14 research outputs found

    Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium tuberculosis

    Get PDF
    The emergence of total drug-resistant tuberculosis (TDRTB) has made the discovery of new therapies for tuberculosis urgent. The cytoplasmic enzymes of peptidoglycan biosynthesis have generated renewed interest as attractive targets for the development of new anti-mycobacterials. One of the cytoplasmic enzymes, uridine diphosphate (UDP)-MurNAc-tripeptide ligase (MurE), catalyses the addition of meso-diaminopimelic acid (m-DAP) into peptidoglycan in Mycobacterium tuberculosis coupled to the hydrolysis of ATP. Mutants of M. tuberculosis MurE were generated by replacing K157, E220, D392, R451 with alanine and N449 with aspartate, and truncating the first 24 amino acid residues at the N-terminus of the enzyme. Analysis of the specific activity of these proteins suggested that apart from the 24 Nterminal residues, the other mutated residues are essential for catalysis. Variations in K m values for one or more substrates were observed for all mutants, except the N-terminal truncation mutant, indicating that these residues are involved in binding substrates and form part of the active site structure. These mutant proteins were also tested for their specificity for a wide range of substrates. Interestingly, the mutations K157A, E220A and D392A showed hydrolysis of ATP uncoupled from catalysis. The ATP hydrolysis rate was enhanced by at least partial occupation of the uridine nucleotide dipeptide binding site. This study provides an insight into the residues essential for the catalytic activity and substrate binding of the ATP-dependent MurE ligase. Since ATP-dependent MurE ligase is a novel drug target, the understanding of its function may lead to development of novel inhibitors against resistant forms of M. tuberculosis

    An antibacterial from Hypericum acmosepalum inhibits ATP-dependent MurE ligase from Mycobacterium tuberculosis.

    Get PDF
    In a project to characterise new antibacterial chemotypes from plants, hyperenone A and hypercalin B were isolated from the hexane and chloroform extracts of the aerial parts of Hypericum acmosepalum. The structures of both compounds were characterised by extensive one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy and were confirmed by mass spectrometry. Hyperenone A and hypercalin B exhibited antibacterial activity against multidrug-resistant strains of Staphylococcus aureus, with minimum inhibition concentration ranges of 2-128 mg/L and 0.5-128 mg/L, respectively. Hyperenone A also showed growth-inhibitory activity against Mycobacterium tuberculosis H37Rv and Mycobacterium bovis BCG at 75 mg/L and 100mg/L. Neither hyperenone A nor hypercalin B inhibited the growth of Escherichia coli and both were non-toxic to cultured mammalian macrophage cells. Both compounds were tested for their ability to inhibit the ATP-dependent MurE ligase of M. tuberculosis, a crucial enzyme in the cytoplasmic steps of peptidoglycan biosynthesis. Hyperenone A inhibited MurE selectively, whereas hypercalin B did not have any effect on enzyme activity

    A diarylamine derived from anthranilic acid inhibits ZIKV replication

    Get PDF
    Zika virus (ZIKV) is a mosquito-transmitted Flavivirus, originally identified in Uganda in 1947 and recently associated with a large outbreak in South America. Despite extensive efforts there are currently no approved antiviral compounds for treatment of ZIKV infection. Here we describe the antiviral activity of diarylamines derived from anthranilic acid (FAMs) against ZIKV. A synthetic FAM (E3) demonstrated anti-ZIKV potential by reducing viral replication up to 86%. We analyzed the possible mechanisms of action of FAM E3 by evaluating the intercalation of this compound into the viral dsRNA and its interaction with the RNA polymerase of bacteriophage SP6. However, FAM E3 did not act by these mechanisms. In silico results predicted that FAM E3 might bind to the ZIKV NS3 helicase suggesting that this protein could be one possible target of this compound. To test this, the thermal stability and the ATPase activity of the ZIKV NS3 helicase domain (NS3Hel) were investigated in vitro and we demonstrated that FAM E3 could indeed bind to and stabilize NS3Hel

    Structure and Function of the First Full-Length Murein Peptide Ligase (Mpl) Cell Wall Recycling Protein

    Get PDF
    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In Gram-negative bacteria, ∼30–60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships

    Anti-tubercular screening of natural products from Colombian plants: 3-methoxynordomesticine, an inhibitor of MurE ligase of Mycobacterium tuberculosis

    No full text
    New anti-mycobacterial entities with novel mechanisms of action are clinically needed for treating resistant forms of tuberculosis. The purpose of this study was to evaluate anti-tubercular activity and selectivity of seven recently isolated natural products from Colombian plants. MICs were determined using a liquid medium growth inhibition assay for Mycobacterium tuberculosis H(37)Rv and both solid and liquid media growth inhibition assays for Mycobacterium bovis BCG. Escherichia coli growth inhibition and mammalian macrophage cell toxicity were evaluated to establish the degree of selectivity of the natural product against whole cell organisms. Enzymatic inhibition of ATP-dependent MurE ligase from M. tuberculosis was assayed using a colorimetric phosphate detection method. The most active compound, 3-methoxynordomesticine hydrochloride, was further investigated on M. bovis BCG for its inhibition of sigmoidal growth, acid-fast staining and viability counting analysis. Aporphine alkaloids were found to be potent inhibitors of slow-growing mycobacterial pathogens showing favourable selectivity and cytotoxicity. In terms of their endogenous action, the aporphine alkaloids were found inhibitory to M. tuberculosis ATP-dependent MurE ligase at micromolar concentrations. A significantly low MIC was detected for 3-methoxynordomesticine hydrochloride against both M. bovis BCG and M. tuberculosis H(37)Rv. Considering all the data, 3-methoxynordomesticine hydrochloride was found to be a potent anti-tubercular compound with a favourable specificity profile. The alkaloid showed MurE inhibition and is considered an initial hit for exploring related chemical space
    corecore