19 research outputs found

    Citacions bibliogràfiques segons el model de l'American Psychological Association

    Get PDF
    Guia bàsica per a fer les citacions bibliogràfiques segons el model APA (American Psychological Association), un estil de citació que s'aplica principalment en els àmbits de la comunicació, dret i psicologia

    Positional Isomers of Isocyanoazulenes as Axial Ligands Coordinated to Ruthenium(II) Tetraphenylporphyrin : Fine-Tuning Redox and Optical Profiles

    Get PDF
    Two isomeric ruthenium(II)/5,10,15,20-tetraphe-nylporphyrin complexes featuring axially coordinated redox-active, low-optical gap 2- or 6-isocyanoazulene ligands have been isolated and characterized by NMR, UV-vis, and magnetic circular dichroism (MCD) spectroscopic methods, high-resolution mass spectrometry, and single-crystal X-ray crystallography. The UV-vis and MCD spectra support the presence of the low-energy, azulene-centered transitions in the Q band region of the porphyrin chromophore. The first coordination sphere in new L2RuTPP complexes reflects compressed tetragonal geometry. The redox properties of the new compounds were assessed by electrochemical and spectroelectrochemical means and correlated with the electronic structures predicted by density functional theory and CASSCF calculations. Both experimental and theoretical data are consistent with the first two reduction processes involving the axial azulenic ligands, whereas the oxidation profile (in the direction of increasing potential) is exerted by the ruthenium ion, the porphyrin core, and the axial azulenic moieties.Peer reviewe

    Tuning π-Acceptor/σ-Donor Ratio of the 2-Isocyanoazulene Ligand: Non-Fluorinated Rival of Pentafluorophenyl Isocyanide and Trifluorovinyl Isocyanide Discovered

    Get PDF
    Isocyanoazulenes (CNAz) constitute a relatively new class of isocyanoarenes that offers rich structural and electronic diversification of the organic isocyanide ligand platform. This article considers a series of 2-isocyano-1,3-X2-azulene ligands (X = H, Me, CO2Et, Br, and CN) and the corresponding zero-valent complexes thereof, [(OC)5Cr(2-isocyano-1,3-X2-azulene)]. Air- and thermally stable, X-ray structurally characterized 2-isocyano-1,3-dimethylazulene may be viewed as a non-benzenoid aromatic congener of 2,6-dimethyphenyl isocyanide (2,6-xylyl isocyanide), a longtime “workhorse” aryl isocyanide ligand in coordination chemistry. Single crystal X-ray crystallographic {Cr–CNAz bond distances}, cyclic voltametric {E1/2(Cr0/1+)}, 13C NMR {δ(13CN), δ(13CO)}, UV-vis {dπ(Cr) → pπ*(CNAz) Metal-to-Ligand Charge Transfer}, and FTIR {νN≡C, νC≡O, kC≡O} analyses of the [(OC)5Cr(2-isocyano-1,3-X2-azulene)] complexes provided a multifaceted, quantitative assessment of the π-acceptor/σ-donor characteristics of the above five 2-isocyanoazulenes. In particular, the following inverse linear relationships were documented: δ(13COtrans) vs. δ(13CN), δ(13COcis) vs. δ(13CN), and δ(13COtrans) vs. kC≡O,trans force constant. Remarkably, the net electron withdrawing capability of the 2-isocyano-1,3-dicyanoazulene ligand rivals those of perfluorinated isocyanides CNC6F5 and CNC2F3

    First Homoleptic Isocyanides of Niobium and Tantalum 1

    No full text

    Syntheses and Structural Characterizations of cis

    No full text

    The ferrous verdoheme-heme oxygenase complex is six-coordinate and low-spin

    No full text
    A biosynthetic and enzymatic method was developed for the preparation of 13C-labeled verdoheme, which permits the 13C NMR spectroscopic characterization of this elusive intermediate in the heme oxidation path catalyzed by the enzyme heme oxygenase. The 13C NMR data indicate that the ferrous verdoheme complex of Neisseria meningitides heme oxygenase is hexacoordinate and diamagnetic, with a proximal histidine and likely a distal hydroxide as axial ligands. The coordination number and spin state of the ferrous verdoheme-heme oxygenase complex is in stark contrast to the pentacoordinate and paramagnetic nature of the heme-heme oxygenase complex and heme centers in general. Copyright © 2005 American Chemical Society
    corecore