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Neurobiology of Disease

Abnormal Microglia and Enhanced Inflammation-Related
Gene Transcription in Mice with Conditional Deletion of Ctcf
in Camk2a-Cre-Expressing Neurons

Bryan E. McGill,1 Ruteja A. Barve,2 Susan E. Maloney,3 Amy Strickland,4 Nicholas Rensing,1 Peter L. Wang,4

Michael Wong,1 X Richard Head,2 David F. Wozniak,3 and Jeffrey Milbrandt4

1Division of Pediatric and Developmental Neurology, Department of Neurology, 2Genome Technology Access Center, Department of Genetics,
3Department of Psychiatry, and 4Department of Genetics, Washington University, St. Louis, Missouri 63110

CCCTC-binding factor (CTCF) is an 11 zinc finger DNA-binding domain protein that regulates gene expression by modifying 3D chro-
matin structure. Human mutations in CTCF cause intellectual disability and autistic features. Knocking out Ctcf in mouse embryonic
neurons is lethal by neonatal age, but the effects of CTCF deficiency in postnatal neurons are less well studied. We knocked out Ctcf
postnatally in glutamatergic forebrain neurons under the control of Camk2a-Cre. Ctcf loxP/loxP;Camk2a-Cre � (Ctcf CKO) mice of both
sexes were viable and exhibited profound deficits in spatial learning/memory, impaired motor coordination, and decreased sociability by
4 months of age. Ctcf CKO mice also had reduced dendritic spine density in the hippocampus and cerebral cortex. Microarray analysis of
mRNA from Ctcf CKO mouse hippocampus identified increased transcription of inflammation-related genes linked to microglia. Sepa-
rate microarray analysis of mRNA isolated specifically from Ctcf CKO mouse hippocampal neurons by ribosomal affinity purification
identified upregulation of chemokine signaling genes, suggesting crosstalk between neurons and microglia in Ctcf CKO hippocampus.
Finally, we found that microglia in Ctcf CKO mouse hippocampus had abnormal morphology by Sholl analysis and increased immuno-
staining for CD68, a marker of microglial activation. Our findings confirm that Ctcf KO in postnatal neurons causes a neurobehavioral
phenotype in mice and provide novel evidence that CTCF depletion leads to overexpression of inflammation-related genes and microglial
dysfunction.
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Introduction
CCCTC-binding factor (CTCF) is a ubiquitously expressed, 11
zinc finger DNA-binding domain protein encoded by CTCF in

humans and Ctcf in mice. CTCF binds throughout the genome
(Wang et al., 2012) at the borders of megabase-scale, 3D chroma-
tin structures called topological associated domains (TADs)
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Significance Statement

CCCTC-binding factor (CTCF) is a DNA-binding protein that organizes nuclear chromatin topology. Mutations in CTCF cause
intellectual disability and autistic features in humans. CTCF deficiency in embryonic neurons is lethal in mice, but mice with
postnatal CTCF depletion are less well studied. We find that mice lacking Ctcf in Camk2a-expressing neurons (Ctcf CKO mice) have
spatial learning/memory deficits, impaired fine motor skills, subtly altered social interactions, and decreased dendritic spine
density. We demonstrate that Ctcf CKO mice overexpress inflammation-related genes in the brain and have microglia with
abnormal morphology that label positive for CD68, a marker of microglial activation. Our findings suggest that inflammation and
dysfunctional neuron–microglia interactions are factors in the pathology of CTCF deficiency.
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(Dixon et al., 2012). CTCF-organized TADs control gene expres-
sion by packaging enhancers and promoters into distinct spatial
compartments within cell nuclei (Merkenschlager and Nora, 2016).
CTCF regulates expression of CNS genes, including homeobox
(Hox) gene clusters, in developing spinal cord motor neurons
(Narendra et al., 2015) and at protocadherin (Pcdh) gene clusters
in the brain (Golan-Mashiach et al., 2012). Knock-down of CTCF
disrupts TAD structure, leading to widespread dysregulation of
gene expression (Zuin et al., 2014).

CTCF is linked to neurodevelopmental disorders. Individuals
with haploinsufficiency for CTCF have a neuropsychiatric phe-
notype characterized by delayed acquisition of developmental
milestones, intellectual disability, and autistic features (Gregor et
al., 2013). CTCF also regulates transcription at FMR1, the locus for
Fragile X syndrome, a common cause of intellectual disability and
autism spectrum disorder (ASD) (Lanni et al., 2013), and binds at
sites linked to a broad group of neurodevelopmental disorders
(Strong et al., 2015; Meguro-Horike et al., 2011; Mégarbané et al.,
2013). In addition, mutations in genes encoding CTCF-interacting
proteins cause Cornelia de Lange syndrome (Peters et al., 2008) and
Rett syndrome (Kernohan et al., 2010).

In addition to CTCF, inflammation is widely thought to con-
tribute to neurodevelopmental disorders including ASD (Estes
and McAllister, 2015). ASD-associated mutations occur in genes
encoding immune system components (Estes and McAllister,
2015) and transcriptional profiling of ASD brain tissue enriches
for immunity genes (Voineagu et al., 2011). ASD is linked to
immune dysfunction including anti-brain autoantibodies (Ca-
banlit et al., 2007), altered serum and CSF cytokine profiles, and
aberrant cell-mediated immune responses (Estes and McAllister,
2015). ASD-associated microglial abnormalities include: in-
creased numbers (Vargas et al., 2005; Tetreault et al., 2012), ab-
normal morphologies (Morgan et al., 2010), and hyperactivation
(Suzuki et al., 2013) of these cells. CTCF regulates the expression
of genes encoding the inflammatory mediator interleukin-21
(Park et al., 2016) and human leukocyte antigens (Raj et al.,
2016), indicating a connection between CTCF and inflammation.

Although constitutive Ctcf knock-out (KO) mice are lethal in the
preimplantation phase of embryogenesis (Moore et al., 2012), con-
ditional Ctcf KO mice have provided valuable information about the
role of CTCF in neural development. Both Foxg1-Cre mediated de-
letion of Ctcf in the embryonic neuroepithelium and Nestin-Cre me-
diated deletion of Ctcf in embryonic neuroprogenitor cells cause
massive apoptosis that is lethal embryonically (Foxg1-Cre) or at de-
livery (Nestin-Cre) (Watson et al., 2014). Conditional Ctcf KO in
embryonic postmitotic projection neurons under the control of
Nex-Cre produces mice that have aberrant dendritic arborization,
fewer dendritic spines, and die by 4 weeks of age (Hirayama et al.,
2012). Thus, during embryogenesis CTCF is a survival factor for
neural progenitor cells and later contributes to dendritic microstruc-
ture development in postmitotic neurons. However, both the effect
of depleting CTCF postnatally and the role of CTCF in neuronal
function in adult animals are less well studied.

We explored the role of CTCF in neurons of adult animals by
crossing mice carrying a loxP-flanked allele of Ctcf (Heath et al.,

2008) with mice transgenic for Camk2a-Cre, which express Cre
recombinase in postmitotic, glutamatergic neurons of CA1 hip-
pcampus and layer V cerebral cortex (Tsien et al., 1996). The
resulting Ctcf loxP/loxP;Camk2a-Cre mice (hereafter Ctcf CKO) de-
veloped neurobehavioral impairments, reduced dendritic spine
density, upregulation of inflammation-related gene expression,
and abnormal microglia. Our data show that: (1) CTCF defi-
ciency in adult mice causes behavioral deficits, (2) CTCF is re-
quired outside of development to maintain a normal neuronal
gene expression profile, and (3) neuronal CTCF deficiency leads
to an aberrant microglia phenotype.

Materials and Methods
Mouse husbandry. All animal procedures were performed in compliance
with the National Institutes of Health’s Guide for the Care and Use of
Laboratory Animals and approved by the Animal Studies Committee in
the Division of Comparative Medicine at Washington University School
of Medicine in St. Louis (Protocol #20140044). Mice were housed in a
temperature-controlled barrier facility maintained at 24°C. Facility light-
ing was kept on a fixed 12 h light and 12 h dark cycle. Mice had access to
fresh water and rodent chow #5001 (Purina) ad libitum. Mouse health was
monitored daily by a staff of licensed veterinarians. Mouse lines used in this
experiment have been described previously and include: Ctcf loxP (Heath et
al., 2008), Camk2a-Cre (Tsien et al., 1996; The Jackson Laboratory stock
#005359, RRID:IMSR_JAX:005359), Gt(ROSA)26Sor tm9(CAG - tdTomato)Hze

(Madisen et al., 2010; The Jackson Laboratory stock #007909, RRID:
IMSR_JAX:007909), Thy1-YFP HJrs/J (Feng et al., 2000; The Jackson Lab-
oratory stock #003782, RRID:IMSR_JAX:003782), Rpl22 tm1.1Psam/J

(Sanz et al., 2009; The Jackson Laboratory stock #011029, RRID:IMSR_
JAX:011029), and Cx3cr1 tm1Litt/J (Jung et al., 2000; The Jackson Labora-
tory stock #005582, RRID:IMSR_JAX:005582). We intercrossed Ctcf loxP

and Camk2a-Cre mice to generate Ctcf loxP/loxP;Camk2a-Cre � (Ctcf
CKO) and Ctcf loxP/loxP;Camk2a-Cre � (control) mice. We intercrossed
Ctcf loxP, Camk2a-Cre, and Thy1-YFPHJrs/J mice to generate Ctcf loxP/loxP;
Camk2a-Cre�;Thy1-YFPHJrs/J � (Ctcf CKO;YFP) and Ctcf loxP/loxP;
Camk2a-Cre �;Thy1-YFP HJrs/J � (control;YFP) mice. Similarly, we
intercrossed Ctcf loxP, Camk2a-Cre, and Rpl22 tm1.1Psam/J mice to gener-
ate Ctcf loxP/loxP;Camk2a-Cre �; Rpl22 tm1.1Psam/J � (Ctcf CKO;RiboTag)
and Ctcf loxP/loxP;Camk2a-Cre �; Rpl22 tm1.1Psam/J � (control;RiboTag)
mice. We verified the extent of expression of Cre in our Camk2a-
Cre mice by intercrossing them with Gt(ROSA)26Sor tm9(CAG - tdTomato)Hze

mice to generate Gt(ROSA)26Sor tm9(CAG - tdTomato)Hze;Camk2a-Cre �

(tdTomato;Camk2a-Cre) mice. We verified that Cx3cr1 and Camk2a ex-
pression patterns were nonoverlapping by intercrossing tdTomato;
Camk2a-Cre and Cx3cr1 tm1Litt/J mice to generate animals with all three
alleles, Gt(ROSA)26Sor tm9(CAG - tdTomato)Hze;Camk2a-Cre�;Cx3cr1 tm1Litt/J

(Cx3cr1-EGFP; tdTomato;Camk2a-Cre mice). Both male and female an-
imals were used for all experiments.

Mouse behavioral analysis. We performed behavioral analysis of two
cohorts of Ctcf CKO and control mice. Testing was conducted on the first
(adult) cohort of 9 Ctcf CKO and 10 control mice, including 11 females
and 9 males, at 3– 4 months of age. Mice were evaluated on a 1 h loco-
motor activity test, a battery of sensorimotor measures, the Morris water
maze (MWM), and the social approach test, in that order. Testing of the
second (adolescent) cohort of 10 Ctcf CKO (5 males, 5 females) and 10
control mice (6 males, 4 females) occurred at 6 – 8 weeks of age. These
mice were evaluated on a 1 h locomotor activity test, a battery of senso-
rimotor measures, and the MWM, in that order.

The 1 h locomotor activity test was conducted during a 1 h session
inside transparent 47.6 � 25.4 � 20.6 cm high polystyrene enclosures as
described previously (Wozniak et al., 2004). Computerized photobeam
instrumentation was used to measure ambulatory activity and explora-
tion including total ambulations (whole-body movements), number of
vertical rearings, and time spent, distance traveled, and entries made into
a central 33 � 11 cm zone.

The sensorimotor battery was performed as described previously
(Wozniak et al., 2004) and consisted of the ledge and platform tests (to
evaluate balance and fine motor coordination); the pole, 60° inclined

Institute of Child Health and Human Development of the NIH Grant U54HD087011). The content is solely the
responsibility of the authors and does not necessarily represent the official views of the NIH.

The authors declare no competing financial interests.
Correspondence should be addressed to Dr. Jeffrey Milbrandt, Washington University School of Medicine,

Department of Genetics, Campus Box 8232, 4523 Clayton Avenue, St. Louis, MO 63110. E-mail:
jmilbrandt@wustl.edu.

DOI:10.1523/JNEUROSCI.0936-17.2017
Copyright © 2018 the authors 0270-6474/18/380201-20$15.00/0

McGill et al. • Neuronal Ctcf Knock-out Causes Brain Inflammation J. Neurosci., January 3, 2018 • 38(1):200 –219 • 201

https://scicrunch.org/resolver/IMSR_JAX:005359
https://scicrunch.org/resolver/IMSR_JAX:007909
https://scicrunch.org/resolver/IMSR_JAX:003782
https://scicrunch.org/resolver/IMSR_JAX:005582


screen test, and 90° inclined screen test (to assess agility); the inverted
screen test (to assess strength); and the walking initiation test (to assess
movement initiation).

The MWM was performed as described previously (Wozniak et al.,
2007) in a 118-cm-diameter pool of opaque water monitored by a com-
puterized video tracking and recording system (ANY-maze; Stoelting,
RRID:SCR_014289) that computed escape path length and latency to
reach the target platform and calculated swimming speed, platform
crossings, and time spent in each quadrant of the pool. Testing included
cued (visible platform marked by a red tennis ball on a pole), place
(submerged platform obscured from view), and probe (platform absent)
trials. Both cued and place trials occurred in 2 blocks of 2 trials daily (4
trials per day), with a 2 h break between blocks. Each trial lasted a max-
imum of 60 s and was followed by a 60 s intertrial interval, during which
the mouse was allowed to remain on the platform for the first 30 s. Cued
trials occurred over 2 consecutive days. Salient spatial cues were not
present in the room during the cued trials and the platform location
varied from trial to trial to train the mice to navigate to the platform but
minimize spatial learning during this phase of testing. Place trials were
initiated 3 d later and occurred over 5 consecutive days. Spatial cues were
prominently displayed during these trials to encourage spatial (hippo-
campal-dependent) learning. The probe trial was conducted 1 h after the
last place trial on the fifth day. For the probe trial, spatial cues were again
prominently displayed, but the escape platform was completely removed
from the pool. The mouse was placed in the pool starting from the
quadrant diagonal to the last location of the escape platform and allowed
to search the pool for 60 s while time spent in each quadrant and the
number of crossings over the previous location of the platform was
recorded.

The general procedures for conducting the social approach test were
similar to our previously published methods (Dougherty et al., 2013),
which were adapted from earlier works (Moy et al., 2004; Silverman et al.,
2011). The test involved quantifying sociability, or the tendency to initi-
ate social investigation of an unfamiliar conspecific (stimulus mouse)
contained in a small withholding cage, compared with the investigation
of an empty withholding cage. The apparatus was a rectangular 3-cham-
bered Plexiglas box (each chamber measuring 19.5 cm � 39 cm � 22 cm)
containing Plexiglas dividing walls with rectangular openings (5 � 8 cm)
covered by sliding Plexiglas doors. A small stainless-steel withholding
cage (10 cm h � 10 cm diameter; Galaxy Pencil/Utility Cup; Spectrum
Diversified Designs) was used to sequester a stimulus mouse. The with-
holding cage consisted of vertical bars, which allowed for restricted social
interactions between the mice but prevented fighting and sexual contact,
and one cage was located in each outer chamber. A digital video camera
connected to a PC loaded with a tracking software program (ANY-maze;
Stoelting) recorded the movement of the mouse within the apparatus
and quantified time spent in each chamber and in investigation zones
surrounding the withholding cages, the latter being scored when the head
of the mouse intersected the zones. The investigation zones were 12 cm in
diameter, encompassing 2 cm around the withholding cages. The test
sequence consisted of three consecutive 10 min trials. For the first trial,
each mouse was placed in the middle chamber with the doors to the outer
chambers shut to become acclimated to the apparatus. During the second
trial, the mouse was allowed to investigate and habituate to all three
chambers freely, including the empty withholding cages (Page et al.,
2009; Naert et al., 2011; Pobbe et al., 2012). The third (test) trial assessed
sociability exhibited toward an unfamiliar stimulus mouse versus the
familiar, empty withholding cage by placing an unfamiliar, age- and
gender-matched stimulus mouse in one withholding cage while the other
was left empty.The test mouse was allowed to explore the apparatus freely
and investigate the novel mouse in the withholding cage. The locations of
the stimuli mice in the outer chambers were counterbalanced within and
across groups.

Mouse electroencephalography. Adult (3– 4 months old) control and
Ctcf CKO mice (n � 6/genotype) underwent continuous video-EEG
monitoring using standard methods for implanting epidural electrodes
and performing continuous video-EEG recordings, as described previ-
ously (Erbayat-Altay et al., 2007). Briefly, mice were anesthetized with
isoflurane and placed in a stereotaxic frame. Five epidural screw elec-

trodes were surgically implanted on the skull and secured using dental
cement. Video and EEG data were acquired simultaneously with a stellate
video-EEG acquisition system. Continuous 24/7 video-EEG data were
obtained for 6 weeks from each mouse and were analyzed for seizures or
interictal epileptiform abnormalities. Electrographic seizures were de-
fined as a characteristic pattern of discrete periods of rhythmic spike
discharges that evolved in frequency and amplitude lasting at least 10 s.

Western blot. We harvested hippocampus and cerebral cortex from
adult (3– 6 months old) Ctcf CKO and control mice (n � 18 animals per
genotype for hippocampus; n � 26 animals per genotype for cerebral
cortex). Tissues were snap frozen in liquid nitrogen and homogenized in
lysis buffer containing 50 mM Tris pH 7.4, 150 mM NaCl, 1% Triton
X-100, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM PMSF, 1 mM sodium
orthovanadate, and complete protease inhibitor mixture (Sigma-
Aldrich). The lysates were cleared by centrifugation at 13,800 � g for 10
min at 4°C and total protein was quantified using the MicroBCA assay kit
(Pierce). Proteins were separated by SDS-PAGE and transferred to nitro-
cellulose membrane (GE Life Sciences). Membranes were blocked for 1 h
at room temperature in 5% nonfat dry milk in Tris-buffered saline with
0.05% Tween (TBST) and incubated overnight at 4°C with either 1:1000
anti-CTCF antibody (Cell Signaling Technology catalog#2899, RRID:
AB_2086794) in TBST plus 5% bovine serum albumin or 1:1000 anti-
GAPDH antibody (Cell Signaling Technology catalog#5174, RRID:
AB_10622025) in TBST plus 5% nonfat dry milk. The next day, membranes
were washed with TBST and incubated with 1:5000 goat anti-rabbit con-
jugated to horseradish peroxidase (GE Life Sciences) in TBST for 2 h at
room temperature before a final wash. Membranes were developed with
Western Bright Quantum HRP substrate (Advansta). Blots were imaged
on a G:Box gel documentation system (Syngene) running GeneSys ac-
quisition software (RRID:SCR_015770). Tag image file format-style im-
ages were exported to the Fiji build of ImageJ (RRID:SCR_002285) and
analyzed using the Gel Analyzer function.

Total mRNA isolation. Brain regions were harvested from both male
and female adult (3– 6 months old) Ctcf CKO and control mice after
behavioral testing. Tissues were snap frozen in liquid nitrogen and ho-
mogenized in TRIzol (Life Technologies) using a bullet blender (Next
Advance). The TRIzol procedure was performed according to the man-
ufacturer’s instructions. RNA was purified on NucleoSpin RNA columns
with on-column DNase digestion (Machery-Nagel) according to the
manufacturer’s intructions. RNA concentration was determined using a
NanoDrop (Thermo Scientific) and RNA integrity was verified using an
Agilent Technologies bioanalyzer and either RNA 6000 nano or pico
chips, depending on the concentration of the sample. Only high-quality
RNA samples, defined as having both a 260/280 nm aborbance ratio of
1.8 to 2.1 on the NanoDrop and RNA integrity number � 8.0 on the
Bioanalyzer, were used in downstream microarray and qRT-PCR
applications.

Histology, immunofluorescent antigen detection, and microscopy. Three-
to 6-month-old mice were anesthetized with isoflurane and transcardi-
ally perfused with either 4% paraformaldehyde in PBS or, for Timm
staining, with 0.9% sodium chloride, 0.37% sodium sulfide sulfide solu-
tion, and 4% formaldehyde. Brains were dissected and fixed overnight in
4% paraformaldehyde in PBS, cryopreserved in 30% sucrose in PBS, and
embedded in Tissue-Tek optimal cutting temperature compound (Sakura
Finetek). Then, 40-�m-thick sections were cut on a cryostat and
mounted on Fisherbrand Superfrost/Plus microscope slides, which were
air-dried and stored at �20C. Nissl staining was performed with cresyl
violet (Sigma-Aldrich) as described previously (Paul et al., 2008). Timm
staining was performed as described previously (Guo et al., 2013). Light
microscope imaging was performed with a NanoZoomer 2.0-HT digital
slide scanner (Hamamatsu). For immunofluorescent antigen detection,
frozen sections were washed, antigen retrieved for 30 min at 80°C in 10
mM tribasic sodium citrate dihydrate, 0.05% Triton X-100, pH 6, and
blocked in TBST with 10% normal horse serum and 0.3% Triton X-100
for 1 h at room temperature. Sections were incubated with primary an-
tibodies diluted in blocking buffer overnight at 4°C. After 3 5 min washes
with PBS, sections were incubated with secondary antibodies diluted in
blocking buffer for 1 h at room temperature. Immunostained sections
were mounted with Vectashield hard-set mounting medium with DAPI
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(Vector Laboratories, RRID:AB_2336788). Primary antibodies included
the following: 1:100 anti-NeuN (EMD Millipore catalog#ABN78A4,
RRID:AB_10920751), 1:500 anti-glial fibrillary acidic protein (GFAP)
(Millipore catalog #AB5804, RRID:AB_10062746), 1:500 anti-Iba1
(Wako catalog #019-19741, RRID:AB_839504), 1:200 anti-Ki67 (Vector
Laboratories catalog#VP-K451, RRID:AB_2314701), 1:150 anti-Caspase-3
D175A (Cell Signaling Technology catalog#9661, RRID:AB_2341188),
1:400 anti-S100-� (S100B; Dako catalog#Z0311, RRID:AB_10013383),
1:200 anti-CD68 (Bio-Rad catalog#MCA1957GA, RRID:AB_324217).
Secondary antibodies included 1:500 anti-rabbit Alexa Fluor 488
(Thermo Fisher catalog #A11034, RRID:AB_2576217) and 1:500 anti-
rabbit Cy3 (Jackson Immunoresearch catalog#111-165-144, RRID:
AB_2338006). Confocal images were captured with a Leica DMI4000
confocal microscope equipped with diode 405 nm and solid-state 488
and 561 nm lasers and 20�, 63�, and 100� oil-immersion objectives.
For each stain and antibody described above, at least eight sections from
each of three to six brains per genotype were examined. Representative
sections are displayed. The LASX software analysis suite (Leica) was used
to generate maximum intensity projections of each image. For each an-
tibody, a uniform threshold was applied to all images from both geno-
types. Thresholded images were binarized and imported into the Fiji
build of ImageJ (RRID:SCR_002285), which was used to calculate the
area of the binary image equivalent to the area of the image occupied by
a given antibody. This value was divided by the total image area to deter-
mine a percentage area. For CD68, we divided by the Iba-1-positive
image area to determine the percentage microglial area occupied by
CD68. For quantification of dendritic spines, we collected full-thickness
confocal z-stacks of apical dendrites using 100� magnification, 512 �
512 resolution, 3 frame average, and 140nm z-step size (n � 10 –20 image
stacks per animal, 3 animals per genotype). We selected individual den-
drites (n � 50 dendrites/animal for hippocampus, n � 28 –32 dendrites/
animal for cortex) of at least 10 �m length, generated mean intensity
projection images using the LASX software analysis suite (Leica), and
counted the number of spines manually, which we report as spines per
micrometer of dendrite length. Individuals blinded to genotype per-
formed all counting. We evaluated the patterns of enhanced green fluo-
rescent protein (EGFP) and red fluorescent tdTomato protein in the
hippocampus and cerebral cortex of Cx3cr1-EGFP; tdTomato;Camk2a-
Cre mice using 10 images of each tissue, which were collected from a total
of three animals.

RiboTag isolation of Camk2a-Cre expressing cell-specific mRNA: The
RiboTag isolation method was performed as described previously (Sanz
et al., 2009). Briefly, hippocampus was dissected rapidly from naive adult
mice (2 males and 2 females, each at least 3 months old) and homoge-
nized in polysome buffer consisting of 50 mM Tris, pH 7.5, 100 mM KCl,
12 mM MgCl2, 1% Nonidet P-40, 1 mM DTT, 200 U/ml Rnasin Plus
(Promega), 200 U/ml Superasin (Life Technologies), 100 �g/ml cyclo-
hexamide, 1 mg/ml heparin, and 1� complete protease inhibitor tablet
mixture (Sigma-Aldrich). Samples were centrifuged at 10,000 � g for 10
min at 4°C. The supernatants were collected and immunoprecipitated
with anti-HA antibody (HA.11, BioLegend catalog #901502, RRID:
AB_2565007) overnight at 4°C and, the next day, antibody-antigen-RNA
complexes were recovered with Dynabeads protein G. The beads were
washed 3 times for 5 min each in high-salt buffer consisting of 50 mM

Tris, pH 7.5, 300 mM KCl, 12 mM MgCl2, 1% Nonidet P-40, 1 mM DTT,
and 100 �g/ml cyclohexamide. Then, the antigen–antibody–RNA com-
plexes were eluted with RA1 buffer (Machery-Nagel) containing 1:100
�-mercaptoethanol. RNA was recovered from the eluate using NucleoSpin
RNA columns (Machery-Nagel) with on-column DNase digestion. RNA
concentration was determined using a NanoDrop (Thermo Scientific)
and RNA integrity was verified using an Agilent Technologies nioana-
lyzer and either RNA 6000 nano or pico chips, depending on the concen-
tration of the sample. The remainder of each sample was frozen at �80°C
until further use.

qRT-PCR. We used the qScript cDNA synthesis kit (Quanta Bio) to
generate cDNA from 10 ng samples of RiboTag-isolated RNA or 500 �g
of TRIzol-isolated RNA. qRT-PCR was performed using PerfeCTa SYBR
Green FastMix (Quanta Bio) on an ABI Prism 7900HT Sequence Dect-
ection System (Applied Biosystems). All qRT-PCRs were run using a

standard program: 2 min at 50°C, 10 min at 95°C, followed by 40 cycles of
15 s at 95°C, 30 s at 60°C, and 30 s at 72°C. The following primer pairs
were used: Gapdh 5�-AATGTGTCCGTCGTGGATCT-3� forward and
5�-GTTGAAGTCGCAGGAGACAA-3� reverse; C1ql1 5�-CCAACCTAG
GCAACAACTAC-3� forward and 5�-GTAGTTCTGGTCTGCATCCT-3�
reverse; Ccl17 5�-GATGCCATCGTGTTTCTGAC-3� forward and 5�-
CCAATCTGATGGCCTTCTTC-3� reverse; Tnfrsf12a 5�-GAGAAAAGT
TTACTACCCCCATAGAG-3� forward and 5�-GGCTGACTCCAGAA
TGAATGAA-3� reverse; Grk4 5�-GGTGCATTGAATTCTTGGATG-3�
forward and 5�-GGGACTTCTGACTTCTCTTTG-3� reverse; Nefh 5�-
TGCCGCTTACAGAAAGCTC-3� forward and 5�-GCGTGGATATGG
AGGGAATTT-3� reverse; Tlr2 5�-ACCTCAGACAAAGCGTCAAA-3�
forward and 5�-TTGCTGAAGAGGACTGTTATGG-3� reverse; Ptgs2
5�-CCAGAGCAGAGAGATGAAATAC-3� forward and 5�-TCCTTCT
CTCCTGTAAGTTCT-3� reverse; Ccl2 5�-CTCTCTTCCTCCACCACC
AT-3� forward and 5�-CGTTAACTGCATCTGGCTGAG-3� reverse;
Ccl3 5�-TTCTCTGTACCATGACACTCTGC-3� forward and 5�-CG
TGGAATCTTCCGGCTGTAG-3� reverse; Ccl9 5�-ATCACACATGCA
ACAGAGACA-3� forward and 5�-TGGAACCCCCTCTTGCTGAT-3�
reverse; Cd83 5�-GTTGCTCTTCTCTCTGGTTG-3� forward and 5�-
CTTGTTCCGTACCAGGTTTAG-3� reverse; Cd14 5�-CCACCGCTG
TAAAGGAAAGA-3� and 5�-CCAGAAGCAACAGCAACAAG-3� rev-
erse; and Cd52 5�-GGTTGTGATTCAGATACAAACAG-3� forward and
5�-GAGGTAGAAGAGGCACATTAAG-3� reverse. We used the stan-
dard curve method to quantify gene expression levels, which were nor-
malized to Gapdh expression. For analysis of Ctcf expression, n � 6
samples per genotype per tissue were used. For analysis of Tlr2, Ptgs2,
Ccl2, Ccl3, Ccl9, Cd83, Cd14, and Cd52, n � 8 samples per genotype were
used. For analysis of C1ql1, Ccl17, Tnfrsf12a, Grk4, and Nefh, n � 12
samples per genotype were used.

Microarray analysis. For microarray on RNA derived from whole hip-
pocampus tissue, RNA was amplified and reverse transcribed to cDNA
using the MessageAmpII kit (Life Technologies) according to the man-
ufacturer’s instructions. The amplified cDNA was then fluorescently la-
beled using the Kreatech ULS kit (Kreatech Diagnostics) according to the
manufacturer’s instructions. Labeled cDNAs were purified on QIAquick
PCR purification columns (Qiagen) and quantified using a NanoDrop
spectrophotometer. Then, the labeled cDNAs were hybridized to Agilent
Technologies mouse GE 4x44k v2 microarrays according to the manu-
facturer’s instructions. Slides were scanned on an Agilent Technologies
SureScan microarray scanner to detect fluorescence. Gridding and anal-
ysis of images was performed using Agilent Technologies Feature Extrac-
tion software version 11.5 (RRID:SCR_014963) and the resulting feature
(probe)-extracted .txt data for each sample was used for downstream
bioinformatic analysis as described below. For analysis of whole hip-
pocampus gene expression by microarray, we used three independent
biological replicates per genotype (Ctcf CKO and control). Each biolog-
ical replicate consisted of a pool of paired hippocampi from 3 individual
mice 3– 6 months of age. One Ctcf CKO biological replicate was hybrid-
ized twice to microarrays to generate a single technical replicate. Data
from both technical replicates were combined and averaged for down-
stream analysis. In a separate microarray experiment, RiboTag-derived
RNA from hippocampus (n � 4 individual Ctcf CKO;RiboTag and Con-
trol;RiboTag animals) was processed as described above, except for the
following: (1) RNA was amplified and reverse transcribed to cDNA using
the WTA2 Complete Whole Transcriptome Amplification Kit (Sigma-
Aldrich); and(2) labeled cDNAs were hybridized to Agilent Technologies
SurePrint G3 Mouse GE 8x60k microarrays. Microarray data from all
experiments described here was submitted to the ArrayExpress Reposi-
tory (RRID:SCR_002964; accession number pending; Parkinson et al.,
2007).

Bioinformatic analysis of microarray data. Microarray raw data were
normalized using IRON: iterative rank order normalization method
(Welsh et al., 2013) and analyzed in the R programming environment
using the software packages Bioconductor (Huber et al., 2015; RRID:
SCR_006442) and limma (Ritchie et al., 2015; RRID:SCR_010943). Re-
sults are expressed in terms of fold changes relative to controls and
unadjusted p-values. We used a less stringent cutoff of p � 0.05 because
we planned to do extensive wet-lab validation of the genes of interest,
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keeping in mind that FDR or multiple testing corrections can be too
restrictive. Genes with a �	1.5 fold change and p � 0.05 were further
analyzed for biological pathway enrichment using EnrichR (Chen et al.,
2013; RRID:SCR_001575). We report pathways and biological processes
with adjusted p � 0.05. To generate a profile for the non-neural compo-
nent, we compared the profiles of the whole hippocampus and RiboTag-
derived samples and “subtracted” the RiboTag-derived genelist from that
of the whole hippocampus.

Flow cytometry. We used flow cytometry to determine the composition
of inflammatory cells in the hippocampus and cortex of Ctcf CKO mice.
First, we isolated microglia from these brain regions, which were dis-
sected, dispersed in homogenization medium (RPMI 1640 medium;
Thermo Fisher catalog #11875085) plus 2% heat inactivated fetal bovine
serum and passed through a disposable 70 �m filter to remove debris.

Cells were pelleted by centrifugation at 400 � g for 6 min at 4C and
resuspended in 40% Percoll in homogenization media. This was carefully
layered upon 80% Percoll in homogenization media and centrifuged at
1000 � g for 20 min at 18C. The immiscible layer (containing the inflam-
matory infiltrate) was collected, washed in homogenization medium,
and centrifuged at 400 � g for 6 min at 4C to pellet the cells. The cells
were resuspended in flow cytometry buffer (Hanks’ balanced salt solu-
tion without calcium, magnesium, or phenol red; Thermo Fisher catalog
#14175079, �2% heat inactivated fetal bovine serum) and blocked
with 1:100 purified anti-mouse CD16/32 antibody (BioLegend cata-
log #101302, RRID:AB_312801). The cells were then incubated with
1:100 FITC anti-mouse CD45 antibody (BioLegend catalog #103108,
RRID:AB_312973) and 1:100 PE/Cy7 anti-mouse/human CD11b anti-
body (BioLegend catalog #101216, RRID:AB_312799) for 20 min at 4°C

Figure 1. Ctcf CKO mice have depletion of Ctcf mRNA and CTCF protein. A–C, Midsagittal brain section of tdTomato;Camk2a-Cre � mouse at birth (A) and at 3 weeks (B) and 6 weeks (C) of age.
D–F, Hippocampus of tdTomato;Camk2a-Cre � mouse at birth (D) and at 3 weeks (E) and 6 weeks (F ) of age. For A–F, Cre-dependent expression of floxed tdTomato reporter mice indicates Cre
activity. Note that no tdTomato fluorescence is visible at birth. By 6 weeks of age, bright red tdTomato-fluorescence is visible in areas where Camk2a-Cre is active, primarily in olfactory bulbs (olf),
cerebral cortex (cc), hippocampus (hc), and striatum (str), whereas tdTomato fluorescence is minimal in brainstem (br) and cerebellum (cb). In the hippocampus, tdTomato is prominent in CA1 (ca1)
and dentate gyrus (dg). Scale bars: A–C, 2.5 mm; D–F, 500 �m. G, H, Ctcf mRNA (normalized to Gapdh) was depleted from the hippocampus (n � 6/genotype, t test: t(10) � 3.516, **p � 0.0056;
G) and cerebral cortex (n � 6/genotype, t test: t(10) � 2.714, †p � 0.0218; H ) of Ctcf CKO mice compared with controls. For both tissues, the Ctcf CKO result is displayed relative to the control, which
is set to 1 for comparison. I, J, Representative Western blots of tissue lysates from control and Ctcf CKO mouse hippocampus (I ) and cerebral cortex (J ), which were probed for CTCF (top) and control
GAPDH (bottom). We found reduced levels of CTCF protein relative to GAPDH in both tissues from Ctcf CKO mice, where Camk2a-Cre is highly active. This is quantified in K for hippocampus (n �
18/genotype, Mann–Whitney U � 50, §p � 0.0002) and in L for cerebral cortex (n � 26/genotype, Mann–Whitney U � 125, ‡p � 0.0001). Values are plotted as means 	 SEM.
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protected from light. Samples were stained with SYTOX blue (Thermo
Fisher catalog #S348857) at a final concentration of 1 �M per the manu-
facturer’s instructions. Cells were analyzed on a FACScan 2 flow cytom-
eter (BD Biosciences) using a gating strategy similar to one described
previously to isolate microglia, myeloid, and lymphoid cells (Galatro et
al., 2017). All gating strategies incorporated size and doublet discrimination
based on forward and side scatter parameters. Data analysis was performed
using FlowJo (RRID:SCR_008520) version 10.4 for Macintosh.

Sholl analysis of microglial morphology. We performed Sholl analysis of
microglial morphology as described previously (Norris et al., 2014).
Briefly, we used confocal microscopy to collect full thickness 63� z-stack
images of CA1 hippocampus from 40-�m-thick brain sections that were
immunostained for Iba-1 and DAPI (as outlined above; n � 6 mice/
genotype, 25 image stacks per animal). Z-stacks were collected at 512 �
512 resolution with 3 frame averages for each color channel and 1 �m
z-step size. We used LASX software (Leica) to prepare a maximum in-
tensity projection image of the Iba-1 channel, which we thresholded and
exported to the Fiji build of ImageJ (RRID:SCR_002285). For each im-
age, we removed surrounding processes manually in Fiji, thereby isolat-
ing a total of 25 microglia per mouse. We used the line segment tool to
draw a line from the center of each soma to the tip of its longest process,
which provided the maximum process length. We used the Sholl analysis
plugin (Ferreira et al., 2014), with the first shell set at 10 �m and subse-
quent shells set at 5 �m step sizes, to determine intersections at each Sholl
radius. This also provided the critical radius (radius value with the high-
est number of intersections), the process maxiumum (the highest num-
ber of intersections regardless of radius value), and the number of
primary branches (intersections at the first Sholl radius). We measured
the soma size in Fiji and counted branch endpoints using the cell counter
plugin. Finally, we counted microglia per 63� image stack manually to
determine the mean number of microglia per high-power field.

Experimental design and statistical analysis. ANOVA models and t tests
were used to analyze the behavioral data. Repeated-measures ANOVA
(rmANOVA) models containing one between-subjects variable (geno-
type) and one within-subjects (repeated measures) variable (e.g., blocks
of trials, time blocks) were typically used to analyze certain variables
within the activity, spatial learning/memory, and social approach data-
sets. The Greenhouse–Geisser adjustment of � levels was used for all
within-subjects effects containing more than two levels to help protect
against violations of sphericity/compound symmetry assumptions un-
derlying rmANOVA models. Pairwise comparisons were also conducted
following relevant overall ANOVA effects and were considered signifi-
cant according to Bonferroni-corrected levels. This involved controlling
familywise error rates by dividing 0.05 by the exact number of compari-
sons that were conducted and using that criterion value to determine
significance. Planned within-subjects contrasts were also conducted
when appropriate. Data from measures within the sensorimotor battery
and some variables from the probe trial were analyzed with t tests. We
analyzed mouse weight, qRT-PCR, dendritic spine, flow cytometry, and
immunostaining data for NeuN, GFAP, and cleaved caspase-3 with two-
tailed t tests. Western blot data and immunostaining data for S100B,
Ki67, and CD68 did not follow a normal distribution and was analyzed
with the Mann–Whitney U test. We analyzed microglia intersections per
Sholl radius using an rmANOVA model with Greenhouse–Geisser ad-
justment, using genotype as the between-subjects variable and radius as
the within-subjects (repeated measures) variable. Other Sholl measure-
ments were evaluated with two-tailed t tests. Number, age, and sex of
animals used in individual experiments are noted above.

Results
To determine the effect of Ctcf KO in postnatal neurons, we bred
Ctcf CKO mice by crossing Ctcf loxP mice (Heath et al., 2008) with
Camk2a-Cre mice, which express Cre recombinase in excitatory
glutamatergic neurons of layer V cerebral cortex and CA1 hip-
pocampus under the control of the promoter for Camk2a, the
gene encoding �-calcium-calmodulin-dependent kinase II (Tsien et
al., 1996). We verified the appropriate Cre expression pattern by
crossing Camk2a-Cre mice with a reporter line carrying a Cre-

inducible allele of the cytoplasmic, membrane-targeted, red fluo-
rescent protein tdTomato (Gt(ROSA)26Sor tm9(CAG - tdTomato)Hze

mice; Madisen et al., 2010). At birth, the brains of the resulting
Gt(ROSA)26Sor tm9(CAG - tdTomato)Hze;Camk2a-Cre mice (hereafter,
tdTomato;Camk2a-Cre mice) had no discernible red fluores-
cence (Fig. 1A,D). By 3 weeks of age, tdTomato;Camk2a-Cre
mice had obvious red fluorescence visible in cortex and hip-
pocampus (Fig. 1B,E) and, by 6 weeks of age, red fluorescence
was robust in cortex and hippocampus (Fig. 1C,F), consistent
with previous reports of the chronology of Camk2a-Cre activity
(Tsien et al., 1996).

Next, we used qRT-PCR to characterize Ctcf expression levels
in the hippocampus (Fig. 1G) and cerebral cortex (Fig. 1H) of
Ctcf CKO mice, where Camk2a-Cre was highly expressed, as well
as in controls (n � 6 per genotype per tissue). Ctcf expression was
reduced in both tissues in Ctcf CKO mice (Fig. 1G; hippocampus:
t test, t(10) � 3.516, **p � 0.0056; Fig. 1H; cerebral cortex: t test,
t(10) � 2.714, †p � 0.0218). CTCF protein levels also were visibly
diminished in lysates from Ctcf CKO hippocampus (Fig. 1I) and
cerebral cortex (Fig. 1J) compared with the internal control pro-
tein GAPDH. We confirmed this difference by quantifying CTCF
and GAPDH protein levels in hippocampus (Fig. 1K, n � 18/
genotype, Mann–Whitney U � 50, §p � 0.0002) and cerebral
cortex (Fig. 1L, n � 26/genotype, Mann–Whitney U � 125, ‡p �
0.0001). Therefore, we found reductions of Ctcf mRNA and
CTCF protein in Ctcf CKO mouse hippocampus and cerebral
cortex, both brain regions with high Camk2a-Cre activity.

Ctcf CKO mice were viable for at least 1 year of life, the longest
time period at which we evaluated them. The body mass of adult
(3–5 months old) Ctcf CKO mice was similar to controls (data
not shown, n � 30/genotype, t test, t(58) � 0.3821, p � 0.7038).
Likewise, the brain mass of adult (3–4 months old) Ctcf CKO mice
was similar to controls (data not shown, n � 18/genotype, t test,
t(34) � 0.2167, p � 0.8298). At 1 year of age, in contrast to con-
trols, Ctcf CKO mice displayed hindlimb clasping, a sign of upper
motor neuron dysfunction in the CNS (Guyenet et al., 2010).

To determine whether Ctcf CKO mice had deficits of motor
performance, we evaluated them on a 1 h locomotor activity test
and a battery of 7 sensorimotor tests (Wozniak et al., 2004). In the
1 h locomotor activity test, the adult (3– 4 months old) Ctcf CKO
mice showed a trend toward higher levels of ambulatory activity
during the entire 1 h test, although rmANOVA showed that the

Figure 2. Locomotor activity levels in adult Ctcf CKO mice. The general ambulatory (horizon-
tal) activity of adult (3– 4 months old) Ctcf CKO (n � 9) and control (n � 10) mice was evalu-
ated over a 1 h period. The Ctcf CKO mice tended to have more total ambulations (whole-body
movements) across the test session compared with the control group and a significant geno-
type � time interaction (*p � 0.037) suggested that these differences varied with time. Both
control and Ctcf CKO groups showed significant decreases in activity from block 1 versus block 6
(§p � 0.00005 and †p � 0.022, respectively). Values are plotted as means 	 SEM.
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main effect of genotype was not significant (Fig. 2; F(1,17) � 4.16,
p � 0.057). However, the analysis revealed a genotype � time
interaction (Fig. 2; F(5,85) � 3.86, *p � 0.037), where differences
were greatest during block 6 (p � 0.028), although these differ-
ences were not significant according to Bonferroni correction
(p � 0.05/6 � 0.0083). In addition, the control and Ctcf CKO
groups each showed significant decreases in activity from block 1
versus block 6 (Fig. 2; †p � 0.00005 and §p � 0.022, respectively).
In addition, we found no differences between the adult Ctcf CKO
mice and controls with respect to rearing frequency or center-of-
the field variables, including time spent, distance traveled, or
number of entries in the center of the test arena (data not shown),
suggesting comparable levels of emotionality. Results from test-
ing the adolescent (6 – 8 weeks old) mice on the 1 h locomotor
activity test showed that the Ctcf CKO mice and controls did not
differ significantly on any of the dependent variables (Table 1).

We further evaluated Ctcf CKO mice for deficits in balance,
strength, movement initiation, agility, and fine motor coordina-
tion with a battery of seven sensorimotor tests (listed in Table 2).
Adult Ctcf CKO and control mice performed similarly on all three
screen tasks. These results and the finding that they showed sim-
ilar latencies to initiate movement suggest that the Ctcf CKO were
not impaired in strength, agility, or in executing basic move-
ments. However, the Ctcf CKO did exhibit deficits during tasks
requiring balance and fine motor coordination. Specifically, the
Ctcf CKO mice spent significantly less time balancing on a nar-
row, elevated Plexiglas ledge (Table 2; t(17) � 2.90, *p � 0.010)
and on an elevated small circular platform (Table 2; t(17) � 3.80,
**p � 0.001) compared with controls. In addition, adult Ctcf
CKO mice took significantly longer times to climb down an ele-
vated pole (Table 2; t(17) � 2.25, *p � 0.038), which requires fine
motor coordination between the forelimbs and hindlimbs. Un-

like adult animals, adolescent Ctcf CKO mice performed as well as
controls on all sensorimotor measures except the pole test, dur-
ing which adolescent Ctcf CKO mice were slower to descend
(Table 1). Therefore, at 3– 4 months of age, the Ctcf CKO mice
exhibited a normal activity level and normal strength, but dis-
played subtle deficits in balance and fine motor coordination.

We evaluated Ctcf CKO mice for deficits of spatial learning
and memory by testing them in the MWM (Morris, 1981) and
found that adult (3– 4 months old) Ctcf CKO mice had severe
performance impairments (Fig. 3, Table 3; the table contains
inferential statistics for cued and place trials). A two-way rmANOVA

Table 1. Behavioral results from adolescent Ctcf CKO mice and controls

Test/variable df F-ratio p-value Ctcf CKO mice (mean 	 SEM) Control mice (mean 	 SEM)

1 h Locomotor activity
Total ambulations 1,18 0.051 0.824 3910.50 	 323.54 4025.70 	 394.03
Number of rears 1,18 0.439 0.516 494.90 	 75.02 554.60 	 49.86
Distance in center area (cm) 1,18 0.021 0.886 3154.100 	 376.97 3085.40 	 287.81
Time in center area (s) 1,18 0.083 0.776 526.70 	 85.54 488.79 	 99.56
Entries into center area 1,18 0.139 0.714 199.20 	 23.87 210.50 	 18.66

Sensorimotor battery
Walk initiation (s) 1,18 0.077 0.784 2.01 	 0.24 2.13 	 0.38
Time on ledge (s) 1,18 0.012 0.915 37.44 	 6.02 38.32 	 5.52
Time on platform (s) 1,18 3.97 0.062 39.01 	 4.71 52.65 	 4.97
Time to descend pole (s) 1,18 5.223 0.035* 20.20 	 2.68 47.74 	 11.75
60° screen time to top (s) 1,18 1.931 0.182 18.05 	 3.39 25.73 	 4.37
90° screen time to top (s) 1,18 0.057 0.815 28.31 	 6.58 26.34 	 5.02
Time on inverted screen (s) 1,18 2.25 0.151 56.66 	 2.23 60.00 	 0.00

Morris water maze trials ANOVA results
Cued, escape path length (cm) g: F(1,18) � 0.307, p � 0.587, b: F(3,54) � 61.358, ***p � 0.001, g � b: F(3,54) � 0.315, p � 0.741
Cued, escape latency (s) g: F(1,18) � 1.231, p � 0.282, b: F(3,54) � 66.530, ***p � 0.001, g � b: F(3,54) � 0.491, p � 0.619
Cued, swim velocity (cm/s) g: F(1,18) � 0.275, p � 0.607, b: F(3,54) � 14.114, ***p � 0.001, g � b: F(3,54) � 0.119, p � 0.907
Place, escape path length (cm) g: F(1,18) � 2.261, p � 0.150, b: F(3,54) � 16.482, ***p � 0.001, g � b: F(3,54) � 1.202, p � 0.318
Place, escape latency (s) g: F(1,18) � 5.392, *p � 0.032, b: F(4,72) � 9.942, ***p � 0.001, g � b: F(4,72) � 1.968, p � 0.132
Place, swim velocity (cm/s) g: F(1,18) � 3.821, p � 0.067, b: F(4,72) � 16.276, ***p � 0.001, g � b: F(4,72) � 1.890, p � 0.147
Probe, time in target quadrant (s) g: F(1,18) � 0.014, p � 0.907
Probe, platform crossings g: F(1,18) � 450, p � 0.511

Shown are results from testing adolescent Ctcf CKO and control mice on a 1 h locomotor activity test, a battery of seven sensorimotor measures, and the Morris water maze. The first column lists the tests conducted and the variables that were
analyzed. The second, third, and fourth columns list the degrees of freedom (df), F-ratios, and p-values from ANOVAs conducted on the data, respectively. Columns 5 and 6 list the means 	 SEM for each variable from the Ctcf CKO and control
groups, respectively. The groups did not differ significantly on any of the locomotor activity variables. The groups also performed similarly on the sensorimotor measures except for the pole test, on which the adolescent Ctcf CKO mice exhibited
significantly impaired performance. The two groups also performed similarly on all of the variables from the cued, place, and probe trials from the Morris water maze test except for escape latency during the place condition, which may have
been affected by differences in swimming speeds.

g, Genotype effect; b, block effect; g � b, genotype � block interaction.

*p � 0.05, ***p � 0.001.

Table 2. Performance on a battery of sensorimotor tests of adult Ctcf CKO mice and
controls

Test
Control
(mean 	 SEM)

Ctcf CKO
(mean 	 SEM)

t statistic
(df � 17) p-value Significance

60° inclined screen 30.40 	 5.30s 27.10 	 6.96 s 0.382 0.707 NS
90° inclined screen 32.90 	 5.27s 30.57 	 5.39 s 0.308 0.762 NS
180° inverted screen 58.85 	 0.77s 53.67 	 3.13 s 1.688 0.110 NS
Walking initiation 3.18 	 0.83s 7.40 	 3.24 s �1.322 0.203 NS
Ledge 55.60 	 2.94s 38.53 	 5.28 s 2.904 0.010 *
Elevated platform 51.00 	 3.49s 29.77 	 4.43 s 3.804 0.001 **
Elevated pole 46.47 	 7.55s 77.11 	 11.68s �2.250 0.038 *

Adult Ctcf CKO mice have impaired balance and fine motor coordination in tests of sensorimotor function. Behavioral
performance of the adult (3– 4 months old) Ctcf CKO (n �9) and control (n �10) mice was evaluated on the battery
of sensorimotor tests. The first column lists the behavioral test conducted. The second and third columns list the
means	SEM for controls and Ctcf CKO mice, respectively. The fourth column lists the p-value obtained for Student’s
t test using t(17) degrees of freedom (df). The last column indicates the degree of statistical significance. Time to fall
from a mesh screen oriented at 60°, 90°, and 180° (inverted) was similar between Ctcf CKO and control mice. Animals
of both genotypes had similar latency to initiate walking. Ctcf CKO mice had difficulty with: balancing on a narrow
ledge (t(17) *p �0.010); balancing on a small, circular, elevated platform (t(17) **p �0.001), and climbing down an
elevated pole (t(17) *p � 0.038).

NS, Not significant.

*p � 0.05, **p � 0.01.
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of the path length data from the cued (visible platform location)
trials (Fig. 3A) yielded a significant genotype � blocks of trials
interaction (Fig. 3A; *p � 0.029), but this effect appeared to be
due mainly to significantly longer path lengths for the Ctcf CKO
mice for only block 3 (p � 0.009). Moreover, within-subjects
contrasts indicated that both groups exhibited significantly de-
creased path lengths across the cued trials (Fig. 3A; block 1 vs
block 4; † and §p � 0.00005 for each group), suggesting that both
the Ctcf CKO and control mice showed evidence of learning to
swim to the cued platform locations. rmANOVA of the escape
latency data (Fig. 3B) revealed a significant genotype effect (Fig.
3B; **p � 0.004), but analysis of the swim velocity data (Fig. 3C)
showed that the latency data were artifactually exaggerated by
significantly slower swimming velocities on the part of the Ctcf

CKO mice across the blocks of trials (Fig. 3C; genotype effect,
***p � 0.0003). Therefore, although the slower swimming veloc-
ities of the Ctcf CKO mice confirmed the results from the senso-
rimotor battery showing possible fine motor coordination
deficits, the results suggest that this functional disturbance had
minimal effects on the cued learning of the Ctcf CKO group as
indexed by the path length variable.

Analysis of the data from the place trials showed robust acqui-
sition deficits (Fig. 3D) in the Ctcf CKO mice compared with the
control group in terms of path length, (Fig. 3D; genotype effect:
***p � 0.0009), with the greatest differences occurring during
blocks 4 and 5 (p � 0.0004 and p � 0.0005, respectively). Impor-
tantly, the control group showed a significant decrease in path
length across blocks of trials (Fig. 3D; block 1 vs block 5: §p �

Figure 3. Adult Ctcf CKO mice exhibit severe deficits in spatial learning and memory in the MWM. Adult (3– 4 months old) Ctcf CKO (n � 9) and control (n � 10) mice were evaluated in the MWM
to assess spatial learning and memory. A, rmANOVA of the path length data from the cued trials revealed a significant genotype � blocks of trials interaction (*p � 0.029), but path lengths were
significantly increased in the Ctcf CKO mice for only block 3 ( p � 0.009). Moreover, path lengths were significantly reduced across the cued trials (block 1 vs block 4; † and §p � 0.00005 for each
group), suggesting that both the Ctcf CKO and control mice showed evidence of cued learning. B, rmANOVA of the escape latency data revealed a significant main effect of genotype (**p � 0.004),
but this effect was confounded by differences between the groups in swimming velocities (C) thus making the use of latency as a performance variable inappropriate. C, Analysis of the swim velocity
data showing that the Ctcf CKO mice were significantly slower on average across the blocks of trials (genotype effect: ***p � 0.0003), with significant differences being observed for blocks 2 ( p �
0.003), 3 ( p � 0.003), and 4 ( p � 0.0001). D, Analysis of the place (spatial learning) trials revealed severe acquisition deficits in the Ctcf CKO mice compared with the control group in terms of path
length, (genotype effect: ***p � 0.0009). Importantly, the control group showed a significant decrease in path length across blocks of trials (block 1 vs block 5: §p � 0.0001), whereas the Ctcf CKO
mice did not show improved performance during acquisition training, suggesting that the control mice learned the location of the hidden platform, whereas the Ctcf CKO mice failed to do so.
Significant between-groups differences were observed for blocks 4 ( p � 0.0004) and 5 ( p � 0.00005). E, Similar findings were observed with regard to escape latency (genotype effect: **p �
0.001) although this effect was confounded once more by the Ctcf CKO group again displaying significantly decreased swimming velocities (F, genotype effect: *p � 0.014; block 3: p � 0.007).
G, H, Retention performance of the Ctcf CKO mice was also profoundly impaired during the probe trial, where they made significantly fewer platform crossings (***p � 0.0006; G) and spent
significantly less time in the target quadrant (**p � 0.003; H ) compared with controls. I, Control group exhibited spatial bias for the target quadrant by spending significantly more time in it versus
the times spent in each of the other quadrants (**p � 0.004), indicating that they learned and retained the hidden platform location, whereas the Ctcf CKO mice did not. Values are plotted as
means 	 SEM. For the cued and place trials, p-values for relevant individual pairwise comparisons between genotypes are shown within parentheses for individual blocks.
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0.0001), whereas the Ctcf CKO mice did not, but rather exhibited
similar path lengths throughout acquisition training, suggesting
that the control mice learned the location of the hidden platform
whereas the Ctcf CKO mice failed to do so. Similar findings were
observed with regard to escape latency, although differences were
spuriously increased (Fig. 3E) because the Ctcf CKO group again
showed significantly decreased swimming velocities compared
with the control mice (Fig. 3F).

Consistent with the place learning results, the retention per-
formance of the Ctcf CKO mice was impaired profoundly across
all three dependent variables analyzed from the probe trial. Spe-
cifically, the Ctcf CKO group made significantly fewer platform
crossings (Fig. 3G; t(17) � 4.17: ***p � 0.0006) and spent signif-
icantly less time in the target quadrant (Fig. 3H; t(17) � 3.46:
**p � 0.003) compared with controls. Moreover, within-subjects
contrasts showed that the control group exhibited spatial bias for
the target quadrant by spending significantly more time in it
versus the times spent in each of the other quadrants (Fig. 3I;
**p � 0.004), whereas the Ctcf CKO mice did not. In summary,
the 3- to 4-month-old Ctcf CKO mice exhibited severe spatial
learning and memory impairments to the degree that there was
no evidence that any learning had occurred in these mutant mice.
Although the Ctcf CKO had significantly slower swimming veloc-
ities that may have affected their MWM performance, the lack of
differences in path length during the cued trials suggest that the
spatial learning and memory deficits were likely cognitive in na-
ture rather than the result of nonassociative influences.

In contrast to the severe spatial learning and memory deficits
exhibited by the 3- to 4-month-old Ctcf CKO mice, the adoles-

cent Ctcf CKO mice did not show convincing evidence of impair-
ments during MWM testing relative to the control group (Table
1). Specifically, no significant effects involving genotype were
found for any of the MWM variables with the exception of escape
latency during the place condition (*p � 0.032; Table 1). How-
ever, no significant differences were observed for the path length
data during the place trials and no differences were found for any
of the probe trials variables, suggesting that the escape latency
findings may have been affected by differences in swimming
speeds.

We assessed Ctcf CKO mice for potential deficits in sociability
by quantifying investigatory behaviors during the social ap-
proach test (Dougherty et al., 2013; Silverman et al., 2011; Moy et
al., 2004). During habituation, in which no conspecific (stimulus
mouse) was present, both Ctcf CKO and control mice tended to

Figure 4. Adult Ctcf CKO mice exhibit decreased levels of sociability in the social approach
test. Potential disturbances in sociability were assessed by quantifying investigatory behaviors
during the social approach test. A, During the habituation trial, both the Ctcf CKO (n � 9) and
control mice (n � 10) tended to explore the target zone surrounding the withholding cage that
would later contain the stimulus mouse compared with the withholding cage that would re-
main empty during the test trial, but statistical analysis of the data yielded no significant effects
involving genotype. B, In the test trial, control mice, but not Ctcf CKO mice, spent more time
exploring the target investigation zone surrounding the withholding cage containing the stim-
ulus mouse and less time exploring the zone surrounding the empty withholding cage. This was
documented by a significant genotype � zone interaction (*p � 0.020) and planned compar-
isons showing that the control mice spent significantly more time in the investigation zones
surrounding the stimulus mouse compared with the one surrounding the empty withholding
cage (***p � 0.0004), whereas the Ctcf CKO group showed no differences in zone times.
C, During habituation, latencies to enter both investigation zones were similar between geno-
types. D, However, during the test trial, Ctcf CKO mice had significantly longer latencies, on
average, to enter the two investigation zones surrounding the withholding cages (genotype
effect: *p � 0.027). This effect was primarily due to increased zone latencies in the Ctcf CKO
mice compared with controls for the target zone around the stimulus mouse withholding cage
(§p � 0.017). Data are shown as means 	 SEM.

Table 3. Results of repeated-measures ANOVA on Morris water maze data from Ctcf
CKO mice and controls

Comparison
df (numerator;
denominator) F-ratio p-value Significance

Cued trials: escape path length
Genotype 1; 17 1.45 0.244 NS
Blocks 3; 51 37.7 �0.00005 ****
Genotype � blocks 3; 51 3.42 0.029 *

Cued trials: escape latency
Genotype 1; 17 11.1 0.004 **
Blocks 3; 51 41.4 �0.00005 ****
Genotype � blocks 3; 51 2.3 0.097 NS

Cued trials: swim velocity
Genotype 1; 17 20.8 0.0003 ***
Blocks 3; 51 3.69 0.025 *
Genotype � blocks 3; 51 2.91 0.055 NS

Place trials: escape path length
Genotype 1; 17 16.2 0.0009 ***
Blocks 4; 68 4.53 0.005 **
Genotype � blocks 4; 68 2.58 0.055 NS

Place trials: escape latency
Genotype 1; 17 15.8 0.001 **
Blocks 4; 68 3.21 0.029 *
Genotype � blocks 4; 68 1.36 0.26 NS

Place trials: swim velocity
Genotype 1; 17 7.45 0.014 *
Blocks 4; 68 3.56 0.022 *
Genotype � blocks 4; 68 2.04 0.12 NS

The Morris water maze was used to test spatial learning/memory in adult (3– 4 months old) Ctcf CKO (n � 9) and
control (n � 10) mice and repeated-measures ANOVA (rmANOVA) was performed on the data collected. The first
column lists the comparison data for which the rmANOVA was performed. The second column lists the degrees of
freedom (df). The third column lists the F-ratio. The fourth column lists the p-value. The final column indicates the
degree of statistical significance.

NS, Not significant.

*p � 0.05, **p � 0.01, ***p � 0.001, ****p � 0.0001.
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Figure 5. Brain neuroanatomy of Ctcf CKO mice is grossly normal. A, B, Nissl (cresyl violet) staining of brain from control animals (A) and Ctcf CKO animals (B) demonstrating typical
neuroanatomic structures in mice of both genotypes. C, D, Timm’s silver sulfide staining of brain from control animals (C) and Ctcf CKO animals (D) was also similar. E, F, NeuN staining for neurons
was similar in the cerebral cortex of control animals (E) and Ctcf CKO animals (F; quantitated in Q). G, H, GFAP staining for astrocytes was similar in the cerebral cortex of control animals (G) and Ctcf
CKO animals (H; quantitated in R). I, J, Staining for the astrocyte marker S100B was also similar in the cortex of control animals (I ) and Ctcf CKO mice (J; quantitated in S). K, In CA1 hippocampus, NeuN
staining was similar between control and (L) Ctcf CKO animals (quantitated in T ). M, N, GFAP staining in CA1 hippocampus was similar between control animals (M ) and Ctcf CKO mice (N; quantitated
in U ). O, P, S100B staining in CA1 hippocampus also was similar between control animals (O) and Ctcf CKO animals (P; quantitated in V ). Images in E–P are counterstained with the nuclear indicator
DAPI. Scale bars: A–D, 1 mm; E–J, 75 �m; K–P, 300 �m. In Q–V, we quantified the percentage area of CA1 hippocampus and cortex stained with each antibody (n � images from at least 3 animals
per genotype). All quantitative comparisons were nonsignificant (NS) as follows: NeuN cortex (n � 24 images/genotype, t test: t(46) � 0.6865; p � 0.4958; Q); GFAP cortex (n � 12 images/
genotype, t test: t(22) � 0.9306; p � 0.3621; R); S100B cortex (n � 8 images/genotype, Mann–Whitney U � 18, p � 0.1605; S); NeuN CA1 hippocampus (n � 13 CKO and 12 control images, t test:
t(23) � 1.08, p � 0.2912; T ); GFAP CA1 hippocampus (n � 12 images/genotype, t test: t(22) � 0.5123, p � 0.6136; U ); and S100B CA1 hippocampus (n � 6 CKO and 7 control images,
Mann–Whitney U � 15, p � 0.4452; V ). Therefore, we found the density of neurons and astrocytes in the brains of Ctcf CKO and control mice to be similar. Data are shown as means 	 SEM.
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explore the target zone surrounding the
withholding cage that would later contain
the stimulus mouse compared with the
withholding cage that would remain
empty, but analysis of the data did not
yield any significant effects involving ge-
notype (Fig. 4A). However, when a stim-
ulus mouse was introduced into the target
withholding cage for the test trial, only
controls preferred to investigate it (Fig.
4B). This was documented by a significant
genotype � zone interaction effect (Fig. 4B;
F(1,17) � 6.55, *p � 0.020), followed by
planned within-subjects comparisons
showing that the control mice spent sig-
nificantly more time in the investigation
zones surrounding the stimulus mouse
compared with the one surrounding the
empty withholding cage (Fig. 4B; ***p �
0.0004), whereas the Ctcf CKO group
showed no differences in zone times. La-
tencies to enter both investigation zones
were similar during habituation (Fig. 4C),
but, during the test trial (Fig. 4D), Ctcf
CKO mice had significantly longer laten-
cies, on average, to enter the two investi-
gation zones (Fig. 4D; genotype effect:
F(1,17) � 5.82, *p � 0.027). This effect was
mostly due to significantly increased zone
latencies in the Ctcf CKO mice compared with the control group
for the target zone around the stimulus mouse, (Fig. 4D; F(1,17) �
7.04, §p � 0.017). Therefore, although there were no significant
genotype effects concerning the test trial variables, the results of
planned comparison suggested that 3- to 4 month-old Ctcf CKO
mice exhibit reduced levels of social interaction with a conspe-
cific, possibly indicating abnormally low levels of sociability.

Hippocampal seizures impair spatial learning and sociability
in rodents (Gilbert et al., 2000; Krishnan et al., 2017). Therefore,
we performed EEG recording of adult Ctcf CKO and control mice
(n � 6 per genotype, 6 weeks of continuous monitoring per ani-

mal) to screen for seizure activity. No seizures were detected in
Ctcf CKO mice (data not shown).

After our behavioral phenotyping of Ctcf CKO mice, we per-
formed detailed histological analyses of their brains. We used
adult mice that were 3– 4 months old, the same age at which we
identified behavioral abnormalities. Nissl staining of neuronal
cell bodies was similar between Ctcf CKO mice and controls,
indicating that gross neuroanatomical structures were preserved
in Ctcf CKO mice (Fig. 5A,B). The pattern of Timm silver sulfide
staining (Danscher and Zimmer, 1978) was similar between Ctcf
CKO and control mice (Fig. 5C,D), indicating that the overall

Figure 6. Ctcf CKO mice have normal levels of cell birth and cell death. A, B, Immunostaining for Ki67, an antigen marker of proliferating cells, in control (A) and Ctcf CKO (B) mouse dentate gyrus.
C, Quantification of Ki67 � cells based on manual counting of 40-�m-thick brain sections. Most positive cells were present in the dentate gyrus in both groups (n � 63 control sections, n � 53 Ctcf
CKO sections, Mann–Whitney U � 1465, p � 0.2547). D, E, Immunostaining for cleaved caspase-3, an antigen marker of apoptotic cells, in control (D) and Ctcf CKO (E) mouse dentate gyrus. Positive
cells were rare. Dentate gyrus is shown for comparison with Ki67 above. F, Quantification of cleaved caspase-3 � cells based on manual counting of 40-�m-thick brain sections (n � 12
sections/genotype, t test: t(22) � 1.749, p � 0.0942). Main panel images were taken at 20� magnification. Scale bars, 500 �m. Arrowheads indicate areas of interest depicted in inset images.
Insets were taken at 63� magnification. Scale bars, 25 �m. NS, Not significant. Data are shown as means 	 SEM.

Figure 7. Ctcf CKO mice have decreased dendritic spine density in CA1 hippocampus and cerebral cortex. Individual proximal
dendrites from adult (3 months old) control and Ctcf CKO mice carrying a Thy1-YFP allele were imaged with a confocal microscope.
The number of dendritic spines (n � 3 animals/genoype, 50 dendrites/animal for hippocampus, 28 –32 dendrites/animal for
cortex) in each image was quantified. Representative dendrites from layer V of the cerebral cortex of control (A) and Ctcf CKO (B)
mice are displayed. C, Ctcf CKO mice had fewer spines per micron than controls in the cerebral cortex (20% reduction, t test: t(179) �
5.533, ****p � 0.0001). Representative dendrites from the CA1 hippocampus of control (D) and Ctcf CKO (E) mice are displayed.
F, Ctcf CKO mice also had fewer spines per micron than controls in the CA1 hippocampus (15% reduction, t test: t(298) � 6.731,
****p � 0.0001). Data are shown as means 	 SEM.
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anatomy of synaptic vesicle-containing nerve fiber tracts was pre-
served. We performed immunostaining on brain sections from
Ctcf CKO and control mice (n � 3 mice/genotype) and evaluated
cerebral cortex for the neuron-specific antigen NeuN (Fig. 5E,F;
n � 24 images/genotype) and the astrocyte antigens GFAP (Fig.
5G,H; n � 12 images/genotype) and S100B (Fig. 5 I, J; n � 8
images/genotype). We quantified the percentage area of each sec-
tion stained by each antibody and found no significant differ-
ences between genotypes (Fig. 5Q–S; NeuN: t test, t(46) � 0.6865,

p � 0.4958; GFAP: t test, t(22) � 0.9306; p � 0.3621; and S100B:
Mann–Whitney U � 18, p � 0.1605). Similarly, we evaluated
CA1 hippocampus from sections immunostained for NeuN (Fig.
5K,L; n � 13 CKO and 12 control images), GFAP (Fig. 5M,N;
n � 12 images/genotype), and S100B (Fig. 5O,P; n � 6 CKO and
7 control images). Again, quantification of the area stained by
each antibody revealed no differences between genotypes (Fig.
5T–V; NeuN: t test, t(23) � 1.08, p � 0.2912; GFAP: t test, t(22) �
0.5123, p � 0.6136; and S100B: Mann–Whitney U � 15, p �

Figure 8. Ctcf CKO mice have increased expression of inflammation-related genes in the hippocampus. mRNA was isolated from the hippocampus of control and Ctcf CKO mice and hybridized to
Agilent Technologies 4x44k v2 mouse microarrays (n � 3 samples/genotype, see methods for details). A, Enrichr analysis of upregulated genes from Ctcf CKO mouse hippocampus identified
enrichment for 19 gene ontology (biological process) terms related to inflammation. Each bar is labeled with its computed Benjamini–Hochberg adjusted p-value and the bar length corresponds to
the magnitude of the Enrichr combined score. B, qRT-PCR for inflammation-related genes on hippocampal mRNA (n � 8 samples/genotype) confirmed significant upregulation of genes Tlr2
(2.8-fold upregulated, t test: t(14) � 3.762, **p � 0.0021), Ptgs2 (encoding COX2; 1.3-fold upregulated, t test: t(14) � 2.57, *p � 0.0222), Ccl2 (encoding MCP-1; 2.4-fold upregulated,
t test: t(14) � 3.033 **p � 0.0089), Ccl3 (3.5-fold upregulated, t test: t(14) � 6.259, ****p � 0.0001), Ccl9 (2.0-fold upregulated, t test: t(14) � 2.634, *p � 0.0196), Cd83 (1.5-fold upregulated,
t test: t(14) � 5.378, ****p � 0.0001), Cd14 (2.6-fold upregulated, t test: t(14) � 4.461, ***p � 0.0005), and Cd52 (2-fold upregulated, t test: t(14) � 3.545, **p � 0.0032). Data are shown as
means 	 SEM.
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0.4452). Overall, we found that Ctcf CKO and control mouse
brains have similar structural features, including equivalent com-
plements of neurons and astrocytes.

We also evaluated cell turnover in Ctcf CKO and control mice
(n � 3 mice/genotype) by immunostaining for Ki67, a marker of
dividing cells (Fig. 6A,B; n � 63 control sections, n � 53 Ctcf
CKO sections), and cleaved caspase-3, a marker of cell death (Fig.
6D,E; n � 12 sections/genotype). There were no significant dif-
ferences between Ctcf CKO mice and controls with regard to
either the number of Ki67� cells/section (Fig. 6C; Mann–Whit-
ney U � 1465, p � 0.2547) or the number of cleaved caspase-3�

cells/section (Fig. 6F; t test: t(22) � 1.749, p � 0.0942). In sum-
mary, cell turnover was similar between Ctcf CKO and control
mice.

Dendritic spines are the anatomic structures where most syn-
apses occur on gluatamatergic neurons (Alvarez and Sabatini,
2007). Decreased dendritic spine number is observed in animal
models of neurodevelopmental disorders including ASD and in-
tellectual disability (Martínez-Cerdeño, 2017). Ctcf;Nex-Cre con-
ditional KO mice have decreased spine number (Hirayama et al.,
2012) and we suspected that Ctcf CKO mice harbored a similar
abnormality given their behavioral phenotype. To evaluate den-
dritic spines in Ctcf CKO mice, we intercrossed them with mice
carrying a Thy1-YFP transgene and visualized microscopically
brain sections from Ctcf CKO;Thy1-YFP mice and controls car-
rying the Ctcf loxP and Thy1-YFP alleles in the absence of Cre.
Compared with controls, Ctcf CKO mice had a significant reduc-
tion in dendritic spine density in both layer V of the cerebral
cortex (Fig. 7A–C; t test, t(179) � 5.533, ****p � 0.0001) and CA1
hippocampus (Fig. 7D–F; t test, t(298) � 6.731 ****p � 0.0001),
the two regions where Camk2a-Cre is primarily expressed. There-
fore, Ctcf CKO mice have decreased numbers of dendritic spines
in brain regions deficient for CTCF, similar to Ctcf;Nex-Cre con-
ditional KO mice and reminiscent of neuropathologic changes
observed in human disorders linked to cognitive dysfunction.

We went on to characterize gene expression in Ctcf CKO mouse
hippocampus by performing microarray analysis of mRNA isolated
from pooled tissue from Ctcf CKO mice and controls (n � 3 sam-
ples/genotype). We identified 367 upregulated genes and 148
downregulated genes (p � 0.05, fold change �	1.5) in Ctcf CKO
hippocampus, including Ctcf. We used the EnrichR bioinformat-
ics tool (Chen et al., 2013) to explore gene ontology– biological
process (GO-BP) terms enriched in our list of upregulated genes
(Fig. 8A). Suprisingly, most of the significant terms that we iden-
tified (45% or 19/42) were related to inflammation, including the
overall second-ranked term, regulation of leukocyte migration
(GO:0002685; p � 0.0030).

We used qRT-PCR to independently confirm overexpression
of inflammation-related genes identified by our bioinformatics
analysis (Fig. 8B), including: Tlr2, encoding toll-like receptor 2,
which activates brain microglia (t test, t(14) � 3.762, **p � 0.0021;
HaywardandLee,2014),andPtgs2,encodingprostaglandin-endo-
peroxide synthase 2/COX2, which synthesizes inflammatory
prostaglandins (t test, t(14) � 2.57, *p � 0.0222; Minghetti, 2004).
We also confirmed overexpression of genes encoding secreted
inflammatory proteins called chemokines (Miller et al., 2008),
including: Ccl2, encoding C-C motif chemokine ligand 2/MCP-1
(t test, t(14) � 3.033 **p � 0.0089); Ccl3, encoding C-C motif
chemokine ligand 3 (t test, t(14) � 6.259, ****p � 0.0001); and
Ccl9, encoding C-C motif chemokine ligand 9 (t test, t(14) �
2.634, *p � 0.0196). We further confirmed overexpression of
microglia markers, including: Cd83, encoding CD83 antigen
(t test, t(14) � 5.378, ****p � 0.0001; Fujimoto and Tedder, 2006);

Cd14, encoding CD14 antigen (t test, t(14) � 4.461, ***p �
0.0005; Becher et al., 1996); and Cd52, encoding CD52 antigen (t
test, t(14) � 3.545, **p � 0.0032; Chatterjee et al., 2014). The
enrichment of inflammation-related genes in Ctcf CKO mouse hip-
pocampus suggested to us that immune dysfunction might con-
tribute to the phenotype of these animals given the role of
inflammation in neurodevelopmental disorders such as ASD (Es-
tes and McAllister, 2015).

Next, we sought to assess the transcriptional profile of Camk2a-
expressing cells to distinguish altered gene expression specific to
Ctcf-deficient neurons from secondary changes in non-neuronal
cells. To this end, we intercrossed Ctcf CKO and RiboTag mice
(Sanz et al., 2009), which express a hemagglutinin-tagged version
of ribosomal protein Rpl22 in cells expressing Cre-recombinase.
We performed affinity purification of HA-tagged ribosomes and
associated mRNA from Camk2a-Cre expressing cells in the hip-
pocampus of Ctcf CKO;RiboTag and Camk2a-Cre;RiboTag con-
trol mice (n � 4 individual animals per genotype) and analyzed
differential gene expression by microarray. We identified 312
upregulated and 167 downregulated genes (p � 0.05, fold change
�	1.5). We analyzed the list of upregulated genes to identify
ones capable of triggering increased expression of inflammation-
related genes, such as those observed in whole hippocampus. We
used qRT-PCR to independently confirm overexpression of four
such genes in Ctcf CKO;RiboTag samples (Fig. 9), including:
C1ql1, encoding complement C1q-like 1, a neuronally expressed
complement protein involved in activity-dependent synapse for-
mation (t test, t(22) � 2.563, *p � 0.0177; Yuzaki, 2017); Ccl17,
encoding C-C motif chemokine ligand 17 (also known as
thymus- and activation-regulated chemokine, or TARC), a neu-
ronally expressed chemokine (t test, t(22) � 4.759, ****p �
0.0001; Henry et al., 2015); Tnfrsf12a, encoding TNF receptor
superfamily member 12A (also known as fibroblast growth
factor-inducible 14, FN14, or TNF-related weak inducer of apo-
ptosis receptor, TWEAK-R), a receptor for microglia-produced
cytokines (t test, t(22) � 4.025, ***p � 0.0006; Winkles, 2008); and

Figure 9. Hippocampal Camk2a-Cre-expressing neurons lacking Ctcf overexpress immuno-
modulatory genes. RiboTag-isolated mRNA from Camk2a-Cre-expressing hippocampal cells in
control;RiboTag and Ctcf CKO;RiboTag mice (n � 4 samples/genotype) was hybridized to Agi-
lent Technologies 8x60k mouse microarrays. We confirmed overexpression of select genes by
qRT-PCR on RiboTag-isolated mRNA (n � 12 samples/genotype), including C1ql1 (1.9-fold
upregulated, t test: t(22) � 2.563, *p � 0.0177), Ccl17 (encoding TARC; 1.9-fold upregulated, t
test: t(22) � 4.759, ****p � 0.0001), Tnfrsf12a (encoding FN14/TWEAK-R; 1.8-fold upregu-
lated, t test: t(22) � 4.025, ***p � 0.0006), Grk4 (1.7-fold upreglated, t test: t(22) � 2.119,
*p � 0.0457), and Nefh (1.3-fold uprelated, t test: t(22) � 2.548, *p � 0.0183). Data are shown
as means 	 SEM.
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Grk4, encoding G-protein-coupled receptor kinase 4 (t test,
t(22) � 2.119, *p � 0.0457), a member of a family of kinases that
interact with chemokine receptors (Ali et al., 2000). We also iden-
tified upregulation of Nefh, encoding neurofilament heavy poly-
peptide, a marker of neuronal injury (t test, t(22) � 2.548, *p �
0.0183; Gresle et al., 2008).

We compared the gene expression profiles obtained from
both microarray experiments by “subtracting” the RiboTag-
derived Ctcf CKO-profile from the whole hippocampus Ctcf
CKO profile. We observed upregulation of microglia markers
(e.g., Cd14, Cd52, Cd83, Tlr2; Zhang et al., 2014) in the “non
neural” component; that is, increased expression in the Ctcf CKO
whole hippocampus, but not in the Ctcf CKO RiboTag set. This
suggested the presence of microglia in the hippocampus and led
us to investigate the composition of inflammatory cells in the
relevant brain regions of Ctcf CKO mice.

First, we performed flow cytometry to isolate live cells from
dissociated hippocampal and cerebral cortical tissues of Ctcf
CKO and control mice (n � 14/genotype; Fig. 10A–D). We used
CD45 and CD11b expression to identify inflammatory cells and
sort them into three populations: microglia (CD11b high, CD45
intermediate); myeloid cells, including macrophages and neutro-
phils (CD11b high, CD45 high); and lymphoid cells, including B
and T lymphocytes (CD11b low, CD45 high; Galatro et al., 2017).
We found no effect of genotype on the proportion of cells of each
lineage isolated from cerebral cortex (Figure 10E–G; microglia t
test: t(27) � 1.61, p � 0.1189; myeloid cells t test: t(27) � 1.72, p �
0.0969; lymphoid cells t test: t(27) � 0.9363, p � 0.3574). How-
ever, compared with controls, (Fig. 10H) the inflammatory cells
isolated from Ctcf CKO hippocampus (Fig. 10I) had an increased
proportion of microglia (Fig. 10J; t test, t(27) � 2.214, *p �
0.0355) and a decreased proportion of myeloid cells (Fig. 10J; t

Figure 10. Flow cytometry revealing an increased proportion of CD11b high, CD45 intermediate microglia in the hippocampus of Ctcf CKO mice. Flow cytometry was performed on Ctcf CKO and
control mouse hippocampus (n � 14/genotype). A–C, Whole hippocampus and cerebral cortex cell suspensions (A) were gated for cells (B), which in turn were gated for single cells (C). D, SYTOX
blue-negative, live cells were selected and sorted according to CD11b and CD45 status as shown in E, F, H, and I. Populations of CD11b-high, CD45-intermediate microglia, CD11b-high, CD45-high
myeloid cells, and CD11b-low, CD45-high lymphoid cells were discernible. E, Compared with control cortex samples, (F ) Ctcf CKO cortex samples had similar proportions of microglia (quantified in
G), t test: t(27) � 1.61, p � 0.1189), myeloid cells (t test: t(27) � 1.72, p � 0.0969), and lymphoid cells (t test: t(27) � 0.9363, p � 0.3574). NS, Not significant. H, Compared with control
hippocampus samples, (I ) Ctcf CKO hippocampus samples had a higher proportion of microglia (quantified in J, t test: t(27) � 2.214, *p � 0.0355) and a lower proportion of myeloid cells (t test:
t(27) � 2.128, †p � 0.0426), whereas the proportion of lymphoid cells was unchanged (t test: t(27) � 1.671 p � 0.1062). Data are shown as means 	 SEM.
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test, t(27) � 2.128, †p � 0.0426); the proportion of lymphoid cells
in the hippocampus was similar between genotypes (Fig. 10J; t
test, t(27) � 1.671, p � 0.1062).

Next, we performed immunofluorescent staining for Iba1, a
marker of microglia (Imai et al., 1996; Fig. 11A–D). We focused
on the hippocampus because flow cytometry had indicated an
increased proportion of microglia there. We quantified the num-
ber of Iba1-positive microglia in CA1 hippocampus and found a
significant increase in the number of these cells in Ctcf CKO mice
(Table 4; t test, t(298) � 5.478, ****p � 0.0001). Compared with
control microglia (Fig. 11E), we observed that microglia from
Ctcf CKO mouse hippocampus had a highly bristled appearance
(Fig. 11F) and uniquely demonstrated amoeboid morphology
(Fig. 11G) and rod-like morphology (Fig. 11H). We evaluated
microglia morphology in Ctcf CKO mice by Sholl analysis (Fig.
11I–K, Table 4; n � 6 mice/genotype, 25 microglia per mouse),
which confirmed both our observation of rod-like morphology
by identifying increased maximum branch length (Table 4; t test,
t(298) � 2.376, *p � 0.0181) and our observation of amoeboid
morphology by identifying enlarged soma area (Table 4; t test,
t(298) � 4.362, ****p � 0.0001). The bristled appearance of Ctcf
CKO microglia was reflected by increased branch endpoint num-
ber (Table 4; t test, t(298) � 2.781, **p � 0.0058) and an overall
increase in the number of process intersections per Sholl radius
from Ctcf CKO microglia (Fig. 11K; rmANOVA, genotype effect,
F(1,298) � 4.549, *p � 0.0338). Therefore, we found that micro-
glia, the main mediators of innate immunity in the brain, are

Figure 11. Hippocampal microglia in Ctcf CKO mice are morphologically abnormal. A–D, Iba1 staining of control (A) and Ctcf CKO (B) cerebral cortex and of control (C) and Ctcf CKO (D)
hippocampus demonstrating increased staining for Iba1-positive microglia in Ctcf CKO tissues. E, F, High-power image of anti-Iba1 immunostained CA1 hippocampus from control (E) and Ctcf CKO
(F ) mice. G, H, Microglia with amoeboid morphology (double arrowhead; G) and rod-shaped microglia (single arrowheads; H ) were observed in Ctcf CKO mice, but not in controls. I, Example of
thresholded mean intensity projection of Iba1-stained image from CA1 hippocampus of the type used for Sholl analysis. J, Example of single microglial cell with concentric Sholl radii (pink circles)
superimposed on the image. K, Sholl analysis (n � 6 mice/genotype, 25 microglia per mouse) identified an overall increase in the number of process intersections per radius in microglia from the
CA1 region of Ctcf CKO mice (rmANOVA, genotype effect: F(1,298) � 4.549, *p � 0.0338). Note that only microglia from Ctcf CKO mice had processes that extended � 65 �m from the soma. Scale
bars: A, B, 75 �m; C, D, 375 �m; E–J, 25 �m. Graph in K shows means 	 SEM.

Table 4. Summary of Sholl analysis of hippocampal microglia from Ctcf CKO mice
and controls

Measure
Control
(mean 	 SEM)

Ctcf CKO
(mean 	 SEM)

t-statistic
(df � 298) p-value Significance

Process maximum 8.22 	 0.21 8.37 	 0.22 0.5008 0.6169 NS
Critical radius (�m) 15.7 	 0.51 16.5 	 0.66 1.001 0.3178 NS
Number of primary

branches
6.27 	 0.19 6.63 	 0.18 1.391 0.1652 NS

Maximum branch
length (�m)

35.5 	 0.77 38.7 	 1.08 2.376 0.0181 *

Branch endpoints 34.3 	 1.14 39.3 	 1.38 2.781 0.0058 **
Soma area (�m 2) 37.0 	 1.08 50.1 	 2.79 4.362 �0.0001 ****
Iba1-positive cells

per 63� field
2.65 	 0.08 4.30 	 0.24 5.478 �0.0001 ****

The first column lists the Sholl measurement evaluated and the units of the measurement in parentheses, where
applicable. The second and third columns list the mean 	 SEM for each measurement from control and Ctcf CKO
mice, respectively (n � 6/genotype). The fourth column lists the t statistic for each measurement using 298 degrees
of freedom (df). The fifth column lists the corresponding p-value for Student’s t test. The last column indicates the
degree of statistical significance. Microglia from Ctcf CKO mice had longer maximum branch length (t test: t(298) �
2.376, *p � 0.0181, more branch endpoints (t test: t(298) � 2.781, **p � 0.0058), and larger soma size (t test:
t(298) � 4.362, ****p � 0.0001) compared with controls. Microglia were also more numerous in Ctcf CKO mouse
hippocampus as measured by the number of Iba1-positive cells per 63� field of view (t test: t(298) � 5.478,
****p � 0.0001). Hippocampal microglia were similar between genotypes with regard to process maximum (the
maximum number of intersections per cell), the critical radius (distance from the soma where the process maximum
occurred), and the number of primary branches.

NS, Not significant.

*p � 0.05, **p � 0.01, ****p � 0.0001.
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increased in number and have abnormal morphology in the hip-
pocampus of Ctcf CKO mice.

We sought to determine whether microglia express Camk2a-
Cre, which would lead to microglial CTCF deficiency in Ctcf CKO
mice. We generated Cx3cr1-EGFP; tdTomato;Camk2a-Cre mice,
which produce EGFP in microglia and red fluorescent tdTomato
protein in Camk2a-Cre-expressing cells. We used confocal mi-
croscopy to collect images from CA1 hippocampus (Fig. 12A–D)
and cerebral cortex (Fig. 12E–H) of Cx3cr1-EGFP; tdTomato;
Camk2a-Cre mice (n � 10 images obtained from a total of 3
mice). Neither EGFP-positive microglia from hippocampus (Fig.
12D; n � 87 microglia) nor cerebral cortex (Fig. 12H; n � 74
microglia) contained red fluorescent tdTomato protein, leading
us to conclude that microglia do not express Camk2a in these
brain regions.

Inflammation stimulates microglia to shift from a surveillance
state to an activated, neurotoxic phenotype characterized by ex-
pression of the cell surface marker CD68 (Hanisch and Ketten-
mann, 2007; Hoogland et al., 2015). We used immunostaining to
assess the amount of CD68 present in Iba1-positive microglia
from the hippocampus of Ctcf CKO mice compared with controls
(Fig. 13; n � 4 animals/genotype, 10 –17 images/animal). CD68-
positive microglia were rare in controls (Fig. 13A–D), but were
identified frequently in images from Ctcf CKO mouse hippocam-
pus (Fig. 13E–H). We determined that the area of Iba1-positive
microglia staining positive for CD68 was significantly greater in
Ctcf CKO mouse hippocampus compared with controls (Fig. 13I;
Mann–Whitney U � 345.5, n � 48 Ctcf CKO images, n � 40
control images, ****p � 0.0001), indicating increased microglial
activation in Ctcf CKO hippocampus.

Discussion
Here, we describe the effects of depleting Ctcf postnatally in
Camk2a-Cre expressing neurons. In contrast to Ctcf KO in the
embryonic CNS, which is rapidly lethal (Watson et al., 2014;

Hirayama et al., 2012), we found that mice with postnatal Ctcf KO
in excitatory forebrain glutamatergic neurons were viable. Ctcf
CKO mice gradually developed a behavioral phenotype char-
acterized by deficits in balance and fine motor coordination,
profoundly impaired spatial learning/memory, and reduced so-
ciability. These findings demonstrate that postnatal CTCF deple-
tion causes a neurobehavioral phenotype independent of its
effects on neural development and suggest that the phenotype of
humans with CTCF haploinsufficency (Gregor et al., 2013) may
be due in part to impairment of brain function caused by ongoing
CTCF deficiency. CTCF interacts with methyl-CpG-binding pro-
tein 2 (MeCP2), which is encoded by MECP2, the gene mutated
in the neurodevelopmental disorder Rett syndrome (Kernohan et
al., 2010). A previous report described late life reversal of the
neurologic phenotype of the Mecp2 KO mouse model of Rett
syndrome by reexpressing wild-type Mecp2 (Guy et al., 2007).
Whether the neurobehavioral phenotype of Ctcf CKO mice could
be similarly improved by reconstituting CTCF sufficiency later in
life is an important question to be answered.

We identified upregulation of inflammation-related genes,
including known microglia genes, in Ctcf CKO mouse hippocam-
pus by performing microarray-based gene expression analysis on
mRNA from whole hippocampal tissue and on mRNA specifi-
cally from Camk2a-Cre expressing hippocampal neurons lacking
Ctcf, which we collected using the RiboTag ribosome affinity pu-
rification technique (Sanz et al., 2009). This unique approach
allowed us to parse out the source of gene expression changes that
we observed in Ctcf CKO hippocampus. For example, upregula-
tion of Tlr2, Ptgs2, Ccl2, Ccl3, Ccl9, Cd14, Cd52, and Cd83 was
observed in mRNA derived from whole Ctcf CKO hippocampus,
but not in mRNA isolated from Camk2a-Cre-expressing hip-
pocampal neurons lacking Ctcf. This indicates that these genes
are overexpressed in a non-neuronal component of the Ctcf CKO
hippocampus. The products of Cd14, Cd52, Cd83, and Tlr2 are

Figure 12. Microglia do not express Camk2a-Cre. The hippocampus and cortex of Cx3cr1-EGFP; tdTomato; Camk2a-Cre � mice were imaged by confocal microscopy (n � 10 images/brain region
collected from 3 mice). A, E, DAPI labels cell nuclei. B, F, EGFP expressed under the control of the Cx3cr1 promoter labels microglia. C, G, Red fluorescent tdTomato expressed under the control of
Camk2a-Cre labels excitatory glutamatergic neurons. D, H, Merged images for each tissue are shown. Note the lack of overlap between the EGFP and tdTomato channels, indicating that Camk2a is
not expressed in microglia. Scale bar, 25 �m.
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expressed on the surface of microglia (Fujimoto and Tedder,
2006; Becher et al., 1996; Chatterjee et al., 2014; Olson and Miller,
2004; Lehnardt, 2010). Active microglia release proinflammatory
prostaglandins synthesized by cyclooxygenase-2 (COX2), the
product of Ptgs2 (Minghetti, 2004). Microglia also release the
products of Ccl2, Ccl3, and Ccl9: the chemokines CCL2/MCP-1
(Kim et al., 2015), CCL3 (Kataoka et al., 2009), and CCL9 (Ara-
valli et al., 2005), respectively. These observations prompted us to
evaluate microglia in Ctcf CKO hippocampus, which were in-
creased in number. We identified microglia with rod-like mor-
phology, a distinct microglia phenotype found in the setting of
nerve injury due to trauma and neurodegenerative disease (Tam
and Ma, 2014). In addition, we identified microglia with amoe-
boid morphology, the characteristic shape of active, phagocytic
microglia (Davis et al., 1994). Overall, these data point to micro-
glia dysfunction in the setting of neuronal CTCF loss.

We identified upregulation of unique genes in mRNA ob-
tained from Camk2a-Cre expressing neurons lacking Ctcf, but
not whole Ctcf CKO hippocampus, including Ccl17. We interpret
this as evidence that Ccl17 is overexpressed specifically in Camk2a-
Cre-expressing hippocampal neurons lacking Ctcf, and that its
twofold upregulation in these neurons is obscured in measure-
ments of whole Ctcf CKO hippocampus gene expression. Ccl17

encodes C-C motif chemokine ligand 17 (TARC), a neuronally
expressed secreted chemokine (Cheng et al., 2008) that activates
C-C motif chemokine receptor 4 (CCR4) on microglia (Flynn et
al., 2003). CCR4 activation promotes an M2 phenotype in
macrophages/microglia that suppresses immune overactivation
(Gordon, 2003). However, serum levels of CCL17 are elevated in
individuals with ASD (Al-Ayadhi and Mostafa, 2013) and Alzhei-
mer’s disease (AD) (Neitzert et al., 2015) compared with healthy
controls, suggesting that elevated CCL17 signaling may be patho-
logic. Along these lines, mouse models of AD deficient for Ccl17
are protected from amyloid � deposition, neuronal loss, and cog-
nitive decline (Neitzert et al., 2013). Although the precise role of
CCL17 is unclear in Ctcf CKO mice, chemokines are broadly seen
as signaling molecules capable of regulating neuron–microglia
interactions (Miller et al., 2008). We interpret the upregulation
and enrichment of chemokine signaling pathway genes in
Camk2a-Cre-expressing hippocampal neurons lacking Ctcf, and
the simultaneous upregulation and enrichment of inflammation-
related genes in the whole Ctcf CKO hippocampus, as indicative
of crosstalk between neurons and microglia.

One explanation for both the upregulation of chemokine sig-
naling pathway genes and the increase in microglia that we ob-
served in Ctcf CKO mouse hippocampus is suggested by our

Figure 13. Hippocampal microglia in Ctcf CKO mice are positive for CD68, a marker of microglial activation. Tissue sections from CA1 hippocampus of control (A–D) and Ctcf CKO mice (E–H ) were
labeled with the nuclear stain DAPI (A, E) and antibodies against microglial marker Iba1 (B, F ) and activated microglial marker CD68 (C) and (G). CD68-positive microglia are rare in controls (D), but
they are common in Ctcf CKO mice (H, arrowheads). The area of Iba1-positive microglia staining positive for CD68 was significantly greater in Ctcf CKO mouse hippocampus compared with controls
(I; n � 48 Ctcf CKO images, n � 40 control images, Mann–Whitney U � 345.5, ****p � 0.0001). Graph shows means 	 SEM. Scale bar, 25 �m.
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observation of decreased dendritic spine density in this brain
region. Microglia are capable of removing spines in adult animals
in a process called synaptic stripping (Kettenmann et al., 2013)
and chemokines are thought to serve as the major microglial
attractants in this process (Trapp et al., 2007). Synaptic stripping
occurs in the setting of nerve injury in both the PNS (Moran and
Graeber, 2004) and CNS (Trapp et al., 2007). Injury triggers mi-
croglia to proliferate and migrate to the injury site, where they
remove dendritic spines from injured neurons (Kettenmann et
al., 2013), leading to dowregulation of synaptic proteins, includ-
ing PSD-95 (Moran and Graeber, 2004), We did not observe
nerve injury directly in Ctcf CKO mice, but Ctcf CKO;RiboTag
neurons upregulated Nefh, which encodes neurofilament heavy
polypeptide, a marker of nerve injury (Gresle et al., 2008). We
speculate that microglial synaptic stripping is activated in Ctcf
CKO mice by upregulation of chemokine signaling in Ctcf KO
neurons, by CTCF-deficiency-induced nerve injury, or both.

Dendritic spines provide the structural basis for synaptic plas-
ticity (Holtmaat and Svoboda, 2009), a phenomenon crucial to
learning and memory (Gipson and Olive, 2017). In addition to
synaptic stripping, microglia modify synaptic plasticity via direct
contacts with neurons (Rogers et al., 2011; Schafer et al., 2012)
and through the indirect release of growth factors including
brain-derived neurotrophic factor (Coull et al., 2005) and cyto-
kines including tumor-necrosis factor � (Pascual et al., 2012).
Microglia also modify plasticity-related animal behavior. For ex-
ample, obsessive-compulsive behavior in Hoxb8-null mice is re-
lieved by bone marrow transplantation, which replaces mutant
microglia with wild-type microglia (Chen et al., 2010). Overall,
the connection between microglia and brain plasticity (Ketten-
mann et al., 2013), coupled with our observations of abnormal
microglia in Ctcf CKO hippocampus, suggest to us that microglial
dysfunction contributes to the abnormalities of dendritic spines
and behavior that we identified in these animals.

While this manuscript was in preparation, a description of
another line of Ctcf;Camk2a-Cre CKO mice was published (Sams
et al., 2016). These mice also displayed deficits in hippocampal-
dependent spatial learning, fear conditioning, and social
recognition and had decreased dendritic spine density in CA1
hippocampus. Additional testing by the investigators identified
abnormal long-term potentiation and abnormal stimulus-evoked
transcription of activity-dependent Bdnf exon IV (Sams et al.,
2016). The line of Ctcf CKO mice that we describe here confirms
that deficiency of Ctcf in Camk2a-Cre expressing neurons leads to
severe deficits in spatial learning/memory, impairment in fine
motor coordination, subtle alterations in social behavior, and
decreased dendritic spine number. In addition, we uniquely iden-
tified upregulation of inflammation-related genes in Ctcf CKO
mice and demonstrated morphological abnormalities of their
microglia. Further studies will determine whether microglia are
detrimental in the setting of CTCF deficiency and if approaches
that modify the inflammatory state of these animals are capable
of mitigating the effects of CTCF loss.
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Helmer-Citterich M, Tabolacci E, Neri G (2013) Role of CTCF protein
in regulating FMR1 locus transcription. PLoS Genet 9:e1003601. CrossRef
Medline

Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS:
The role of microglia in Toll-like receptor-mediated neuronal injury. Glia
58:253–263. CrossRef Medline

Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL,
Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust
and high-throughput Cre reporting and characterization system for the
whole mouse brain. Nat Neurosci 13:133–140. CrossRef Medline

Martínez-Cerdeño V (2017) Dendrite and spine modifications in autism
and related neurodevelopmental disorders in patients and animal models.
Dev Neurobiol 77:393– 404. CrossRef Medline
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