1,708 research outputs found

    High Frequency Quantum Admittance and Noise Measurement with an On-chip Resonant Circuit

    Full text link
    By coupling a quantum detector, a superconductor-insulator-superconductor junction, to a Josephson junction \textit{via} a resonant circuit we probe the high frequency properties, namely the ac complex admittance and the current fluctuations of the Josephson junction at the resonant frequencies. The admittance components show frequency dependent singularities related to the superconducting density of state while the noise exhibits a strong frequency dependence, consistent with theoretical predictions. The circuit also allows to probe separately the emission and absorption noise in the quantum regime of the superconducting resonant circuit at equilibrium. At low temperature the resonant circuit exhibits only absorption noise related to zero point fluctuations, whereas at higher temperature emission noise is also present.Comment: 15 pages, 15 figure

    Spin orbit coupling at the level of a single electron

    Full text link
    We utilize electron counting techniques to distinguish a spin conserving fast tunneling process and a slower process involving spin flips in AlGaAs/GaAs-based double quantum dots. By studying the dependence of the rates on the interdot tunnel coupling of the two dots, we find that as many as 4% of the tunneling events occur with a spin flip related to spin-orbit coupling in GaAs. Our measurement has a fidelity of 99 % in terms of resolving whether a tunneling event occurred with a spin flip or not

    High kinetic inductance microwave resonators made by He-Beam assisted deposition of tungsten nanowires

    Get PDF
    We evaluate the performance of hybrid microwave resonators made by combining sputtered Nb thin films with Tungsten nanowires grown with a He-beam induced deposition technique. Depending on growth conditions, the nanowires have a typical width w [35 - 75] nm and thickness t [5 - 40] nm. We observe a high normal state resistance R [65 - 150] Ω / which together with a critical temperature T c [4 - 6] K ensures a high kinetic inductance making the resonator strongly nonlinear. Both lumped and coplanar waveguide resonators were fabricated and measured at low temperature exhibiting internal quality factors up to 3990 at 4.5 GHz in the few photon regime. Analyzing the wire length, temperature, and microwave power dependence, we extracted a kinetic inductance for the W nanowire of L K 15 pH / which is 250 times higher than the geometrical inductance, and a Kerr non-linearity as high as K W, He / 2 π = 200 ± 120 Hz / photon at 4.5 GHz. The nanowires made with the helium focused ion beam are thus versatile objects to engineer compact, high impedance, superconducting environments with a mask and resist free direct write process

    Fresh inflation: a warm inflationary model from a zero temperature initial state

    Full text link
    A two-components mixture fluid which complies with the gamma law is considered in the framework of inflation with finite temperature. The model is developed for a quartic scalar potential without symmetry breaking. The radiation energy density is assumed to be zero when inflation starts and remains below the GUT temperature during the inflationary stage. Furthermore, provides the necessary number of e-folds and sufficient radiation energy density to GUT baryogenesis can take place near the minimum energetic configuration.Comment: 11 pages, no figures, to be published in Phys. Rev.

    Equilibria-based Probabilistic Model Checking for Concurrent Stochastic Games

    Get PDF
    Probabilistic model checking for stochastic games enables formal verification of systems that comprise competing or collaborating entities operating in a stochastic environment. Despite good progress in the area, existing approaches focus on zero-sum goals and cannot reason about scenarios where entities are endowed with different objectives. In this paper, we propose probabilistic model checking techniques for concurrent stochastic games based on Nash equilibria. We extend the temporal logic rPATL (probabilistic alternating-time temporal logic with rewards) to allow reasoning about players with distinct quantitative goals, which capture either the probability of an event occurring or a reward measure. We present algorithms to synthesise strategies that are subgame perfect social welfare optimal Nash equilibria, i.e., where there is no incentive for any players to unilaterally change their strategy in any state of the game, whilst the combined probabilities or rewards are maximised. We implement our techniques in the PRISM-games tool and apply them to several case studies, including network protocols and robot navigation, showing the benefits compared to existing approaches

    Exploring tandem ruthenium-catalyzed hydrogen transfer and SNAr chemistry

    Get PDF
    A hydrogen-transfer strategy for the catalytic functionalization of benzylic alcohols via electronic arene activation, accessing a diverse range of bespoke diaryl ethers and aryl amines in excellent isolated yields (38 examples, 70% average yield), is reported. Taking advantage of the hydrogen-transfer approach, the oxidation level of the functionalized products can be selected by judicious choice of simple and inexpensive additives

    Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems

    Get PDF
    We show that, even in the most favorable case, the motion of a small spherical tracer suspended in a fluid of the same density may differ from the corresponding motion of an ideal passive particle. We demonstrate furthermore how its dynamics may be applied to target trajectories in Hamiltonian systems.Comment: See home page http://lec.ugr.es/~julya

    Machine learning based IoT Intrusion Detection System:an MQTT case study (MQTT-IoT-IDS2020 Dataset)

    Get PDF
    The Internet of Things (IoT) is one of the main research fields in the Cybersecurity domain. This is due to (a) the increased dependency on automated device, and (b) the inadequacy of general-purpose Intrusion Detection Systems (IDS) to be deployed for special purpose networks usage. Numerous lightweight protocols are being proposed for IoT devices communication usage. One of the distinguishable IoT machine-to-machine communication protocols is Message Queuing Telemetry Transport (MQTT) protocol. However, as per the authors best knowledge, there are no available IDS datasets that include MQTT benign or attack instances and thus, no IDS experimental results available. In this paper, the effectiveness of six Machine Learning (ML) techniques to detect MQTT-based attacks is evaluated. Three abstraction levels of features are assessed, namely, packet-based, unidirectional flow, and bidirectional flow features. An MQTT simulated dataset is generated and used for the training and evaluation processes. The dataset is released with an open access licence to help the research community further analyse the accompanied challenges. The experimental results demonstrated the adequacy of the proposed ML models to suit MQTT-based networks IDS requirements. Moreover, the results emphasise on the importance of using flow-based features to discriminate MQTT-based attacks from benign traffic, while packet-based features are sufficient for traditional networking attacks

    Quantum key distribution with entangled photons generated on demand by a quantum dot

    Get PDF
    Quantum key distribution-exchanging a random secret key relying on a quantum mechanical resource-is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multiphoton emission, the latter feature countering some of the best eavesdropping attacks. Here, we use a coherently driven quantum dot to experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches: both a 250-m-long single-mode fiber and in free space, connecting two buildings within the campus of Sapienza University in Rome. Our field study highlights that quantum-dot entangled photon sources are ready to go beyond laboratory experiments, thus opening the way to real-life quantum communication
    • …
    corecore