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Abstract. The Internet of Things (IoT) is one of the main research
fields in the Cybersecurity domain. This is due to (a) the increased
dependency on automated device, and (b) the inadequacy of general-
purpose Intrusion Detection Systems (IDS) to be deployed for special
purpose networks usage. Numerous lightweight protocols are being pro-
posed for IoT devices communication usage. One of the distinguishable
IoT machine-to-machine communication protocols is Message Queuing
Telemetry Transport (MQTT) protocol. However, as per the authors
best knowledge, there are no available IDS datasets that include MQTT
benign or attack instances and thus, no IDS experimental results avail-
able.

In this paper, the effectiveness of six Machine Learning (ML) techniques
to detect MQTT-based attacks is evaluated. Three abstraction levels
of features are assessed, namely, packet-based, unidirectional flow, and
bidirectional flow features. An MQTT simulated dataset is generated and
used for the training and evaluation processes. The dataset is released
with an open access licence to help the research community further anal-
yse the accompanied challenges. The experimental results demonstrated
the adequacy of the proposed ML models to suit MQTT-based networks
IDS requirements. Moreover, the results emphasise on the importance
of using flow-based features to discriminate MQTT-based attacks from
benign traffic, while packet-based features are sufficient for traditional
networking attacks.

Keywords: IoT · Machine Learning · MQTT · Intrusion Detection
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1 Introduction

A large number of Internet of Things (IoT) devices and networks have been
utilised over the past years for different usage scenarios [13]. These use-cases
include healthcare [4], smart cities [5], supply chain [1] and farming [3]. With
this extended use of IoT, new protocols are being deployed [17]. One of the new
prominent protocols used for machine-to-machine communication is MQTT [19].

Harsha et al. [8] discuss the different protocols used in various IoT networks,
which include MQTT. The authors analyse the security risks associated with
using MQTT. The authors results show that there are 53396 publicly available
and accessible MQTT devices [8]. Their work, alongside the work by Dinculeană
and Cheng [7], emphasises on the need for robust detection techniques for MQTT
attacks to overcome the security vulnerabilities.

As discussed in [10], IoT Intrusion Detection Systems (IDS) have different
requirements due to the uniqueness of the usage scenarios involved. IoT IDSs
are required to be flexible, extendable, and built using real or simulated traffic
suited for the intended usage [9]. However, publicly available IoT datasets are
limited, thus limiting IoT IDS development [9].

In this manuscript, we aim at proposing and evaluating different Machine
Learning (ML) based MQTT IDS. The contributions of this paper are as follows:

– Generating a novel IoT -MQTT dataset and releasing it for public consump-
tion.

– Analysing a novel MQTT dataset which includes both benign and attack
scenarios.

– Evaluating the significance of using high-level (flow-based) features to build
the IDS.

– Assessing the proposed model using six different ML techniques.
– Examining the different needs of MQTT-based versus generic attacks detec-

tion, which emphasise the special setup and, thus the needs of MQTT (IoT)
networks.

The remainder of this paper is organised as follows; Section 2 discusses the
setup used for the dataset generation and provides an overview of the dataset
and the extracted features. Section 3 presents the results obtained by applying
different ML techniques to detect attacks. Finally, the paper is concluded in
Section 4.

2 Dataset

This section provides a description of the dataset gathered by the MQTT sensors
simulation. The dataset is published1 in [12]. The dataset consists of five recorded
scenarios; normal operation and four attack scenarios. The attacker performs
four attack and each is recorded independently.

1 https://ieee-dataport.org/open-access/mqtt-internet-things-intrusion-

detection-dataset

https://ieee-dataport.org/open-access/mqtt-internet-things-intrusion-detection-dataset
https://ieee-dataport.org/open-access/mqtt-internet-things-intrusion-detection-dataset
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The attack types are:

– Aggressive scan (Scan A)
– User Datagram Protocol (UDP) scan (Scan sU)
– Sparta SSH brute-force (Sparta)
– MQTT brute-force attack (MQTT BF)

The data is acquired using tcpdump. The packets are collected by recording
Ethernet traffic and then exporting to pcap files. The following tools were used
as follows:

– Virtual machines are used to simulate the network devices.
– Nmap is used for the scanning attacks.
– VLC is used to simulate the camera feed stream.
– MQTT-PWN [2] is used for the MQTT brute-force attack.

Figure 1 visualises the network components. The network consists of 12
MQTT sensors, a broker, a machine to simulate camera feed, and an attacker.
During normal operation, all 12 sensors send randomised messages using the
“Publish” MQTT command. The length of the messages is different between
sensors to simulate different usage scenarios. The messages content is randomly
generated. The camera feed is simulated using VLC media player which uses
UDP stream. To further simulate a realistic scenario each of the network emu-
lators drop packets with 0.2%, 1%, and 0.13%. During the four attack scenarios
recording, the background normal operation was left in action. The operating
systems of the different devices are as follows; Tiny Core Linux for the sensors,
Ubuntu for the camera & camera feed server, and finally, Kali Linux for the
hacker.

Hacker

NetEm

0.2%	Loss

Sensor_1_1 Sensor_1_2 Sensor_1_3 Sensor_1_4

NetEm

1%	Loss

Sensor_2_1 Sensor_2_2 Sensor_2_3 Sensor_2_4

NetEm

0.13	%	Loss

Sensor_3_1 Sensor_3_2 Sensor_3_3 Sensor_3_4

Broker

Camera

Camera	Feed	
Server

192.168.2.5

192.168.1.7 192.168.2.7

10.0.0.2310.0.0.5 10.0.0.6 10.0.0.7 10.0.0.8 10.0.0.10 10.0.0.11 10.0.0.12 10.0.0.13 10.0.0.14 10.0.0.15 10.0.0.16 10.0.0.17

Fig. 1: MQTT Network Architecture [12]
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The importance of this dataset is fourfold:

– The dataset simulates a realistic MQTT IoT network in a normal operation
scenario.

– The dataset includes both generic networking scanning attacks, as well as,
MQTT brute-force attack.

– Researchers can use this dataset to build and evaluate IoT Intrusion Detec-
tion Systems.

– The dataset is the first to include MQTT scenarios and attacks data.

The dataset is provided in its raw capture format (.pcap files), as well
as processed features [12]. The features represent: (a) packet-based features,
(b) Unidirectional-based features, and (c) bidirectional-based features [18]. Each
feature set is used exclusively, as discussed in Section 3. The basic packet ex-
tracted features are listed in Table 1, fourth column. The feature list for unidi-
rectional and bidirectional is listed in Table 1, columns five and six, respectively.
It is important to note that for the bidirectional flows, some features (pointed as
*) have two values—one for the forward flow and one for the backward flow. The
two features are recorded and distinguished by a prefix “fwd ” for forward and
“bwd ” for backward [12]. Furthermore, the distribution of instances is listed in
Table 2.

In order to avoid specific features influence, the following features are dropped.
These features are source and destination IP addresses, protocol, and MQTT
flags. The data is split into 75% and 25% for training and testing, respectively.

Table 1: Features Description

Feature
Data
Type

Description Packet
Uni-
flow

Bi-
flow

ip src Text Source IP Address X X X
ip dest Text Destination IP Address X X X

protocol Text Last layer protocol X
ttl Integer Time to live X

ip len Integer Packet Length X
ip flag df Binary Don’t fragment IP flag X
ip flag mf Binary More fragments IP flag X
ip flag rb Binary Reserved IP flag X

prt src Integer Source Port X X X
prt dst Integer Destination Port X X X

proto Integer
Transport Layer protocol

(TCP/UDP)
X X

tcp flag res Binary Reserved TCP flag X
tcp flag ns Binary Nonce sum TCP flag X

tcp flag cwr Binary
Congestion Window
Reduced TCP flag

X

tcp flag ecn Binary ECN Echo TCP flag X
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Table 1 continued

Feature
Data
Type

Description Packet
Uni-
flow

Bi-
flow

tcp flag urg Binary Urgent TCP flag X

tcp flag ack Binary
Acknowledgement TCP

flag
X

tcp flag push Binary Push TCP flag X
tcp flag reset Binary Reset TCP flag X
tcp flag syn Binary Synchronization TCP flag X
tcp flag fin Binary Finish TCP flag X

num pkts Integer
Number of Packets in the

flow
X *

mean iat Decimal Average inter arrival time X *

std iat Decimal
Standard deviation of

inter arrival time
X *

min iat Decimal
Minimum inter arrival

time
X *

max iat Decimal
Maximum inter arrival

time
X *

num bytes Integer Number of bytes X *
num psh flags Integer Number of push flag X *
num rst flags Integer Number of reset flag X *
num urg flags Integer Number of urgent flag X *
mean pkt len Decimal Average packet length X *

std pkt len Decimal
Standard deviation packet

length
X *

min pkt len Decimal Minimum packet length X *
max pkt len Decimal Maximum packet length X *

mqtt messagetype Integer MQTT message type X
mqtt messagelength Binary MQTT message length X

mqtt flag uname Binary User Name MQTT Flag X
mqtt flag passwd Binary Password MQTT flag X
mqtt flag retain Binary Will retain MQTT flag X

mqtt flag qos Integer Will QoS MQTT flag X
mqtt flag willflag Binary Will flag MQTT flag X
mqtt flag clean Binary Clean MQTT flag X

mqtt flag reserved Binary Reserved MQTT flag X

is attack Binary
1 if the instance

represents an attack, 0
otherwise.

x x x

* represented as two features in the biflow features file (forward fwd and
backward bwd)
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Table 2: Dataset Instances Distribution

File Name
pcap file

size
Number of

Packets

Number of
Uni-flow
Instances

Number of
Uni-flow
Instances

Benign Attack Benign Attack Benign Attack

normal
192.5
MB

1056230
(3.42%)

0
171836
(59.01%)

0
86008

(54.78%)
0

scan A
(aggressive)

16.2 MB 70768
40624
(0.13%)

11560
39797

(13.67%)
5786

19907
(12.68%)

scan sU
(UDP)

41.3 MB 210819
22436
(0.07%)

34409
22436
(7.71%)

17230
22434

(14.29%)

sparta 3.4 GB 947177
19728943
(63.93%)

154175
28232
(9.7%)

77202
14116
(8.99%)

3 Experiments and Results

This section discusses the conducted experiments. Note that the code is available
on a GitHub repository 1.

Five-fold cross validation is used to evaluate each experiment. The metrics
used for evaluation are as follows [9]: (a) Overall accuracy, as defined in equa-
tion 1, such that True Positive (TP) represents the attack instances correctly
classified, True Negative (TN) represents the benign instances correctly classi-
fied, Positive (P) represents the number of attack instances and Negative (N)
represents the total number of benign instance.

OverallAccuracy =
TP + TN

P + N
(1)

For each class, Precision, Recall, and F1 Score are computed as shown in
Equation 2, Equation 3, and Equation 4, respectively [9]. False Positive (FP)
represents benign instances falsely classified as attack and False Negative (FN)
represents the attack instances falsely classified as benign.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2TP

2TP + FP + FN
(4)

Finally, the weighted average for precision, recall, and F1 score is calculated
to demonstrate the overall performance.

Six ML techniques are employed for the classification purpose. The ML tech-
niques are: Logistic Regression (LR), Gaussian Näıve Bayes (NB) , k-Nearest

1 https://github.com/AbertayMachineLearningGroup/MQTT_ML

https://github.com/AbertayMachineLearningGroup/MQTT_ML
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Neighbours (k-NN) , Support Vector Machine (SVM) , Decision Trees (DT) and
Random Forests (RF) [21] [14] [16] [20] [15] [6] [11].

Table 3 details the overall accuracy of each of the ML techniques with packet,
unidirectional and bidirectional features. It can be observed the performance rise
accompanying flow-based features, both unidirectional and bidirectional. This
rise could further be visualised in Figure 2.

Table 3: Overall detection accuracy
Features

Packet Unidirectional Bidirectional

LR 78.87% 98.23% 99.44%

k-NN 69.13% 99.68% 99.9%

DT 88.55% 99.96% 99.95%

RF 65.39% 99.98% 99.97%

SVM (RBF Kernel) 77.4% 97.96% 96.61%

NB 81.15% 78% 97.55%

SVM (Linear Kernel) 66.69% 82.6% 98.5%

60

70

80

90

100

Packet Unidirectional Bidirectional

LR k-NN DT RF SVM (RBF Kernel) NB SVM (Linear Kernel)

Fig. 2: Overall detection accuracy trend using different ML techniques

To further analyse the results, Table 4, Table 5 and, Table 6 show the de-
tailed precision, recall, and F1-score for each of the classifiers. Each classifier is
represented as a sub-table. Similar to Table 3, it is observed that the flow-based
features are strongly enhance the results.

Furthermore, it is recognised that the Benign and the MQTT-BF attack are
the two classes benefiting from flow features. This is reasoned by the fact that
in IoT networks normal/benign operations are usually uncomplicated, due to
their usage, requirements, and the nature of data of interest. Therefore, generic
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attacks are quite distinctive. However, MQTT-based attacks have similar char-
acteristics to benign MQTT communication. Since MQTT-based attacks rely on
the available MQTT communication commands (i.e., publish, subscribe, etc), it
is challenging to discriminate attacks from normal operations where the same
commands are used. As a result, packet-based features in all the ML techniques
were not suitable for benign and MQTT-BF classification. This observation could
further be observed in the trends charts for benign class, MQTT BF class, and
weighted average metrics in Figure 3, Figure 4 and, Figure 5.
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Fig. 3: Benign Class Trends
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Fig. 4: MQTT BF Class Trends
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Fig. 5: Weighted Average Trends

4 Conclusion and Future Work

This work aims at exploring the different challenges and requirements for build-
ing IDS for IoT models, using an MQTT network as a case study. This paper
evaluates six different ML techniques as attack classifiers. A simulated MQTT
network was used for data collection to simulate a real-life setup. Using the
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dataset raw pcap files, three features levels were extracted; packet, unidirec-
tional, and bidirectional features. Each feature level is used independently in the
experiments. The experiments highlighted that generic networking attacks are
easily discriminated from normal operation due to their distinguished behaviour
and patterns compared to the IoT setup. However, MQTT-based attacks are
more complicated and can easily mimic benign operation.

The experimental results further demonstrated that the flow-based features
are better suited to discriminate between benign and MQTT-based attacks due
to their similar characteristics. The weighted average recall rose from ∼ 75.31%
for packet-based features to ∼ 93.77% and ∼ 98.85% for unidirectional and bidi-
rectional flow features, respectively. While the weighted average precision rose
from ∼ 72.37% for packet-based features to ∼ 97.19% and ∼ 99.04% for unidi-
rectional and bidirectional flow features. Therefore, the experiments emphasised
on the special challenges faced by IoT IDS, based on their custom communi-
cation patterns. The challenges were demonstrated through the difficulties to
differentiate MQTT-based attacks from normal operations.
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