14 research outputs found

    Abnormal microglia and enhanced inflammation-related gene transcription in mice with conditional deletion of Ctcf in Camk2a-Cre-expressing neurons

    Get PDF
    CCCTC-binding factor (CTCF) is an 11 zinc finger DNA-binding domain protein that regulates gene expression by modifying 3D chromatin structure. Human mutations inCTCFcause intellectual disability and autistic features. Knocking outCtcfin mouse embryonic neurons is lethal by neonatal age, but the effects of CTCF deficiency in postnatal neurons are less well studied. We knocked outCtcfpostnatally in glutamatergic forebrain neurons under the control ofCamk2a-Cre. CtcfloxP/loxP;Camk2a-Cre+(CtcfCKO) mice of both sexes were viable and exhibited profound deficits in spatial learning/memory, impaired motor coordination, and decreased sociability by 4 months of age.CtcfCKO mice also had reduced dendritic spine density in the hippocampus and cerebral cortex. Microarray analysis of mRNA fromCtcfCKO mouse hippocampus identified increased transcription of inflammation-related genes linked to microglia. Separate microarray analysis of mRNA isolated specifically fromCtcfCKO mouse hippocampal neurons by ribosomal affinity purification identified upregulation of chemokine signaling genes, suggesting crosstalk between neurons and microglia inCtcfCKO hippocampus. Finally, we found that microglia inCtcfCKO mouse hippocampus had abnormal morphology by Sholl analysis and increased immunostaining for CD68, a marker of microglial activation. Our findings confirm thatCtcfKO in postnatal neurons causes a neurobehavioral phenotype in mice and provide novel evidence that CTCF depletion leads to overexpression of inflammation-related genes and microglial dysfunction.SIGNIFICANCE STATEMENTCCCTC-binding factor (CTCF) is a DNA-binding protein that organizes nuclear chromatin topology. Mutations inCTCFcause intellectual disability and autistic features in humans. CTCF deficiency in embryonic neurons is lethal in mice, but mice with postnatal CTCF depletion are less well studied. We find that mice lackingCtcfinCamk2a-expressing neurons (CtcfCKO mice) have spatial learning/memory deficits, impaired fine motor skills, subtly altered social interactions, and decreased dendritic spine density. We demonstrate thatCtcfCKO mice overexpress inflammation-related genes in the brain and have microglia with abnormal morphology that label positive for CD68, a marker of microglial activation. Our findings suggest that inflammation and dysfunctional neuron–microglia interactions are factors in the pathology of CTCF deficiency.</jats:p

    Loss of Function Mutation in Ank Causes Aberrant Mineralization and Acquisition of Osteoblast-Like-Phenotype by the Cells of the Intervertebral Disc

    Get PDF
    Pathological mineralization of intervertebral disc is debilitating and painful and linked to disc degeneration in a subset of human patients. An adenosine triphosphate efflux transporter, progressive ankylosis (ANK) is a regulator of extracellular inorganic pyrophosphate levels and plays an important role in tissue mineralization. However, the function of ANK in intervertebral disc has not been fully explored. Herein we analyzed the spinal phenotype of Ank mutant mice (ank/ank) with attenuated ANK function. Micro-computed tomography and histological analysis showed that loss of ANK function results in the aberrant annulus fibrosus mineralization and peripheral disc fusions with cranial to caudal progression in the spine. Vertebrae in ank mice exhibit elevated cortical bone mass and increased tissue non-specific alkaline phosphatase-positive endplate chondrocytes with decreased subchondral endplate porosity. The acellular dystrophic mineral inclusions in the annulus fibrosus were localized adjacent to apoptotic cells and cells that acquired osteoblast-like phenotype. Fourier transform infrared spectral imaging showed that the apatite mineral in the outer annulus fibrosus had similar chemical composition to that of vertebral bone. Transcriptomic analysis of annulus fibrosus and nucleus pulposus tissues showed changes in several biological themes with a prominent dysregulation of BMAL1/CLOCK circadian regulation. The present study provides new insights into the role of ANK in the disc tissue compartments and highlights the importance of local inorganic pyrophosphate metabolism in inhibiting the mineralization of this important connective tissue

    Embryonic vitamin D deficiency programs hematopoietic stem cells to induce type 2 diabetes

    Get PDF
    Environmental factors may alter the fetal genome to cause metabolic diseases. It is unknown whether embryonic immune cell programming impacts the risk of type 2 diabetes in later life. We demonstrate that transplantation of fetal hematopoietic stem cells (HSCs) made vitamin D deficient in utero induce diabetes in vitamin D-sufficient mice. Vitamin D deficiency epigenetically suppresses Jarid2 expression and activates the Mef2/PGC1a pathway in HSCs, which persists in recipient bone marrow, resulting in adipose macrophage infiltration. These macrophages secrete miR106-5p, which promotes adipose insulin resistance by repressing PIK3 catalytic and regulatory subunits and down-regulating AKT signaling. Vitamin D-deficient monocytes from human cord blood have comparable Jarid2/Mef2/PGC1a expression changes and secrete miR-106b-5p, causing adipocyte insulin resistance. These findings suggest that vitamin D deficiency during development has epigenetic consequences impacting the systemic metabolic milieu

    Genetic Architecture of Left Ventricular Hypertrophy

    No full text
    LVH is a strong predictor of cardiovascular morbidity and mortality, with a significant genetic component, and as such, poses a major medical and financial challenge to the general community. Therefore understanding the genetic basis of LVH is important to developing better diagnosis, treatment and prevention of the disease. Traditional candidate gene studies and more recent genome wide association studies have identified genetic loci spanning multiple chromosomes associated with LVH, providing some early insight into the remarkably complex genetics of LVH. However much remains to be known about the functional roles of these loci and the relationships amongst themselves, as well as with their environmental counterparts, that determine one\u27s risk of developing the disease and are essential for making effective prediction and prevention strategies. In the present project, I set out to systematically study the genetic architecture of LVH by investigating the different layers of complexity, from single-variant effects to pairwise GxG/GxE interactions, to the roles of biological pathways and clinical phenotyping modalities to gain deeper understanding. The idea stems off a working model that highlights previous work, particularly candidate genes and interplay between metabolism and inflammation in the development of LVH. Our work takes advantage of a recently completed GWAS study of LVH for discovery, and existing resource of a previous study of LVH, with an older GWAS platform, for replication and validation. At the single-variants level, we took the GWAS approach and investigated, beyond conventional analysis, the variable genetic associations to LVH status defined by two different echocardiographic imaging modalities for measuring LV mass. We identified both shared genetic factors (CDH13) as well as the unshared ones (MYOM1, MYOCD), reflecting that phenotype measurement is an important factor in overall LVH complexity. This is a notable progress in improved understanding of the remarkable architecture of this disease. At the layer of pairwise interactions, I continue to use GWAS approach for studying gene-environment and gene-mitochondrial interactions but chose an extended candidate genes approach for studying chromosomal/nuclear GxG interactions to curtail false positives. The analysis of interactions among variants in 347 candidate genes identified a large number of potentially relevant pairwise interactions including a statistically significant one between MEF2B and IL1RAP, two key genes in hypertrophic signaling pathways and IL1 receptor signaling respectively. The genome-wide examination of interactions between nuclear and mitochondrial genomes is a relatively unexplored area and a novel part of this project; we found many interesting trans-nuclear mitochondrial interactions including on between TMOD3 and MT-COX1 significant at the genome-wide level (p=1.68E-09). Furthermore, genome-wide analyses of gene-environment interaction were carried out for hypertensive medications and serum triglyceride levels. The gene-medication analyses identified 21 significant interactions at p≤10^-6 including suggestive evidence of interaction between Angiotensin receptor blockers and bile acid transporter SLC10A4. The gene-triglyceride analyses identified 4 significant interactions at p≤10^-5, many corroborated the energy metabolism hypothesis of LVH, including one between triglyceride and PGM5, a key enzyme in cellular glucose utilization and energy homeostasis. Finally, at the layer of concerted effects of many factors, an extensive search for relevant biological pathways important to LVH was performed by extensive examination of 1410 known biological pathways compiled from existing databases for significant enrichment of association signal hits. This confirmed many important gene-sets or pathways that are known to be associated with LVH (e.g., regulation of fat cell differentiation and basic mechanism of PPAR on gene expression ), and also revealed multiple novel gene-sets that were not associated with LVH before but corroborate well with our working-model (e.g., IL13 biosynthesis and succinate dehydrogenase activity ). Taken together, the present research goes beyond single-variant analysis and attempts to gain valuable insights into the complex genetic architecture of LVH by systematically studying collective multi-variable effects of gene-gene, gene-environment interactions, and of organic gene-sets in biological pathways, on LVH phenotypes in real GWAS studies. The analyses of the different layers rediscovered some of what we already know; but more importantly, they also led us to exciting new findings about LVH genetics such as the potential of trans-nuclear mitochondrial interactions. The results painted a complex yet seemingly organized architecture of the LVH genetics that has many components waiting for us to further characterize their functional importance to the development and modulation of LVH. Due to the modest sample sizes of the real studies, the lower density of genotyping platform in the replication sample, and due to the lack of independent studies with ECHO phenotypes in general, further replication of the findings are in order. Nonetheless, our work demonstrates the importance of analyzing interaction effects in order to illustrate the complex architecture of LVH. The findings provide a rich collection of new hypotheses for further study of functional roles of these collective effects, and for continual development of improved prevention and intervention strategies to cure and manage the disease

    A review of the ADAMTS family, pharmaceutical targets of the future

    No full text
    The a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family of metalloproteases consists of 19 members. These enzymes play an important role in the turnover of extracellular matrix proteins in various tissues and their altered regulation has been implicated in diseases such as cancer, arthritis and atherosclerosis. Unlike other metalloproteinases, ADAMTS members demonstrate a narrow substrate specificity due to the various exosites located in the C-terminal regions of the enzymes, which influence protein recognition and matrix localization. The tight substrate specificity exhibited by ADAMTS enzymes makes them potentially safe pharmaceutical targets, as selective inhibitors designed for each member will result in the inhibition or cleavage of only a limited number of proteins. With the recent elucidation of crystal structures for ADAMTS-1, -4 and -5, the design of potent and selective small molecule inhibitors is underway and will lead to drug candidates for evaluation in clinical trials in the next 5-10 years

    Loss of function mutation in Ank causes aberrant mineralization and acquisition of osteoblast-like-phenotype by the cells of the intervertebral disc

    Get PDF
    Abstract Pathological mineralization of intervertebral disc is debilitating and painful and linked to disc degeneration in a subset of human patients. An adenosine triphosphate efflux transporter, progressive ankylosis (ANK) is a regulator of extracellular inorganic pyrophosphate levels and plays an important role in tissue mineralization. However, the function of ANK in intervertebral disc has not been fully explored. Herein we analyzed the spinal phenotype of Ank mutant mice (ank/ank) with attenuated ANK function. Micro-computed tomography and histological analysis showed that loss of ANK function results in the aberrant annulus fibrosus mineralization and peripheral disc fusions with cranial to caudal progression in the spine. Vertebrae in ank mice exhibit elevated cortical bone mass and increased tissue non-specific alkaline phosphatase-positive endplate chondrocytes with decreased subchondral endplate porosity. The acellular dystrophic mineral inclusions in the annulus fibrosus were localized adjacent to apoptotic cells and cells that acquired osteoblast-like phenotype. Fourier transform infrared spectral imaging showed that the apatite mineral in the outer annulus fibrosus had similar chemical composition to that of vertebral bone. Transcriptomic analysis of annulus fibrosus and nucleus pulposus tissues showed changes in several biological themes with a prominent dysregulation of BMAL1/CLOCK circadian regulation. The present study provides new insights into the role of ANK in the disc tissue compartments and highlights the importance of local inorganic pyrophosphate metabolism in inhibiting the mineralization of this important connective tissue

    An approach for evaluating the effects of dietary fiber polysaccharides on the human gut microbiome and plasma proteome

    Get PDF
    Increases in snack consumption associated with Westernized lifestyles provide an opportunity to introduce nutritious foods into poor diets. We describe two 10-wk-long open label, single group assignment human studies that measured the effects of two snack prototypes containing fiber preparations from two sustainable and scalable sources; the byproducts remaining after isolation of protein from the endosperm of peas and the vesicular pulp remaining after processing oranges for the manufacture of juices. The normal diets of study participants were supplemented with either a pea- or orange fiber-containing snack. We focused our analysis on quantifying the abundances of genes encoding carbohydrate-active enzymes (CAZymes) (glycoside hydrolases and polysaccharide lyases) in the fecal microbiome, mass spectrometric measurements of glycan structures (glycosidic linkages) in feces, plus aptamer-based assessment of levels of 1,300 plasma proteins reflecting a broad range of physiological functions. Computational methods for feature selection identified treatment-discriminatory changes in CAZyme genes that correlated with alterations in levels of fiber-associated glycosidic linkages; these changes in turn correlated with levels of plasma proteins representing diverse biological functions, including transforming growth factor type β/bone morphogenetic protein-mediated fibrosis, vascular endothelial growth factor-related angiogenesis, P38/MAPK-associated immune cell signaling, and obesity-associated hormonal regulators. The approach used represents a way to connect changes in consumer microbiomes produced by specific fiber types with host responses in the context of varying background diets

    An approach for evaluating the effects of dietary fiber polysaccharides on the human gut microbiome and plasma proteome

    No full text
    Increases in snack consumption associated with Westernized lifestyles provide an opportunity to introduce nutritious foods into poor diets. We describe two 10-wk-long open label, single group assignment human studies that measured the effects of two snack prototypes containing fiber preparations from two sustainable and scalable sources; the byproducts remaining after isolation of protein from the endosperm of peas and the vesicular pulp remaining after processing oranges for the manufacture of juices. The normal diets of study participants were supplemented with either a pea- or orange fiber-containing snack. We focused our analysis on quantifying the abundances of genes encoding carbohydrate-active enzymes (CAZymes) (glycoside hydrolases and polysaccharide lyases) in the fecal microbiome, mass spectrometric measurements of glycan structures (glycosidic linkages) in feces, plus aptamer-based assessment of levels of 1,300 plasma proteins reflecting a broad range of physiological functions. Computational methods for feature selection identified treatment-discriminatory changes in CAZyme genes that correlated with alterations in levels of fiber-associated glycosidic linkages; these changes in turn correlated with levels of plasma proteins representing diverse biological functions, including transforming growth factor type β/bone morphogenetic protein-mediated fibrosis, vascular endothelial growth factor-related angiogenesis, P38/MAPK-associated immune cell signaling, and obesity-associated hormonal regulators. The approach used represents a way to connect changes in consumer microbiomes produced by specific fiber types with host responses in the context of varying background diets
    corecore