknowledges the Marie Curie Intra-European Fellowship (PIEF-GA-2013-623651) within the 7th European Community Framework Programme. S. M. gratefully acknowledges the support of the National Science Foundation Grant No. CHE-1663822

    Analysis of sequence variability and transcriptional profile of cannabinoid synthase genes in cannabis sativa l. Chemotypes with a focus on cannabichromenic acid synthase

    Get PDF
    Cannabis sativa L. has been long cultivated for its narcotic potential due to the accumulation of tetrahydrocannabinolic acid (THCA) in female inflorescences, but nowadays its production for fiber, seeds, edible oil and bioactive compounds has spread throughout the world. However, some hemp varieties still accumulate traces of residual THCA close to the 0.20% limit set by European Union, despite the functional gene encoding for THCA synthase (THCAS) is lacking. Even if some hypotheses have been produced, studies are often in disagreement especially on the role of the cannabichromenic acid synthase (CBCAS). In this work a set of European Cannabis genotypes, representative of all chemotypes, were investigated from a chemical and molecular point of view. Highly specific primer pairs were developed to allow an accurate distinction of different cannabinoid synthases genes. In addition to their use as markers to detect the presence of CBCAS at genomic level, they allowed the analysis of transcriptional profiles in hemp or marijuana plants. While the high level of transcription of THCAS and cannabidiolic acid synthase (CBDAS) clearly reflects the chemical phenotype of the plants, the low but stable transcriptional level of CBCAS in all genotypes suggests that these genes are active and might contribute to the final amount of cannabinoids

    Identification of a new R3 MYB type repressor and functional characterization of the members of the MBW transcriptional complex involved in anthocyanin biosynthesis in eggplant (S. Melongena L.)

    Get PDF
    Here we focus on the highly conserved MYB-bHLH-WD repeat (MBW) transcriptional complex model in eggplant, which is pivotal in the transcriptional regulation of the anthocyanin biosynthetic pathway. Through a genome-wide approach performed on the recently released Eggplant Genome (cv. 67/3) previously identified, and reconfirmed by us, members belonging to the MBW complex (SmelANT1, SmelAN2, SmelJAF13, SmelAN1) were functionally characterized. Furthermore, a regulatory R3 MYB type repressor (SmelMYBL1), never reported before, was identified and characterized as well. Through a qPCR approach, we revealed specific transcriptional patterns of candidate genes in different plant tissue/organs at two stages of fruit development. Two strategies were adopted for investigating the interactions of bHLH partners (SmelAN1, SmelJAF13) with MYB counterparts (SmelANT1, SmelAN2 and SmelMYBL1): Yeast Two Hybrid (Y2H) and Bimolecular Fluorescent Complementation (BiFC) in A. thaliana mesophylls protoplast. Agro-infiltration experiments highlighted that N. benthamiana leaves transiently expressing SmelANT1 and SmelAN2 showed an anthocyanin-pigmented phenotype, while their co-expression with SmelMYBL1 prevented anthocyanin accumulation. Our results suggest that SmelMYBL1 may inhibits the MBW complex via the competition with MYB activators for bHLH binding site, although this hypothesis requires further elucidation

    A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution

    Get PDF
    With approximately 450 species, spiny Solanum species constitute the largest monophyletic group in the Solanaceae family, but a high-quality genome assembly from this group is presently missing. We obtained a chromosome-anchored genome assembly of eggplant (Solanum melongena), containing 34,916 genes, confirming that the diploid gene number in the Solanaceae is around 35,000. Comparative genomic studies with tomato (S. lycopersicum), potato (S. tuberosum) and pepper (Capsicum annuum) highlighted the rapid evolution of miRNA:mRNA regulatory pairs and R-type defense genes in the Solanaceae, and provided a genomic basis for the lack of steroidal glycoalkaloid compounds in the Capsicum genus. Using parsimony methods, we reconstructed the putative chromosomal complements of the key founders of the main Solanaceae clades and the rearrangements that led to the karyotypes of extant species and their ancestors. From 10% to 15% of the genes present in the four genomes were syntenic paralogs (ohnologs) generated by the pre-γ, γ and T paleopolyploidy events, and were enriched in transcription factors. Our data suggest that the basic gene network controlling fruit ripening is conserved in different Solanaceae clades, and that climacteric fruit ripening involves a differential regulation of relatively few components of this network, including CNR and ethylene biosynthetic genes

    Different tool training induces specific effects on body metric representation

    Get PDF
    Morphology and functional aspects of the tool have been proposed to be critical factors modulating tool use-induced plasticity. However, how these aspects contribute to changing body representation has been underinvestigated. In the arm bisection task, participants have to estimate the length of their own arm by indicating its midpoint, a paradigm used to investigate the representation of the metric properties of the body. We employed this paradigm to investigate the impact of different actions onto tool embodiment. Our findings suggest that a training requiring actions mostly with proximal (shoulder) or distal (wrist) parts induces a different shift in the perceived arm midpoint. This effect is independent of, but enhanced by, the use of the tool during the training and in part influenced by specific demands of the task. These results suggest that specific motor patterns required by the training can induce different changes of body representation, calling for rethinking the concept of tool embodiment, which would be characterized not simply by the morphology of the tools, but also by the actions required for their specific use

    HSA: integrating multi-track Hi-C data for genome-scale reconstruction of 3D chromatin structure

    Get PDF
    Genome-wide 3C technologies (Hi-C) are being increasingly employed to study three-dimensional (3D) genome conformations. Existing computational approaches are unable to integrate accumulating data to facilitate studying 3D chromatin structure and function. We present HSA (http://ouyanglab.jax.org/hsa/), a flexible tool that jointly analyzes multiple contact maps to infer 3D chromatin structure at the genome scale. HSA globally searches the latent structure underlying different cleavage footprints. Its robustness and accuracy outperform or rival existing tools on extensive simulations and orthogonal experiment validations. Applying HSA to recent in situ Hi-C data, we found the 3D chromatin structures are highly conserved across various human cell types. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-016-0896-1) contains supplementary material, which is available to authorized users

    Spatial limits of visuotactile interactions in the presence and absence of tactile stimulation

    Get PDF
    The presence of a light flash near to the body not only increases the ability to detect a weak touch but also increases reports of feeling a weak touch that did not occur. The somatic signal detection task (SSDT) provides a behavioural marker by which to clarify the spatial extent of such visuotactile interactions in peripersonal space. Whilst previous evidence suggests a limit to the spatial extent over which visual input can distort the perception of tactile stimulation during the rubber hand illusion, the spatial boundaries of light-induced tactile sensations are not known. In a repeated measures design, 41 participants completed the SSDT with the light positioned 1 cm (near), 17.5 cm (mid) or 40 cm (far) from the tactile stimulation. In the far condition, the light did not affect hit, or false alarm rates during the SSDT. In the near and mid conditions, the light significantly increased hit rates and led to a more liberal response criterion, that is, participants reported feeling the touch more often regardless of whether or not it actually occurred. Our results demonstrate a spatial boundary over which visual input influences veridical and non-veridical touch perception during the SSDT, and provide further behavioural evidence to show that the boundaries of the receptive fields of visuotactile neurons may be limited to reach space
    corecore