519 research outputs found

    Simulation of granular soil behaviour using the bullet physics library

    Get PDF
    A physics engine is computer software which provides a simulation of certain physical systems, such as rigid body dynamics, soft body dynamics and fluid dynamics. Physics engines were firstly developed for using in animation and gaming industry ; nevertheless, due to fast calculation speed they are attracting more and more attetion from researchers of the engineering fields. Since physics engines are capable of performing fast calculations on multibody rigid dynamic systems, soil particles can be modeled as distinct rigid bodies. However, up to date, it is not clear to what extent they perform accurately in modeling soil behaviour from a geotechnical viewpoint. To investigate this, examples of pluviation and vibration-induced desification were simulated using the physics engine called Bullet physics library. In order to create soil samples, first, randomly shaped polyhedrons, representing gravels, were generated using the Voronoi tessellation approach. Then, particles were pluviated through a funnel into a cylinder. Once the soil particles settled in a static state, the cylinder was subjected to horizontal sinusoidal vibration for a period of 20 seconds. The same procedure for sample perparation was performed in the laboratory. The results of pluviation and vibration tests weere recorded and compared to those of simulations. A good agreement has been found between the results of simulations and laboratory tests. The findings in this study reinforce the idea that physics engines can be employed as a geotechnical engineering simulation tool

    Synthesis of medium-chain glycerides using lipase from Candida rugosa

    Get PDF
    Enzymatic synthesis of medium-chain glycerides (MCG) from capric acid and glycerol was studied using lipase from Candida rugosa. The effects of various reaction parameters such as time, molar ratio of substrates (mmol capric acid/mmol glycerol), amount of lipase, type of organic solvents, and initial water activity (a w ) were studied. The best conditions tested for MCG synthesis at 37°C were, respectively, time, 24 h; molar ratio of substrates, 2.5; and amount of lipase, 100.0 mg. The use of organic solvents greatly influenced the activity of lipase in the synthesis of MCG. Generally, activity of lipase was high in nonpolar solvents with log P values from 3.50 to 4.50, where P is the partition coefficient between water and 1-octanol. The enzymatic synthesis of MCG was preferably carried out at an initial a w of 0.328, which resulted in maximal yield. Analysis of the products of reaction using gas chromatography showed that lipase from Candida rugosa seemed to produce more dicaprin and tricaprin than monocaprin

    The Lithium Depletion Boundary and the Age of the Young Open Cluster IC~2391

    Full text link
    We have obtained new photometry and intermediate resolution (Δλ=2.7\Delta \lambda = 2.7 \AA\ ) spectra of 19 of these objects (14.9 \le IcI_c \le 17.5) in order to confirm cluster membership. We identify 15 of our targets as likely cluster members based on their VRIVRI photometry, spectral types, radial velocity, and Hα\alpha emission strengths. Higher S/N spectra were obtained for 8 of these probable cluster members in order to measure the strength of the lithium 6708 \AA\ doublet and thus obtain an estimate of the cluster's age. One of these 8 stars has a definite lithium detection and two other (fainter) stars have possible lithium detections. A color-magnitude diagram for our program objects shows that the lithium depletion boundary in IC~2391 is at IcI_c=16.2. Using recent theoretical model predictions, we derive an age for IC~2391 of 53±\pm5 Myr. While this is considerably older than the age most commonly attributed for this cluster (\sim35 Myr) this result for IC~2391 is comparable those recently derived for the Pleiades and Alpha Persei clusters and can be explained by new models for high mass stars that incorporate a modest amount of convective core overshooting.Comment: ApJ Letters, acccepte

    Accretion-Induced Lithium Line Enhancements in Classical T Tauri Stars: RW Aur

    Get PDF
    It is widely accepted that much of the stochastic variability of T Tauri stars is due to accretion by a circumstellar disk. The emission line spectrum as well as the excess continuum emission are common probes of this process. In this communication, we present additional probes of the circumstellar environment in the form of resonance lines of low ionization potential elements. Using a set of 14 high resolution echelle observations of the classical T Tauri star (CTTS), RW Aur, taken between 1986 and 1996, we carefully measure the continuum veiling at each epoch by comparing more than 500 absorption lines with those of an appropriate template. This allows us to accurately subtract out the continuum emission and to recover the underlying photospheric spectrum. In doing so, we find that selected photospheric lines are enhanced by the accretion process, namely the resonance lines of LiI and KI. A resonance line of TiI and a low excitation potential line of CaI also show weak enhancements. Simple slab models and computed line bisectors lead us to propose that these line enhancements are markers of cool gas at the beginning of the accretion flow which provides an additional source of line opacity. These results suggest that published values of surface lithium abundances of classical T Tauri stars are likely to be overestimated. This would account for the various reports of surface lithium abundances in excess of meteoritic values among the extreme CTTS. Computing LTE lithium abundances of RW Aur in a low and then high accretion state yields abundances which vary by one order of magnitude. The low accretion state lithium abundance is consistent with theoretical predictions for a star of this age and mass while the high accretion state spectrum yields a super-meteoritic lithium abundance.Comment: 28 pages, 8 figures, accepted by Ap

    Adsorption efficiency of hydroxyapatite synthesised from black tilapia fish scales for chromium (VI) removal

    Get PDF
    Water pollution is a major problem that impacts financial growth and socio-ecological sustainability of a country as well as health of the population. The presence of toxic heavy metals in wastewater such as chromium (Cr) (VI), copper, arsenic, lead, mercury, cadmium, etc. may lead to serious health issues. Therefore, this paper aims to synthesise natural hydroxyapatite (HAp) from black tilapia fish scales and investigate its efficiency as adsorbent for Cr (VI) removal. In this study, the black tilapia fish scales were soaked and washed thoroughly with distilled water to eliminate impurities such as dust and other particles, then dried in the oven before being alkaline treated for 1 h with a 50% NaOH at 100 �C. High purity HAp with an irregular rod-shape was successfully synthesised. The effectiveness of HAp from tila�pia fish to remove Cr (VI) was tested at various initial concentrations (30–70 mg/L) and HAp dosages ranging from 2 to 6 g. The results discovered that the synthesised adsorbent had a substantial impact on the removal effectiveness of the Cr (VI) for both manipulated parameters; initial concentration and Cr (VI) pH. The optimum result for Cr (VI) removal rate was achieved at 61.43% at 60 min by using 6 g of HAp. Freundlich isotherm model shows greater suitability with higher R2 = 0.995. Meanwhile, pseudo-second-order model is favourable for the adsorption process occurred in this study owing to its higher correlation coefficients. According to the findings of this study, black tilapia scale waste can be transformed into an effective adsorbent for Cr (VI) removal in wastewater treatment. This includes industries that may be exposed to Cr (VI), such as welding, coatings, plating, and textile production that use chromium-containing metals

    Adsorption efficiency of banana blossom peels (musa acuminata colla) adsorbent for chromium (VI) removal

    Get PDF
    The discharge of waste from industries into water has caused heavy metal pollution posing health risk to biota such as lead and chromium (VI). Once the water has been polluted, it will limit the accessibility to clean freshwater. Therefore, this paper aims to evaluate the adsorption efficiency of banana blossom peels for the chromium (Cr) (VI) removal under different pH (1, 4, 7, and 10). Extraction of banana blos�som peels adsorbent was carried out via chemical treatment using 0.1 M of HCI and 5% (w/v) NaOH solu�tion. The morphology and functional groups of extracted banana blossom peels adsorbent were then characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), and subsequently, the Cr (VI) removal efficiency was examined using ultraviolet–visible spec�troscopy (UV–VIS). The extracted banana blossom peels adsorbent is found to have wavy surface with shallow dents. Results demonstrated that adsorbent at pH 10 have the optimum removal of Cr (VI) with 18.87% followed by pH 7 (18.36%), pH 4 (12.28%) and pH 1 (12.00%) after 8 h. The maximum Cr (VI) adsorption capacity is 227.27 mg/g. In this study, the pseudo-second-order model best describes the adsorption process. Langmuir isotherm model is more favorable with high correlation coefficient of 0.99. In conclusion, adsorbent extracted from banana blossom has the potential to be used for Cr (VI) removal in water sources and reduce disposal of agricultural wastes by transforming it into a valuable material

    Simultaneous Multi-Wavelength Observations of Magnetic Activity in Ultracool Dwarfs. I. The Complex Behavior of the M8.5 Dwarf TVLM513-46546

    Get PDF
    [Abridged] We present the first simultaneous radio, X-ray, ultraviolet, and optical spectroscopic observations of the M8.5 dwarf TVLM513-46546, with a duration of 9 hours. These observations are part of a program to study the origin of magnetic activity in ultracool dwarfs, and its impact on chromospheric and coronal emission. Here we detect steady quiescent radio emission superposed with multiple short-duration, highly polarized flares; there is no evidence for periodic bursts previously reported for this object, indicating their transient nature. We also detect soft X-ray emission, with L_X/L_bol~10^-4.9, the faintest to date for any object later than M5, and a possible weak X-ray flare. TVLM513-46546 continues the trend of severe violation of the radio/X-ray correlation in ultracool dwarfs, by nearly 4 orders of magnitude. From the optical spectroscopy we find that the Balmer line luminosity exceeds the X-ray luminosity by a factor of a few, suggesting that, unlike in early M dwarfs, chromospheric heating may not be due to coronal X-ray emission. More importantly, we detect a sinusoidal H-alpha light curve with a period of 2 hr, matching the rotation period of TVLM513-46546. This is the first known example of such Balmer line behavior, which points to a co-rotating chromospheric hot spot or an extended magnetic structure, with a covering fraction of about 50%. This feature may be transitory based on the apparent decline in light curve peak during the four observed maxima. From the radio data we infer a large scale steady magnetic field of ~100 G, in good agreement with the value required for confinement of the X-ray emitting plasma. The radio flares, on the other hand, are produced in a component of the field with a strength of ~3 kG and a likely multi-polar configuration.Comment: 13 pages, 4 figure

    Simultaneous Multi-Wavelength Observations of Magnetic Activity in Ultracool Dwarfs. II. Mixed Trends in VB10 and LSR1835+32 and the Possible Role of Rotation

    Get PDF
    [Abridged] As part of our on-going investigation of magnetic activity in ultracool dwarfs we present simultaneous radio, X-ray, UV, and optical observations of LSR1835+32 (M8.5), and simultaneous X-ray and UV observations of VB10 (M8), both with a duration of about 9 hours. LSR1835+32 exhibits persistent radio emission and H-alpha variability on timescales of ~0.5-2 hr. The detected UV flux is consistent with photospheric emission, and no X-ray emission is detected to a deep limit of L_X/L_bol<10^-5.7. The H-alpha and radio emission are temporally uncorrelated, and the ratio of radio to X-ray luminosity exceeds the correlation seen in F-M6 stars by >2x10^4. Similarly, L_Halpha/L_X>10 is at least 30 times larger than in early M dwarfs, and eliminates coronal emission as the source of chromospheric heating. The lack of radio variability during four rotations of LSR1835+32 requires a uniform stellar-scale field of ~10 G, and indicates that the H-alpha variability is dominated by much smaller scales, <10% of the chromospheric volume. VB10, on the other hand, shows correlated flaring and quiescent X-ray and UV emission, similar to the behavior of early M dwarfs. Delayed and densely-sampled optical spectra exhibit a similar range of variability amplitudes and timescales to those seen in the X-rays and UV, with L_Halpha/L_X~1. Along with our previous observations of the M8.5 dwarf TVLM513-46546 we conclude that late M dwarfs exhibit a mix of activity patterns, which points to a transition in the structure and heating of the outer atmosphere by large-scale magnetic fields. We find that rotation may play a role in generating the fields as evidenced by a tentative correlation between radio activity and rotation velocity. The X-ray emission, however, shows evidence for super-saturation at vsini>25 km/s.Comment: Submitted to Ap
    corecore