Washington University School of Medicine

Digital Commons@Becker

Open Access Publications

2019

Associations of mitochondrial and nuclear mitochondrial variants and genes with seven metabolic traits

Aldi T. Kraja

Charles Gu

Mary F. Feitosa

Shiow J. Lin

Lihua Wang

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Authors Aldi T. Kraja, Charles Gu, Mary F. Feitosa, Shiow J. Lin, Lihua Wang, Mary J. Wojczynski, Ruteja A. Barve, Ping An, Thomas J. Baranski, E. Warwick Daw, Lisa de Las Fuentes, Latisha D. Love-Gregory, Christine Williams, Wei Yang, D. C. Rao, Victor G. Davila-Roman, Michael Province, and et al

Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits

Aldi T. Kraja,^{1,101,*} Chunyu Liu,^{2,101} Jessica L. Fetterman,^{3,101} Mariaelisa Graff,^{4,101} Christian Theil Have, 5,101 Charles Gu, 6,101 Lisa R. Yanek, 7 Mary F. Feitosa, 1 Dan E. Arking, 8 Daniel I. Chasman,^{9,10} Kristin Young,⁴ Symen Ligthart,¹¹ W. David Hill,¹² Stefan Weiss,¹³ Jian'an Luan,¹⁴ Franco Giulianini,⁹ Ruifang Li-Gao,¹⁵ Fernando P. Hartwig,^{16,17} Shiow I. Lin.¹ Lihua Wang, ¹ Tom G. Richardson, ¹⁷ Jie Yao, ¹⁸ Eliana P. Fernandez, ¹¹ Mohsen Ghanbari, ¹¹ Mary K. Wojczynski, Wen-Jane Lee, 19,20 Maria Argos, 21 Sebastian M. Armasu, 22 Ruteja A. Barve, 23 Kathleen A. Ryan,²⁴ Ping An,¹ Thomas J. Baranski,²⁵ Suzette J. Bielinski,²⁶ Donald W. Bowden,²⁷ Ulrich Broeckel,²⁸ Kaare Christensen,²⁹ Audrey Y. Chu,⁹ Janie Corley,¹² Simon R. Cox,¹² Andre G. Uitterlinden,³⁰ Fernando Rivadeneira,³⁰ Cheryl D. Cropp,³¹ E. Warwick Daw,¹ Diana van Heemst,³² Lisa de las Fuentes,³³ He Gao,³⁴ Ioanna Tzoulaki,^{34,35} Tarunveer S. Ahluwalia,³⁶ Renée de Mutsert, ¹⁵ Leslie S. Emery, ³⁷ A. Mesut Erzurumluoglu, ³⁸ James A. Perry, ²⁴ Mao Fu, ²⁴ Nita G. Forouhi, 14 Zhenglong Gu, 39 Yang Hai, 18 Sarah E. Harris, 40 Gibran Hemani, 17 Steven C. Hunt, 41,42 Marguerite R. Irvin, 43 Anna E. Jonsson, 5 Anne E. Justice, 4,44 Nicola D. Kerrison, 14 Nicholas B. Larson, ²⁶ Keng-Hung Lin, ⁴⁵ Latisha D. Love-Gregory, ⁴⁶ Rasika A. Mathias, ^{7,47} Joseph H. Lee, 48 Matthias Nauck, 49 Raymond Noordam, 32 Ken K. Ong, 14

(Author list continued on next page)

Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MTnDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated $(p \le 5E-04)$ with WHR and one in the *D-loop* with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p $\leq 1E-03$). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated ($p \le 1E-06$) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.

Introduction

Mitochondria (MT) are double membraned organelles that generate the majority of cellular adenosine triphosphate (ATP) and metabolites and play a central role in human

health.¹ MT reside within cells and contain a separate maternally inherited $^{2-5} \sim 16.6$ kb circular mtDNA genome, consisting of 37 genes (Figure 1). The mtDNA encodes 13 core catalytic peptides that form the oxidative phosphorylation complexes (I, III-V) as well as the machinery needed

¹Division of Statistical Genomics, Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO 63110, USA; ²Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA; ³Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA; ⁴Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27516, USA; 5 Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; Division of Biostatistics, Washington University School of Medicine, St Louis, MO 63110, USA; GeneSTAR Research Program, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; 8McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; 9Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; ¹⁰Harvard Medical School, Boston, MA 02115, USA; ¹¹Department of Epidemiology, Erasmus University Medical Center, Rotterdam 3015 CE, the Netherlands; 12 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK; ¹³Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University of Greifswald, Greifswald 17475, Germany; ¹⁴MRC Epidemiology Unit, University of Cambridge School of Clinical

(Affiliations continued on next page)

© 2019 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

James Pankow,⁵⁰ Amit Patki,⁵¹ Alison Pattie,¹² Astrid Petersmann,⁴⁹ Qibin Qi,⁵² Rasmus Ribel-Madsen,^{5,53,54} Rebecca Rohde, 4 Kevin Sandow, 18 Theresia M. Schnurr, 5 Tamar Sofer, 37,55 John M. Starr, 12,56 Adele M. Taylor, 12 Alexander Teumer, 57 Nicholas J. Timpson, 17 Hugoline G. de Haan, 15 Yujie Wang, 4 Peter E. Weeke,⁵⁸ Christine Williams,¹ Hongsheng Wu,⁵⁹ Wei Yang,⁶⁰ Donglin Zeng,⁶¹ Daniel R. Witte,⁶² Bruce S. Weir,³⁷ Nicholas J. Wareham,¹⁴ Henrik Vestergaard,^{5,36} Stephen T. Turner,⁶³ Christian Torp-Pedersen,⁶⁴ Evie Stergiakouli,¹⁷ Wayne Huey-Herng Sheu,^{65,66,67,68} Frits R. Rosendaal,¹⁵ M. Arfan Ikram, ¹¹ Oscar H. Franco, ^{11,69} Paul M. Ridker, ^{9,10} Thomas T. Perls, ⁷⁰ Oluf Pedersen, ⁵ Ellen A. Nohr, ⁷¹ Anne B. Newman,⁷² Allan Linneberg,^{73,74,75} Claudia Langenberg,¹⁴ Tuomas O. Kilpeläinen,⁵ Sharon L.R. Kardia,⁷⁶ Marit E. Jørgensen,³⁶ Torben Jørgensen,^{77,78,79} Thorkild I.A. Sørensen,⁸⁰ Georg Homuth, ¹³ Torben Hansen, ⁵ Mark O. Goodarzi, ⁸¹ Ian J. Deary, ¹² Cramer Christensen, ⁸² Yii-Der Ida Chen, ¹⁸ Aravinda Chakravarti, ⁸³ Ivan Brandslund, ^{84,85} Klaus Bonnelykke, ^{86,87} Kent D. Taylor, ¹⁸ James G. Wilson, 88 Santiago Rodriguez, 17 Gail Davies, 12 Bernardo L. Horta, 16 Bharat Thyagarajan, 89 D.C. Rao, Niels Grarup, Victor G. Davila-Roman, 33 Gavin Hudson, 90 Xiuqing Guo, 18 Donna K. Arnett, 91 Caroline Hayward, 92 Dhananjay Vaidya, 7 Dennis O. Mook-Kanamori, 15,93 Hemant K. Tiwari, 51 Daniel Levy, 94 Ruth J.F. Loos, 95,96,97 Abbas Dehghan, 34 Paul Elliott, 34 Afshan N. Malik, 98 Robert A. Scott, 14 Diane M. Becker, Mariza de Andrade, Michael A. Province, 1,102 James B. Meigs, 55,99,100,102 Jerome I. Rotter, 18,102 and Kari E. North 4,102,*

to translate these peptides consisting of 22 transport RNAs (tRNAs) and 2 ribosomal RNAs (rRNAs). In addition, a noncoding sequence, known as the displacement loop (*D-loop*), encompasses the replication origin(s) and promoters for mtDNA.

MT function is also dependent upon many nuclear genes that encode proteins involved in mtDNA transcription, replication, cell apoptosis and mitophagy, nucleotide biosynthesis, metabolism, and iron and calcium homeostasis. Here we evaluate 2,282 candidate nuclear genes that also may contribute to MT function. We refer to these genes as "MT-nDNA candidates," curated for this study based upon protein co-localization within the MT and text mining. 6–8 Unlike mtDNA-encoded proteins that are transcribed and translated within MT, MT-nDNA genes are translated in the cytoplasm and their proteins are transported into MT through porins or complexes such as translocases.

Medicine, Cambridge CB2 0QQ, UK; 15 Department of Clinical Epidemiology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands; 16 Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas 96020-220, Brazil; ¹⁷MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol BS8 2BN, UK; 18 Institute for Translational Genomics and Population Sciences, LABioMed and Department of Pediatrics, at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; ¹⁹Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; ²⁰Department of Social Work, Tunghai University, Taichung 407, Taiwan; ²¹Department of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL 60612, USA; 22Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; ²³Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA; ²⁴School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; ²⁵Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA; ²⁶Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA; 27 Center for Diabetes Research, Wake Forest School of Medicine, Cincinnati, OH 45206, USA; ²⁸Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; ²⁹The Danish Aging Research Center, University of Southern Denmark, Odense 5000, Denmark; 30 Department of Internal Medicine, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands; 31 Samford University McWhorter School of Pharmacy, Birmingham, Alabama, Translational Genomics Research Institute (TGen), Phoenix, AZ 35229, USA; ³²Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands; ³³Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; 34 Department of Biostatistics and Epidemiology, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK; 35 Department of Hygiene and Epidemiology, University of Ioannina, Ioannina 45110, Greece; ³⁶Steno Diabetes Center Copenhagen, Copenhagen 2820, Denmark; ³⁷Department of Biostatistics, University of Washington, Seattle, WA 98195, USA; ³⁸Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK; ³ sion of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; 40Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Centre for Genomic and Experimental Medicine, Medical Genetics Section, University of Edinburgh, Edinburgh EH4 2XU, UK; ⁴¹Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA; ⁴²Department of Genetic Medicine, Weill Cornell Medicine, PO Box 24144, Doha, Qatar; ⁴³Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA; ⁴⁴Biomedical and Translational Informatics, Geisinger Health, Danville, PA 17822, USA; 45 Department of Ophthalmology, Taichung Veterans General Hospital, Taichung 407, Taiwan; ⁴⁶Genomics & Pathology Services, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; ⁴⁷GeneSTAR Research Program, Divisions of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; ⁴⁸Taub Institute for Research on Alzheimer disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA; ⁴⁹Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald 17475, Germany; ⁵⁰University of Minnesota School of Public Health, Division of Epidemiology and Community Health, Minneapolis, MN 55454, USA; 51 Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35294, USA; 52 Department of Epidemiology & Population Health, Albert Einstein School of Medicine, Bronx, NY 10461, USA; 53 Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; 54The Danish Diabetes Academy, 5000 Odense, Denmark; 55Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; 56 Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh EH8 9JZ, UK; 57 Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany; 58 Department of Cardiology, The Heart Centre, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark; ⁵⁹Computer Science and Networking, Wentworth Institute of Technology, Boston, MA 02115, USA;

(Affiliations continued on next page)

The dual genomic origin (mtDNA and MT-nDNA) of MT components and the fact that mtDNA has a much higher mutation rate compared to the nuclear genome^{9,10} fuels our hypothesis that MT variants influence individual predisposition to complex diseases. 11,12 Because of heteroplasmy, i.e., the coexistence of mutated and wild-type mtDNA in the same cell, mutations in mtDNA may not result in disease until the copy number of mtDNA carrying the mutation relative to the wild-type mtDNA in the relevant tissue(s) exceeds a threshold. 12 The mtDNA copy number may serve as an indicator of MT function¹³ and was recently shown to be associated with overall mortality^{14,15} and various metabolic-related diseases, including cardiovascular disease (CVD). 16-18 Studies have also shown that mitochondria have an important influence on multiple cardiovascular disease risk factors. For example, obesity impairs MT biogenesis. 19-21 MT dysfunction has been also implicated in the development of insulin resistance.^{22–24} Thus, our study prioritized obesity and insulin resistance pathways to CVD.

In our study we analyzed the dual genomic influence of MT function on seven important metabolic traits (body mass index [BMI], waist-hip ratio [WHR], fasting glucose, fasting insulin, HOMA-B, HOMA-IR, and HbA1c) as major risk factors of cardiovascular disease (CVD) in participants of the CHARGEmtDNA+ 45 participating cohorts. The mtDNA associations were evaluated at both the single nucleotide variant (SNV) and at the gene-based levels for

rare alleles (minor allele frequency [MAF] < 1%). The MT-nDNA candidates were studied for function, gene expression regulation, enrichment of pathways, and protein interactions. The overall goal was to illuminate MT-functioning and MT-disease causative variants.

Subjects and METHODS

CHARGE Cohorts

There were 45 participating cohorts with a total of 196,967 individuals (166,423 individuals were of the European [EA], 15,745 of African [AA], 1,567 of Asian [ASA], 11,307 of Hispanic/Latinos [HA], and 1,925 of Brazilian ancestry) who had at least one of the seven traits. CHARGE cohort summary descriptions are available online (see Supplemental Study Descriptions). The number of samples available from all cohorts differed by phenotype (Table S1). The resulting samples were smaller within each cohort when association tests were performed (by sub-setting individuals with genotyping available) to a total of 170,202 for BMI, 155,396 for WHR, 79,906K for fasting glucose, 70,778 for fasting insulin, 69,845 for HOMA-B, 69,926 HOMA-IR, and 101,218 for HbA1c. We use the acronym PA to refer to pan-ancestry. The procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and that proper informed consent was obtained.

Trait Harmonization

A total of seven traits were studied: BMI (kg/m²), WHR (waist-hip ratio), fasting plasma glucose (mg/dL), fasting insulin (µIUmL),

⁶⁰Genome Technology Access Center, Washington University School of Medicine, St Louis, MO 63110, USA; ⁶¹Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; 62Department of Public Health, Section of Epidemiology, Aarhus University, Denmark, Danish Diabetes Academy, Odense University Hospital, 5000 Odense, Denmark; 63Division of Nephrology and Hypertension, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55902, USA; 64Department of Health Science and Technology, Aalborg University Hospital, Aalborg 9220, Denmark; 65Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; 66Institute of Medical Technology, National Chung-Hsing University, Taichung 402, Taiwan; ⁶⁷School of Medicine, National Defense Medical Center, Taipei 114, Taiwan; ⁶⁸School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; ⁶⁹Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland; ⁷⁰Department of Medicine, Geriatrics Section, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA; 71Research Unit for Gynecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark; ⁷²Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA; ⁷³Department of Clinical Experimental Research, Rigshospitalet, Copenhagen 2200, Denmark; ⁷⁴Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark; 75The Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen 2000, Denmark; ⁷⁶Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; ⁷⁷Research Centre for Prevention and Health, Glostrup Hospital, Glostrup 2600, Denmark; ⁷⁸Department of Public Health, Faculty of Health Sciences, University of Copenhagen, C hagen 1014, Denmark; ⁷⁹Faculty of Medicine, Aalborg University, Aalborg 9100, Denmark; ⁸⁰Novo Nordisk Foundation Center for Basic Metabolic Research (Section of Metabolic Genetics) and Department of Public Health (Section on Epidemiology), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200N, Denmark; 81 Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; 82Department of Internal Medicine, Section of Endocrinology, Vejle Lillebaelt Hospital, 7100 Vejle, Denmark; 83Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; 84 Department of Clinical Biochemistry, Vejle Hospital, 7100 Vejle, Denmark; ⁸⁵Institute of Regional Health Research, University of Southern Denmark, 5000 Odense C, Denmark; ⁸⁶Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Gentofte & Naestved 2820, Denmark; 87 Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; 88 Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA; 89 Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; 90Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; 91 University of Kentucky, College of Public Health, Lexington, KY 40508, USA; 92MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK; 93 Department of Public Health and Primary Care, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; 94 The Framingham Heart Study, Framingham, MA, USA; The Population Sciences Branch, NHLBI/NIH, Bethesda, MD 20892, USA; 95Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; 96Genetics of Obesity and Related Traits Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; 97 Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; 98King's College London, Department of Diabetes, School of Life Course, Faculty of Life Sciences and Medicine, London SE1 1NN, UK; 99 Division of General Internal Medicine, Massachusetts General Hospital, Boston 02114, MA, USA; 100 Program in Medical and Population Genetics, Broad Institute, Boston, MA 02142, USA

¹⁰¹These authors contributed equally to this work

¹⁰²Co-senior author

^{*}Correspondence: aldikraja@wustl.edu (A.T.K.), kari_north@unc.edu (K.E.N.) https://doi.org/10.1016/j.ajhg.2018.12.001.

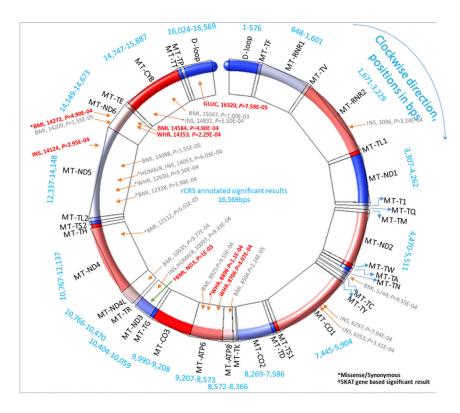


Figure 1. Graphical Presentation of Single mtDNA- and Gene-Based Association Meta-Analysis Results

Significant associations (trait, MT position, and p value) at liberal threshold (p \le \text{ 1E-03) are annotated with red arrows and gray text for single SNV associations and with green arrow for gene-based association, and text in red color represents SNVs that passed the threshold $p \le$ 5E-04. The asterisk (*) marks missense or synonymous variants; a dagger (†) marks a SKAT gene-based significant association. The mtDNA is shown as one single molecule, by merging all genes from heavy and light MT strands. For visibility, gene colors rotate clockwise from first in blue in the *D-loop* to up to six coloring groups finishing in red at MT-TL1, and then recycling again from the first blue color at MT-ND1. The full information is summarized in Tables 1, 2, 3, and S2.a-S2.b. In blue text are shown bps-positions of 13 MT-coding genes (MT-ND1, MT-ND2, MT-CO1, MT-CO2, MT-ATP8, MT-ATP6, MT-CO3, MT-ND3, MT-ND4L, MT-ND4, MT-ND5, MT-ND6, MT-CYB), 2 MT-ribosomal RNAs (MT-RNR1 [12S RNA] and MT-RNR2 [16S RNA]), and 22 transport RNAs (MT-TF, TV, TL1, T1, TQ, TM, TW, TA, TN, TC, TY, TS1, TD, TK, TG, TR, TH, TS2, TL2, TE, TT, TP).

HOMA-B, HOMA-IR, and glycated hemoglobin (HbA1c, %) indicative of chronically elevated glucose levels. The homeostasis model assessment was based on plasma levels of fasting glucose and fasting insulin. HOMA-B is an indicator of beta-cell function calculated as $HOMA-B = (360 \times fasting insulin) / (fasting glucose - 60).$ HOMA-IR is an indicator of insulin resistance calculated as HOMA-IR = (fasting glucose × fasting insulin) / 405. Glucose and insulin measures were required to have been measured with a minimum fasting time of 8 hr; otherwise, the measure was set to missing. Each study was responsible for ensuring that each trait was normally distributed. Natural-log transformation was implemented for insulin, power transformation was performed when no other solutions were available, and inverse normal transformation was used as a last resort for BMI²⁵ (details in the Supplemental Material and Methods, section 1). The association test analysis was restricted to non-diabetic participants when studying glycemic traits, by setting values of glucose, insulin, and HbA1c to missing for T2D individuals with HbA1c > 6.5 or with fasting glucose > 126 mg/dL or using T2Dmedications. The participating cohorts were required to have at least one of the seven studied metabolic traits.

Preparation of Traits for Analyses

All cohorts used the same units for all traits for the raw measures. We observed differences in the raw measures of traits (Table S1). Thus, to harmonize results, all participating cohorts normalized trait distributions and produced standardized residuals, which are unit-less for each trait. Statistical regression via R / SAS programming languages was used to produce residuals fitting the following model:

$$trait = age + age^2 + sex + PCs$$

+ other study specific covariates (e.g., study center, etc)

Age² was used to remove any age-quadratic trend from the response variable, and principal components (PCs) represent one or more genotype principal components, to minimize population substructure. The standardized residuals from this regression were the final response variables for each trait, used in the association tests with imputed dosages of mtDNA.

mtDNA Variant Harmonization

All mtDNA variants from each array (Table S14) were annotated to the nucleotide position according to the rCRS of the human mitochondrial DNA prior to analyses (see Web Resources). The probes used for each microarray were obtained from the manufacturer or dbSNP and aligned to the rCRS using Geneious 8.1.26 All probes were also submitted through the standard nucleotide basic local alignment search tool (BLAST) to ensure the probes bound with high specificity (\geq 90% identity) to the mitochondrial genome. In order to limit any potential binding to nuclear DNA segments, probes that bound to nuclear chromosomes with $\geq 80\%$ matching were excluded from all analyses. The full lists of the validated mtDNA variants are available in the Supplemental Material and Methods, section 2 and Tables S15-S28.

mtDNA Imputation

The preparation of mtDNA data for imputation was done with PLINK.^{27,28} When preparing data for imputation, a few heterozygotes that may have existed in the mtDNA genotypes were set to missing via PLINK. The prephasing of mtDNA scaffold haplotypes at the cohort level was done with SHAPEIT2 for the full mtDNA (see Web Resources). 29 SHAPEIT2 helped to have the mtDNA genotypes of a cohort in the right format to be used in the imputation pipeline with IMPUTE2. SHAPEIT2 was also used for QC checks, such as evaluating missingness in markers. In order to combine analyses across different genotyping platforms, we performed imputation based on MT-1000G (see Supplemental Material and Methods, section 3). Imputations of mtDNA variants were implemented in IMPUTE2 at the cohort level in a window that included the full MT-chromosome (see Web Resources). 30 Recoding of genotype probabilities into dosages was implemented via FCGENE (see Web Resources). Our reference MT-chromosome panel consisted of the 1000G data (PHASE 3, v.5) (see Web Resources). These data were based on sequence freeze and alignments, using only Illumina platform sequences and only sequences with read lengths of 70 bps or greater. There were 3,617 mtDNA markers in 1000G. The 1000G included 2,504 individuals representing 26 sampled populations (the "Cosmopolitan" reference panel).³¹ After imputation, cohorts had differing number of SNVs, up to 3,832 SNVs for BMI, 3,829 for WHR, 3,809 for glucose, 3,801 for insulin, 3,801 for HOMA-B, 3,801 for HOMA-IR, and up to 3,744 for HbA1c. Although the imputation quality was good for most of cohorts (see imputation accuracy in Table S14), a great number of the SNVs were filtered for INFO (imputation quality) < 0.30, monomorphic or very rare (MAF < 0.0001) at the cohort level before association tests. Other QC were genotype call per cell had to be $p \ge 0.90$, a marker was dropped if its missing rate was >0.05 and MAC had to be ≥ 5 , (which if it was autosomal could have corresponded to MAC \geq 10). The MAC was calculated for haplotypes as MAF*N. (See Supplemental Material and Methods, section 3 for a more detailed methodology.) After mtDNA imputation, before performing statistical associations, we set any heteroplasmic mutations to missing at the cohort level data. Details of QC via R Package: EasyQC (V10.0)³² (see Web Resources) and our internal programs and of the imputation steps can be found in the Supplemental Material and Methods, section 3. All filters implemented at the cohort level created non-uniform contributions of all cohorts in the meta-analysis. Many of the mtDNA variants were rare and per trait meta-analyses QQ-plots often showed an underestimation compared to expected association results (Figures S1-S7). The rarity of alleles was accompanied with lower quality of imputation and accordingly many of them were removed before any meta-analysis. Most studies had good imputation quality, given the rarity of mtDNA variants.

Variants MT-14272 and MT-14584 are opposite C/T versus T/C, but in full LD, while they are rare. The typical assumption is that rare variants are not in LD, but that does not have to hold for mtDNA. This is one more observation that the rare association findings in this study represent potential associations, until replicated from other future studies.

mtDNA Association Statistical Analyses

An additive genetic model was applied in association analyses using both self-developed regression models (the linear or linear mixed models written in R programming) and the SKAT (the prep-Scores() function in seqMeta R package: seqMeta package: Meta-Analysis of Region-Based Tests of Rare DNA Variants approaches³³ (see Web Resources). Familial and maternal correlation structures³⁴ were accounted for in the analysis of family data. Details of statistical association models 1–4 are described in the Supplemental Material and Methods, section 4.

mtDNA Meta-Analyses

Single-variant fixed-effects meta-analyses were conducted with METAL,³⁵ and gene-based associations were performed in seqMeta (details in the Supplemental Material and Methods, sections 5–7)

(Tables 1, 2, 3, S2.a, S2.b, and S13). The average allele frequency from Metal is an average of allele frequencies for a particular marker as contributed from each study and weighted by each study's sample size as follows: Freq1WeightAve = $\sum_{k=1}^{s} w_k f_k / \sum_{k=1}^{s} w_k$, where k represents the indexing of contributing studies, w_k is the sample size (number of individuals) per study, and f_k is the coded allele frequency for a particular marker from a particular study. Our working group conducted an internal permutation test³⁶ using ARIC study mtDNA data and determined that 49 independent mitochondrial variants represented an estimate of the number of independent genetic effects for mtDNA. Thus, 49 was used as a denominator for producing the Bonferroni corrected p significance threshold $\leq 0.05/49 \leq 1E-03$, a threshold for common variants (MAF $\geq 1\%$), but possibly liberal for rare variants (MAF < 1%) (Table 1). Furthermore, we considered $p \le 0.05/(49 \times 7 \text{ traits}) \le 1.5E-04$ as a conservative threshold when accounting for seven traits tested. We settled for a Bonferroni-threshold p $\leq 0.05/(49 \times 2 \text{ domains}) \leq 5E-04$, because the traits within a domain adipose/obesity (BMI and WHR) and glucose metabolism (glucose, insulin, HOMA-B, HOMA-IR, and HbA1c) are correlated and represent two domains. Because mtDNA is a small genome, the distributions of mtDNA QQ-plots with the existing samples do not always behave similarly to those observed for larger nuclear GWASs. While mtDNA variants MAF \geq 1% formed relatively good QQ-plot distributions, the rare variants (MAF < 1%) were sometimes distributed with some deviation in the start (bottom-left) of the QQ-plot, as a result of meta-results in very rare alleles. Thus, the quality control of mtDNA QQ-plots were implemented by filtering at different rare MAF levels. We concluded that with the existing mtDNA meta-analysis results, QQ-plots with MAF > 0.8% were acceptable. Thus, out of 23 SNVs nominally (p \leq 1E-03) associated with 6 metabolic traits (Figure 1), by adding the filter of MAC ≥ 5 for each cohort, then 7 variants passed p \leq 5E-04 Bonferroni threshold.

For the gene-based analysis, we used Burden tests which combine the contributions of rare genetic variants within a gene region. Such tests assume similar directionality and effect sizes for each variant.³³ In contrast, the sequence kernel association test (SKAT) for unrelated or family-based studies is an efficient regression-based approach for rare genetic variant analysis.^{33,37,38} The meta-analyses were performed using seqMeta (see Web Resources). The gene-based Bonferroni p value was calculated as $p \le 0.05/$ (37 mtDNA genes) $\le 1E-03$.

Identification of MT-nDNA Candidate Genes

We established a list of 2,282 MT-nDNA candidate genes from three sources: (1) Mito Carta 2.0,6,39 (2) Literature Lab (Acumenta Biotech), and (3) MitoMiner (4.0)⁷ (see also Supplemental Material and Methods, section 7). We used the two separate sets of human genes and mouse ortholog genes from MitoCarta. We used Literature Lab to perform a literature search and identified 36 terms based on MeSH mitochondria. From each of the 36 terms (Table S29), we selected only the upper quartile list of genes from a Log Probability Function - scoring distribution. Each term was tested for association in overlapping with genes in pathway analysis (Figure S15). We conditioned this list with only genes from human nomenclature and accepted only genes that had more than 15 abstracts cited per selected gene (see Supplemental Material and Methods section 7).

Using MitoMiner we identified additional MT-nDNA candidate genes. They were filtered with a MT-MitoMiner index ≥ 0.70 ,

	z		25,748	19,046		34,959	6,035	13,636	14,315	13,636
	Het-p		9.44E-02	1.77E-01		1.12E-04 ++++ 8.80E-01 34,959	1.62E-01 6,035	6.49E-01 13,636	8.00E-01 14,315	6.49E-01 13,636
	Dir		+	+		++++			:	
	<u> </u>		4.1E-04	7.6E-05		1.12E-04	2.95E-04 +++	4.90E-04 ++	2.29E-04	4.90E-04
ant Results	MAC B(SE)	14	-0.13 (0.04) 4.1E-04+ 9.44E-02 25,748	-0.21 (0.05) 7.6E-05+- 1.77E-01 19,046	14	0.30 (0.08)	0.57 (0.16)	0.84 (0.24)	-0.33 (0.09)	-0.84 (0.24) 4.90E-04
gle-Vari	MAC	\leq 5E -0	834	301	$\leq 5\mathrm{E}{-0}$	134	21	17	120	17
ıalysis Sin	MAF	hreshold	0.0324 834	0.0158 301	hreshold	0.0038 134	0.0035	0.0012	0.0084	0.0012 17
FAL Meta-Ar	MaxFreq	ıg Meta-p-T	0.9974	0.2439	ıg Meta-p-T	0.0121	0.0087	0.0022	0.9978	0.9991
HbA1c ME1	MinFred	and Passin	0.9135	0.0028	and Passin	0.0003	0.0022	0.0009	0.9880	0.9978
IA-IR, and	FreqSE	ncy > 1%	0.0295 0.9135	0.0954 0.0028	ncy < 1%	0.0045	0.0029	0.0007	0.0032	0.0007 0.9978
Insulin, HOMA-B, HOMA-IR, and HbA1c METAL Meta-Analysis Single-Variant Results	Freq1 WeightAve FreqSE MinFreq MaxFreq MAF	Allele Average Frequency $>1\%$ and Passing Meta-p-Threshold $\leq 5E-04$	929676	0.0158	erage Freque	0.0038	0.0035	0.0012	0.9916	0.9988
Insulin,	A1/2	Allele Av	A/G	T/C	Allele Av	A/G	T/C	T/C	T/C	T/C
Glucose,	Trait	eighted	WHR	GLUC	eighted	WHR	INS	BMI	WHR	BMI
ith BMI, WHR,	Annotation Trait	rith MAF of W	ı	1	rith MAF of W	missense	1	missense	1	. 1
sociated w	Gene	Selected w	MT-ATP6	D-loop	Selected w	MT-ATP6	MT-ND5	MT-ND6 missense	MT-ND6	MT-ND6
Table 1. mtDNA Variants Associated with BMI, WHR, Glucose,	Olsa	Meta-analysis Level Results Selected with MAF of Weighted /	1	16320 rs62581338 D-loop	Meta-analysis Level Results Selected with MAF of Weighted Allele Average Frequency $<$ 1% and Passing Meta-p-Threshold \le $5\mathrm{E}-04$	rs202120082 MT-ATP6 missense	ı	14272 rs2853814	ı	
1. mt	Pos	analysi	90/8	16320	analysi	9688	14124	14272	14353	14584
Table	No Pos	Meta-	1	2	Meta-	1	2	3	4	5

Abbreviations and definitions: No, order number; Pos, MT position in bps; rsID, rsID name from NCBI dbSNP database when available; Gene, gene name or region; Annotation, role of the variants when available; Trait, one or more of seven traits studied; A1/2, the coded and non-coded alleles; Freq I WeightAve, a weighted sample size average of allele frequency; FreqSE, standard error of allele frequency; MINFreq, a maximum allele frequency for contributing cohorts; MAF, minor allele frequency; MAC, minor allele count, calculated as MAF × N; B(SE), beta coefficient and the corresponding standard error is yalley from single variant regression analysis; Dir, direction sign of contributing cohort's beta; Het-p, heterogeneity p value test from METAL; N, individuals' sample contributing in a particular marker meta-analysis (all esults are of Pan-Ancestry) and by selecting the terms "Known mitochondrial" and "Predicted mitochondrial." In MitoMiner, we kept only genes that were present in human nomenclature. MitoMiner included also the mitochondrial originated genes, which were later removed to keep our MT-nDNA list only of nuclear origin. Finally, three additional genes were added from a publication on MT-defects associated with β-cell dysfunction in a T2D mouse.⁴⁰

MT-nDNA Candidate Genes Analysis

As a result of the above work, a list of 2,282 MT-nDNA candidate gene labels (Table S30) were used to identify any significant results from 20 GWAS papers full summary results for seven metabolic traits, representing 31 datasets (Tables 4, S4, and S6). For the adipose traits, the GWAS publication full summary results used were for BMI^{41–50} and for WHR, ^{43,44,47–52} and the summary results data were retrieved from the GIANT Consortium repositories (see Web Resources). For glucose metabolism we used the summary results of glucose, 53-56 insulin, 54-59 HOMA-B, 54 and HOMA-IR. 54 These summary results data were retrieved from MAGIC Consortium archives (see Web Resources). For HbA1c we used two resources. 60,61 The published GWASs have large sample sizes, with a BMI study having a maximum of 339K individuals, WHR having 320K, glucose and insulin having 52K and 45K, respectively, HOMA-B and -IR having 46K, and HbA1c having 160K. Consequently, we obtained results for 109 MT-nDNA candidate genes, accompanied by 588 sentinel significant SNVs (one best per gene and trait combination, out of seven traits, Tables 4, S6, and \$9).

To identify the 588 SNVs, a pre-specified selection process was followed. First, we downloaded the latest dbSNP of NCBI reference data (batch 150), and we assigned each SNV to a gene (pseudogenes excluded). The intergenic variants were assigned to the closest gene, up to half the distance between two genes. Then, we merged the 31 full-GWAS sets to the annotated dbSNP, thus each GWAS-SNP was assigned to a gene. Each summary result was merged with MT-nDNA gene labels (Table S30). The corresponding significant SNVs results, ones with the smallest p value, per gene and per trait, were accepted in the final list (p < 0.05/ $(2,282 \times 7) = 3.13E-06$). After this selection, we also performed an analysis based on 1000 Genomes to identify the number of independent SNVs within a gene. ^{36,62} The analysis produced a mean of independent SNVs per gene of 59, median of 38, and with a maximum of two outliers 542 (WWOX [MIM: 605131]) and 499 (FHIT [MIM: 601153]). If it was a gene-based test, then a conservative threshold p $\leq 0.05/(542 \times 7 \text{ traits}) \leq 1.3E-05 \text{ could have}$ been used, which is larger than the threshold we used, p \leq 1E-06). Furthermore, to compare whether our MT-nDNA genes pass the genome-wide threshold of p \leq 5E-08, generally used in GWAS publications, we merged our gene data with all possible reported SNVs from the GWAS-Catalog (accessed 01.27.2018, Table S12 and presented findings in the Results and Discussion paragraphs).

Annotation, Enrichment Analysis, and Gene Expression and Regulation

The mtDNA as well as MT-nDNA significant variants were annotated to NCBI dbSNP build 150 (HG38); genes and their protein biological functions were annotated to NCBI Entrez Gene, GeneCards and UniProtKB; enrichment analyses were performed with MetaCore and Literature Lab; pathways with KEGG and Reactome; gene expression and regulation were assessed using

Table 2. Results of mtDNA Gene-Based Meta-analysis SKAT T1 and T5 Test (p \leq 0.01)

Trait	Ancestry	Т	Gene	р	Qmeta	cMAF	nSNVs
НОМА-В	PA	0.01	MT-TF	5.0E-03	4604374	0.022	5
НОМА-В	PA	0.05	MT-TV	8.0E-03	3341460	0.078	6
HbA1c	EA	0.05	MT-TG	9.0E-03	13674145	0.064	13
BMI	PA	0.05	MT-TQ	1.0E-02	21201188	0.075	12
НОМА-В	PA	0.05	MT-RNR1	1.0E-02	69787232	1.323	119

Abbreviations and definitions: Trait, the trait used for a specific test; PA, Pan ancestry; EA, European ancestry; T, MAF-value threshold for selecting SNVs to be included in the gene-based association test; Gene, gene name from mtDNA; p, p value from the SKAT test; Qmeta, the SKAT Q statistics; $Q = \sum_j w_j^2 U_j^2$, where w is a weight for SNV_j and U_j is associated score statistics; cMAF, cumulative minor allele frequency; nSNVs, the number of SNVs used in the gene-based meta-analysis.

HaploReg, RegulomeDB, GTEx, and Human Protein Atlas; and protein interactions were assessed using STRING and NCBI summary of interactions from other databases (see Web Resources), with references to databases BIND, BioGRID, EcoCyc, HIV-1human protein interaction data, and HPRD. Specifically, for GTEx gene expression eQTL analysis, the eSNVs were considered significant when the eSNV had a GTEx p < 1E-07 and was in high LD ($r^2 \ge 0.80$) with the best eSNV of the target gene. Depending on $r^2 \ge 0.80$ to 1, we called them similar to "lead" or "lead" eSNVs. Otherwise, if the LD r² was < 0.02 to the target gene's best eSNV, we called them "secondary" eSNVs (Table S8). Details of the resources and the corresponding references are provided in the Supplemental Material and Methods, sections 8 and 9. We have cited throughout the manuscript the corresponding gene MIM number from the Online Mendelian Inheritance in Man (see Web Resources).

Results

We evaluated the associations of mtDNA variants with seven key metabolic traits in meta-analyses of 45 cohorts (with up to $N\sim170,202$). For details on the harmonization of the phenotypes and genotypes, see Material and Methods and Supplemental Material and Methods, sections 1–6. The Supplemental Study Descriptions and Table S1 with BMI mean and standard deviation values give a depiction of each contributing cohort in this study.

mtDNA Single-Variants Associations

Seven SNVs, two variants with average weighted MAF > 1% (Tables 1 and S2.a and Figures S1–S7) and five with MAF < 1% (Tables 1 and S2.b) displayed statistically significant evidence of association with six metabolic traits (Bonferroni threshold $p \le 5E-04$, see in Material and Methods: mtDNA Meta-Analyses). MT-8706 in *MT-ATP6* (MIM: 516060) (see Web Resources), associated with WHR (with sample weighted average of cohorts' MAF = 3.24%, p = 4.1E-04) and MT-16320 (rs62581338) of the *D-loop* (with sample weighted average of cohorts' MAF = 1.58%, p = 7.6E-05) associated with fasting glucose. The five rare variants were MT-8896 (rs202120082, missense) in *MT-ATP6* associated with WHR, MT-14124 in *MT-ND5* (MIM: 516005) associated with fasting plasma insulin, MT-14272 in *MT-ND6* (rs2853814 [MIM: 516006],

missense) associated with BMI, MT-14353 in *MT-ND6* associated with WHR, and MT-14584 in *ND6* associated with BMI.

The evidence of association by cohort is reported in Tables S2.a, S2.b, and S3. Typically, the cohort with a large sample size displayed the strongest evidence of association. For example, the HCHS/SOL study contributed disproportionately to several mtDNA-trait associations (see in the Supplemental Study Descriptions, CHARGEmtDNA+Study Description). Even further, for the *MT-ATP6* (position 8706) association with WHR, the strongest association in HCHS/SOL was in those of Central/South American background (so more Native American ancestry as compared to African American ancestry, Tables S2.a and S3).

mtDNA Rare Variants Gene-Based Associations

The mitochondrial rare variants for gene-based analysis were mapped to the start and end positions of each gene from the NCBI Reference Sequence GenBank: NC_ 012920.1 (see Web Resources). The rare variant gene-based meta-analysis using SKAT did not yield any significant associations. In contrast, the Burden test yielded a significant association between rare variants in MT-ND3 and BMI (p = 1E-03, T < 0.05 including 82 SNVs). A forest plot representing the 82 SNVs and the overall MT-ND3overall meta is shown in Figure S17. Several gene-HOMA-B, HbA1c, and BMI associations were suggestively significant employing both the SKAT and Burden approaches (MT-RNAs MT-TF [MIM: 590070], MT-TV [MIM: 590105], MT-TG [MIM: 590035], MT-TQ [MIM: 590030], and MT-RNR1 [MIM: 561000]; p \leq 1E-02; Tables 2 and 3). A total of 131 (T5-test) and 123 (T1-test) low-frequency and/or rare variants contributed to T5-test and T1-test, respectively. We used two gene-based approaches, burden test and sequence kernel association test (SKAT), to evaluate the association between a gene and a phenotype. Burden tests access the cumulative effects of multiple variants by assuming that all variants have the same directionality in a genetic region. SKAT tests use a score-based variance component framework without assuming that all variants have the same directionality. Although the two methods are different, they all evaluate aggregate effects of multiple low-frequency and/or rare variants

Table 3. Re	sults of mtDNA G	ene-Based Bu	ırden T1 and T5 N	leta-Analysis Tes	t (p ≤ 0.01)			
Trait	Ancestry	Т	Gene	р	Beta	SE	cMAFUsed	nSNVs
ВМІ	PA	0.05	MT-ND3	1.0E-03	0.007	0.002	0.290	82
ВМІ	PA	0.05	MT-TQ	2.0E-03	0.020	0.006	0.075	12
ВМІ	PA	0.05	MT-CO2	5.0E-03	0.003	0.001	0.491	155
НОМАВ	PA	0.01	MT-TF	5.0E-03	0.038	0.014	0.022	5
НОМАВ	PA	0.01	MT-TV	6.0E-03	0.088	0.032	0.009	2
НОМАВ	PA	0.05	MT-RNR1	7.0E-03	0.002	0.001	1.323	119
HOMAIR	EA	0.05	MT-TG	7.0E-03	0.027	0.010	0.061	13
ВМІ	EA	0.05	MT-ND3	7.0E-03	0.006	0.002	0.194	81
НОМАВ	PA	0.05	MT-TV	8.0E-03	0.031	0.011	0.078	6
BMI	EA	0.05	MT-TQ	8.0E-03	0.018	0.007	0.064	12
НОМАВ	EA	0.05	MT-RNR1	9.0E-03	0.002	0.001	1.287	120
НОМАВ	EA	0.05	MT-TF	9.0E-03	0.018	0.007	0.127	10
НОМАВ	EA	0.05	MT-TV	9.0E-03	0.030	0.011	0.079	6
НОМАВ	EA	0.01	MT-RNR1	1.0E-02	0.003	0.001	0.292	61

Abbreviations and definitions: Trait, the trait used for a specific test; PA, Pan ancestry; EA, European ancestry; T, MAF-value threshold for selecting SNVs to be included in the gene-based-burden association test; Gene, gene name from mtDNA; p, p value from the gene-based burden test; the score test of the weighted sum of genotypes has the form of statistic, $T = \sum_j w_j U_j$, where w is a weight for SNV_j and U_j is the score statistic for SNV_j; Beta and SE are result of regressing the trait on a weighted sum of genotypes; cMAFUsed, cumulative minor allele frequency; nSNVs, the number of SNVs used in the gene-based burden meta-analysis.

with a phenotype. A significant gene-test reflects an aggregate effect of multiple variants in the same area. If most variants in ND6 are not associated with the phenotype, the gene-based test might not be significant. Although statistical significance was not achieved, the association of MT-ND6 with BMI was suggestive in the burden (p = 0.06 [T5] and 0.04 [T1]) and SKAT (p = 0.15 [T5] and 0.08 [T1] tests).

Identification of MT-nDNA Candidate Variants Associated with Metabolic Traits

We identified 2,282 MT-nDNA candidate genes (see Material and Methods) and assessed their association from 20 GWASs with 31 datasets (Table S4). From the MT-nDNA candidate list, 109 genes reached statistical significance following correction for multiple testing (Bonferroni p < 1E-06) of which 46 were associated with BMI, 2 with extreme obesity, 26 with WHR, 18 with glucose, 7 with insulin, 1 with HOMA-B, 1 with HOMA-IR, and 20 with HbA1c, totaling 121 associations (Table 4). The use of additional SNVs belonging to the same 109 MTnDNA genes, but now sourced from the GWAS catalog for the same 7 traits or any other traits, indicated that 84% (27% improvement) of MT-nDNA genes passed $p \le 5E-08$, while 16% remained at $p \le 1E-06$ without passing the p \leq 5E-08 threshold. Of the MT-nDNA associations, GCK (MIM: 138079), MRPL33 (MIM: 610059), PPARG (MIM: 601487), SLC2A2 (MIM: 138160), AMBRA1 (MIM: 611359), NR1H3 (MIM: 602423), MTCH2 (MIM: 613221), IGF1 (MIM: 147440), and BCL2 (MIM: 151430) were associated with more than one trait (Figures 2, 3,

S8, and S9). For example, the well-known *GCK* is a member of hexokinases that phosphorylates glucose to produce glucose-6-phosphate, the first step in most glucose metabolism pathways, and has pleiotropic effects (see Discussion).

Enrichment Analysis of MT-nDNA Candidate Genes

The 109 MT-nDNA selected genes are candidates for MT function based on their protein localization in mitochondria, as well as from mining the published literature (Table S5). We used Literature Lab and MetaCore software and the corresponding databases to perform enrichment analyses, which provided information for MT-nDNA gene-label relations with terms, pathways, diseases, gene ontology processes, and clustering (see Supplemental Material and Methods, section 8 and Figure S10). When comparing the 109 MT-nDNA candidate genes versus the remaining 2,173 (2,282 - 109), the 109 set showed enrichment (p = 1.7E-12) for "Signal transduction, Neuropeptide signaling pathways," which included, among others, POMC (MIM: 176830) and MC4R (MIM: 155541), while no such enrichment was found for the 2,173 set. Out of 109 MT-nDNA candidate genes, 21 of the significantly associated genes were functionally related with cholesterol (Table S6 and Figure S11), 13 with glucose and insulin, and 5 with adipose/obesity. Of the 109 MT-nDNA genes, 13 associated with the "Type 2 diabetes"54,61,63 term (Table S7) while 18 were associated with "Cardiovascular disease" (Table S7). (For space limitation, a detailed enrichment analysis is provided in the Supplemental Material and Methods, section 8.) These

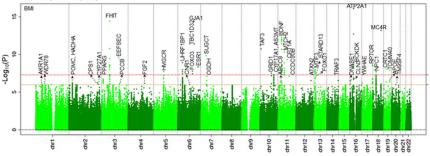
Table 4. GWAS Findings for Seven Traits (BMI, WHR, Glucose, Insulin, HOMA-B, HOMA-IR, HbA1c) for 109 MT-nDNA Candidate Genes **Full Gene Name (Cytogenetic** No SNV WHR p GLUC p **Chrom Position** Role Gene Position) BMI p OBESITY p INS p HOMA-Bp HOMAIRp HbA1cp rs622798 Aldo-Keto Reductase Family 1 8.56E-07 1 45549599 upstream-AKR1A1 2 kb Member A1 (1p34.1) rs1280316 1 66843725 Intron WDR78 WD repeat domain 78 (1p31.3) 6.81E - 07SLC44A5 Solute carrier family 44 member 5 rs1093013 1 75634658 Intron 4.86E-17 -(1p31.1) WARS2 Tryptophanyl TRNA Synthetase rs6428792 1 119114244 Intron 7.95E-18 -2, Mitochondrial (1p12) rs2301453 1 DNM3 Dynamin 3 (1q24.3) 172389027 Intron 4.38E-17 rs4844390 1 207761504 Intron **CD46** CD46 Molecule, Complement 6.90E - 07Regulatory Protein (1q32.2) Lysophospholipase Like 1 (1q41) rs11118296 1 219408638 Intron LYPLAL1 3.00E-07 rs6713865 2 23676937 Intron KLHL29 Kelch like family member 29 4.39E-13 (2p24.1)2 POMC Proopiomelanocortin (2p23.3) rs934778 25166355 Intron 7.15E-0710 rs1107238 2 HADHA Hydroxyacyl-CoA 8.86E-07 26235376 Intron Dehydrogenase/3-Ketoacyl-CoA Thiolase/Enoyl-CoA Hydratase (Trifunctional Protein), Alpha Subunit (2p23.3) Tripartite Motif Containing 54 11 rs13404446 2 27296386 intron TRIM54 3.09E-09 -(2p23.3)12 rs4665965 2 27313513 intron MPV17 MPV17, Mitochondrial Inner 1.83E-09 -Membrane Protein (2p23.3) MRPL33 Mitochondrial Ribosomal 13 rs3736594 2 27772914 intron 3.02E-13 4.67E-07 -Protein L33 (2p23.2) LRPPRC Leucine Rich Pentatricopeptide rs4346434 2 43992607 intron 8.52E-08 Repeat Containing (2p21) 15 rs16843390 2 209655109 intron MAP2 Microtubule Associated 3.32E-08 -Protein 2 (2q34) Carbamoyl-Phosphate Synthase 1 5.81E-07 16 rs715 2 210678331 utr-3-prime CPS1 Cytochrome P450 Family 27 rs933994 2 218785893 intron CYP27A1 8.65E - 07Subfamily A Member 1 (2q35) 18 rs17036328 3 12348985 intron PPARG Peroxisome Proliferator Activated 4.27E-07 3.59E-12 -Receptor Gamma (3p25.2)

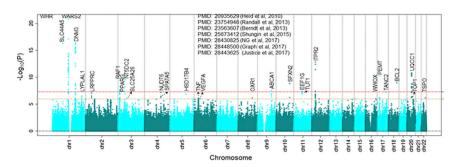
(Continued on next page)

No	SNV	Chrom	Position	Role	Gene	Full Gene Name (Cytogenetic Position)	ВМІ р	OBESITY p	WHR p	GLUC p	INS p	НОМА-В р	HOMAIR p	HbA1c p
19	rs3729931	3	12585017	intron	RAF1	Raf-1 Proto-Oncogene, Serine/ Threonine Kinase (3p25.2)	-	-	3.60E-10	_	-	_	-	_
20	rs11715915	3	49417897	nc-transcript	AMT	Aminomethyltransferase (3p21.31)	_	-	-	4.90E-08	-	_	-	_
21	rs12489828	3	52532998	intron	NT5DC2	5'-Nucleotidase Domain Containing 2 (3p21.1)	-	-	2.60E-10	-	-	-	-	-
22	rs2365389	3	61250788	intron	FHIT	Fragile Histidine Triad (3p14.2)	3.75E-15	-	_	-	-	-	_	_
23	rs332375	3	66377079	intron	SLC25A26	Solute Carrier Family 25 Member 26 (3p14.1)	-	-	7.33E-07	-	-	-	-	-
24	rs1735536	3	128377770	intron	EEFSEC	Eukaryotic Elongation Factor, Selenocysteine-TRNA Specific (3q21.3)	2.95E-10	-	-	-	-	-	-	_
25	rs9844666	3	136255374	intron	РССВ	Propionyl-CoA Carboxylase Beta Subunit (3q22.3)	7.22E-07	-	-	-	-	-	-	_
26	rs11924648	3	171000207	intron	SLC2A2	Solute Carrier Family 2 Member 2 (3q26.2)	-	_	-	1.02E-17	-	-	-	4.05E-09
27	rs10012946	4	6291623	intron	WFS1	Wolframin ER Transmembrane Glycoprotein (4p16.1)	-	-	-	4.17E-07	-	-	-	_
28	rs10518406	4	122841742	intron	FGF2	Fibroblast Growth Factor 2 (4q28.1)	6.50E-07	-	-	_	-	_	-	_
29	rs1458758	4	122914724	intron	NUDT6	Nudix Hydrolase 6 (4q28.1)	-	_	6.22E-08	_	_	_	_	_
30	rs303084	4	123145793	intron	SPATA5	Spermatogenesis associated 5 (4q28.1)	_	-	3.40E-07	_	-	-	-	-
31	rs12654264	5	75352778	intron	HMGCR	3-Hydroxy-3-Methylglutaryl-CoA Reductase (5q13.3)	1.81E-08	-	-	-	-	-	-	-
32	rs10478424	5	119453325	intron	HSD17B4	Hydroxysteroid 17-Beta Dehydrogenase 4 (5q23.1)	_	-	1.40E-07	_	-	-	-	-
33	rs2881156	5	135812973	intron	SLC25A48	Solute carrier family 25 member 48 (5q31.1)	-	8.10E-07	-	_	-	_	-	-
34	rs3828870	6	16743066	intron	ATXN1	Ataxin 1 (6p22.3)	_	_	_	_	-	_	_	5.52E-07
35	rs1800562	6	26092913	intron	HFE	Hemochromatosis (6p22.2)	_	_	_	_	-	_	_	4.67E-28
36	rs1800629	6	31575254	upstream- 2KB	TNF	Tumor necrosis factor (6p21.33)	-	-	7.30E-07	-	-	-	-	-
37	rs6457796	6	34860776	intron	UHRF1BP1	UHRF1 binding protein 1 (6p21.31)	1.15E-09	-	-	-	_	-	-	-

						Full Gene Name (Cytogenetic								
Ю	SNV	Chrom	Position	Role	Gene	Position)	ВМІ р	OBESITY p	WHR p	GLUC p	INS p	НОМА-В р	HOMAIR p	HbA1c p
8	rs10434	6	43785475	utr-3-prime	VEGFA	Vascular endothelial growth factor A (6p21.1)	-	-	8.80E-07	-	_	-	-	-
9	rs1049354	6	88143732	utr-3-prime	CNR1	Cannabinoid receptor 1 (6q15)	9.57E-07	_	-	_	-	-	_	-
0	rs9400239	6	108656460	intron	FOXO3	Forkhead box O3 (6q21)	1.61E-08	_	-	_	-	-	_	-
1	rs1273733	6	121131419	downstream- 500B	TBC1D32	TBC1 domain family member 32 (6q22.31)	3.96E-12	_	-	_	-	_	-	-
2	rs1049349	6	121449496	utr-3-prime	GJA1	Gap junction protein alpha 1; synonymous: CX43 (6q22.31)	4.18E-15	-	-	-	-	-	-	-
3	rs1293954	6	151669826	intron	ESR1	Estrogen receptor 1 (6q25.1-q25.2)	4.41E-09	_	-	-	-	-	-	-
4	rs1203576	7	40808233	intron	SUGCT	<i>C7orf10</i> (Succinyl-CoA:Glutarate-CoA Transferase, 7p14.1)	1.48E-10	_	-	_	_	_	-	_
5	rs2908289	7	44184343	intron	GCK	Glucokinase (7p13)	_	_	-	3.32E-88	-	6.00E-09	_	2.24E-19
6	rs1088867	7	44705214	intron	OGDH	Oxoglutarate dehydrogenase (7p13)	7.90E-08	_	-	_	_	-	-	-
7	rs16892421	8	106499705	intron	OXR1	Oxidation resistance 1 (8q23.1)	_	_	6.94E-07	_	-	_	_	_
8	rs7835803	8	120030213	intron	DEPTOR	DEP domain containing MTOR interacting protein (8q24.12)	_	_	-	4.97E-07	_	_	-	-
9	rs2777795	9	104910084	intron	ABCA1	ATP binding cassette subfamily A member 1 (9q31.1)	_	-	3.13E-08	_	-	_	-	_
0	rs7023913	9	128255683	downstream- 500B	DNM1	Dynamin 1 (9q34.11)	-	7.30E-07	-	-	_	-	-	-
1	rs3829109	9	136362314	intron	DNLZ	DNL-Type Zinc Finger (9q34.3)	_	_	_	1.13E-10	-	_	_	_
2	rs1244497	10	7838019	intron	TAF3	TATA-box binding protein associated factor 3 (10p14)	1.84E-11	_	-	_	-	_	-	-
3	rs5030913	10	69246375	intron	HKDC1	Hexokinase domain containing 1 (10q22.1)	-	-	-	-	-	-	-	3.56E-13
4	rs4745982	10	69330087	intron	HK1	Hexokinase 1 (10q22.1)	_	_	-	_	-	-	-	2.87E-65
5	rs7899106	10	85651147	intron	GRID1	Glutamate Ionotropic Receptor Delta Type Subunit 1 (10q23.2)	2.96E-08	-	-	-	-	-	_	_
6	rs7917772	10	102727686	intron	SFXN2	Sideroflexin 2 (10q24.32)	_	-	1.45E-09	_	-	_	_	_
7	rs1004467	10	102834750	intron	CYP17A1	Cytochrome P450 Family 17 Subfamily A Member 1 (10q24.32)	1.18E-07	-	-	-	-	-	-	_

No	SNV	Chrom	Position	Role	Gene	Full Gene Name (Cytogenetic Position)	ВМІ р	OBESITY p	WHR p	GLUC p	INS p	нома-в р	HOMAIR p	HbA1c p
58	rs3740390	10	102878723	intron	AS3MT	Arsenite Methyltransferase (10q24.32)	4.82E-08	-	_	_	_	-	-	_
59	rs4758633	11	219538	intron	SIRT3	Sirtuin 3 (11p15.5)	_	-	_	-	-	_	-	3.44E-10
50	rs757110	11	17396930	missense	ABCC8	ATP Binding Cassette Subfamily C Member 8 (11p15.1)	4.23E-07	-	-	-	-	-	-	-
51	rs10767664	11	27704439	intron	BDNF	Brain Derived Neurotrophic Factor (11p14.1)	5.53E-13	-	-	_	-	-	-	_
62	rs11038913	11	46538180	intron	AMBRA1	Autophagy and beclin 1 regulator 1 (11p11.2)	-	-	-	4.29E-08	4.91E-18	-	-	-
63	rs11039149	11	47255124	intron	NR1H3	Nuclear Receptor Subfamily 1 Group H Member 3 (11p11.2)	-	-	-	1.26E-12	4.13E-45	-	-	-
64	rs7118178	11	47637583	intron	MTCH2	Mitochondrial carrier 2 (11p11.2)	5.12E-08	_	-	3.84E-14	2.16E-29	_	_	-
55	rs4246215	11	61796827	utr-3-prime	FEN1	Flap Structure-Specific Endonuclease 1 (11p12.2)	-	-	-	4.46E-11	-	-	-	-
66	rs174556	11	61813163	intron	FADS1	Fatty acid desaturase 1 (11q12.2)	_	-	_	7.82E-18	-	_	-	_
57	rs7943191	11	62561079	intron	EEF1G	Eukaryotic translation elongation factor 1 gamma (11q12.3)	-	-	4.36E-08	-	-	-	_	_
68	rs11231150	11	62584330	intron	TUT1	Terminal uridylyl transferase 1, U6 snRNA-specific (11q12.3)	-	-	5.20E-08	_	_	-	-	-
69	rs1017639	11	68831066	intron	CPT1A	Carnitine Palmitoyltransferase 1A (11q13.3)	4.96E-10	_	_	_	_	-	-	_
70	rs1296252	11	83273268	intron	CCDC90B	Coiled-Coil Domain Containing 90B (11q13.3)	7.60E-08	_	_	_	_	-	-	_
71	rs2110073	12	6966719	intron	PHB2	Prohibitin 2 (12p13.31)	_	_	_	_	-	_	_	4.44E-08
72	rs7311050	12	7013532	intron	LPCAT3	Lysophosphatidylcholine Acyltransferase 3 (12p13.31)	_	-	-	_	_	-	-	8.60E-08
73	rs1049380	12	26336611	downstream- 500B	ITPR2	Inositol 1,4,5-Trisphosphate Receptor Type 2 (12p11.23)	_	-	1.42E-13	-	-	-	-	-
74	rs2408955	12	48105348	upstream-2KB	PFKM	Phosphofructokinase, muscle (12q13.11)	-	-	-	-	-	-	-	1.42E-15
75	rs35767	12	102481791	missense	IGF1	Insulin Like Growth Factor 1 (12q23.2)	-	-	_	-	7.27E-08	-	7.57E-08	_
76	rs4766578	12	111466567	intron	ATXN2	Ataxin 2 (12q24.12)	2.85E-07	_	-	_	-	_	_	1.84E-07
77	rs9581856	13	27451478	upstream-2KB	MTIF3	Mitochondrial Translational Initiation Factor 3 (13q12.2)	1.03E-08	-	-	_	_	_	-	_


(Continued on next page)


Tab	le 4. Contii	nued												
No	SNV	Chrom	Position	Role	Gene	Full Gene Name (Cytogenetic Position)	BMI р	OBESITY p	WHR p	GLUC p	INS p	НОМА-В р	HOMAIR p	HbA1c p
78	rs1124607	13	27921083	intron	PDX1	Pancreatic And Duodenal Homeobox 1 (13q12.2)	_	-	-	4.49E-07	-	-	-	-
79	rs1325363	13	33192439	intron	STARD13	StAR related lipid transfer domain containing 13 (13q13.1-q13.2)	7.25E-08	-	-	-	-	-	-	-
80	rs1078892	13	40563883	intron	FOXO1	Forkhead Box O1 (13q14.11)	5.11E-08	-	_	-	-	_	_	-
31	rs7143963	14	102838088	intron	TRAF3	TNF Receptor Associated Factor 3	2.82E-07	_	_	-	-	_	_	-
32	rs12908437	15	98744146	intron	IGF1R	Insulin Like Growth Factor 1 Receptor	-	-	-	6.32E-07	-	-	-	-
3	rs740862	16	3639677	intron	DNASE1	Deoxyribonuclease 1	3.21E-07	-	_	-	-	_	-	-
34	rs151181	16	28479196	intron	CLN3	CLN3, Battenin	2.10E-07	-	_	-	-	_	_	-
35	rs8055138	16	28880144	intron	ATP2A1	ATPase Sarcoplasmic/ Endoplasmic Reticulum Ca ²⁺ Transporting 1	8.17E-17	-	-	-	_	_	-	-
6	rs749767	16	31113086	downstream- 500B	BCKDK	Branched Chain Ketoacid Dehydrogenase Kinase	1.21E-09	-	-	-	-	-	-	-
7	rs7186084	16	68782357	intron	CDH1	Cadherin 1	_	_	_	_	-	_	_	1.09E-07
88	rs1847591	16	78908913	intron	WWOX	WW domain containing oxidoreductase	_	-	9.99E-07	-	-	-	-	_
9	rs9904685	17	1352101	intron	YWHAE	Tyrosine 3-monooxygenase/ tryptophan 5-monooxygenase activation protein epsilon	6.27E-07	-	-	-	_	_	-	-
0	rs4646404	17	17516885	intron	PEMT	Phosphatidylethanolamine N- Methyltransferase	-	-	5.30E-11	_	-	-	-	-
1	rs9914988	17	28856086	intron	ERAL1	Era like 12S mitochondrial rRNA chaperone 1	-	-	-	_	-	_	-	2.77E-11
2	rs242559	17	45948522	intron	MAPT	Microtubule Associated Protein Tau	-	-	-	8.29E-07	-	-	-	-
3	rs1319247	17	63106279	intron	TANC2	Etratricopeptide repeat, ankyrin repeat and coiled-coil containing 2	-	-	6.02E-08	-	-	_	-	-
4	rs12940622	17	80641771	intron	RPTOR	Regulatory Associated Protein Of MTOR Complex 1	2.49E-09	-	-	_	-	-	-	-
5	rs1044661	17	82943144	intron	B3GNTL1/ TBCD	UDP-GlcNAc:BetaGal Beta-1,3-N- Like 1/Tubulin Folding CofactorD		inyltransferase	_	_	-	_	_	1.74E-46
6	rs1788785	18	23562376	intron	NPC1	NPC Intracellular Cholesterol Transporter 1	1.98E-08	-	_	_	_	_	_	_
_														

(Continued on next page)

No	SNV	Chrom	Position	Role	Gene	Full Gene Name (Cytogenetic Position)	ВМІ р	OBESITY p	WHR p	GLUC p	INS p	нома-в р	HOMAIR p	HbA1c p
97	rs17066842	18	60373391	upstream-2KB	MC4R	Melanocortin 4 Receptor	6.40E-14	_	_	_	_	=	=	_
98	rs12454712	18	63178651	intron	BCL2	BCL2, Apoptosis Regulator	-	_	1.10E-09	-	1.39E-07	_	-	-
99	rs757318	19	18709498	intron	CRTC1	CREB Regulated Transcription Coactivator 1	8.76E-09	-	-	-	-	-	-	-
100	rs2075650	19	44892362	intron	TOMM40	Translocase Of Outer Mitochondrial Membrane 40	1.25E-08	-	-	-	-	-	-	-
101	rs405509	19	44905579	upstream-2 kb	APOE	Apolipoprotein E	2.65E-07	_	-	_	_	-	-	-
102	rs2281361	20	32140338	intron	TM9SF4	ransmembrane 9 superfamily member 4	9.78E-07	-	-	-	-	-	-	-
103	rs878639	20	35306660	intron	UQCC1	Ubiquinol-Cytochrome C Reductase Complex Assembly Factor 1	_	-	1.50E-11	-	_	-	-	-
104	rs2076574	20	41092733	intron	TOP1	DNA topoisomerase I	_	_	4.11E-07	-	_	_	_	_
105	rs5750373	22	37028990	intron	MPST	Mercaptopyruvate Sulfurtransferase	-	-	-	-	-	-	-	2.17E-07
106	rs2284099	22	43155830	intron	TSPO	Translocator Protein	_	_	6.65E-07	_	_	-	-	-
107	rs1050828	23	154536002	missense	G6PD	Glucose-6-phosphate dehydrogenase	-	-	-	-	-	-	-	8.23E-135
108	rs1448032	23	155052530	intron	FUNDC2	FUN14 domain containing 2	_	_	_	-	_	_	-	5.92E-17
109	rs5940514	23	155559972	intron	TMLHE	Trimethyllysine hydroxylase, epsilon	-	-	-	-	-	-	_	2.22E-19

findings demonstrate the importance of several MT-nDNA candidates to cardiometabolic outcomes.

eQTLs of MT-nDNA Candidate Variants

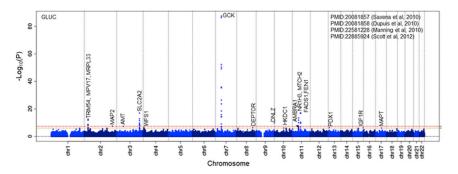
Several variants in or near MT-nDNA candidate genes were identified as expression QTL (eSNV) (Table S8). Based on RegulomeDB,⁷⁸ three variants were the best in eSNVs features' ranking. The first was rs242559, intronic to MAPT (MIM: 157140). Mutations in MAPT associate with lower mitochondrial nicotinamide adenine (NADH) levels, ⁷⁹ partially suppress complex I-driven respiration, and lower overall ATP production by oxidative phosphorylation, with cells relying on glycolysis to maintain ATP levels. The second, rs9897919, is a 3' UTR variant for TBCD (MIM: 604649), tubulin folding cofactor D, and B3GNTL1 (17q25.3 [MIM: 615337]), a putative glycosyltransferase. The third, rs1788821, is intronic to NPC1 (MIM: 607623), which is an intracellular cholesterol transporter with a role in the egress of cholesterol from the endosomal/lysosomal compartments (Table S9).

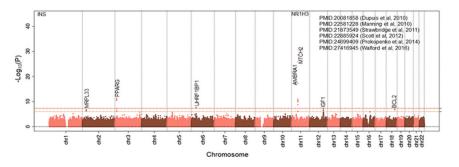
The findings of RegulomeDB were reinforced by HaploReg (v.4.1). 80 The MT-nDNA variants showed an enrichment in transcription regulation features. For instance, rs242559 of *MAPT* is localized within the promoter histone marks in skeletal muscle, at enhancer histone marks of 16 tissues, and at DNase marks of 4 tissues. In addition, the rs242559 polymorphism alters the protein binding site of GATA2, a transcription factor protein that binds in the promoter regions of target genes (Table S9).

To determine the eSNVs' gene targets in specific tissues, we used GTEx $(v.7.0)^{81,82}$ with a summary in Table S8 and detailed in Table S10. The 42 unique eSNVs were assigned

Figure 2. BMI and WHR Association Results with MT-nDNA Candidate Genes

to 29 genes targeting regulation of 50 genes, distributed among 13 tissues (adipose, tibial artery, thyroid, skin, blood, brain, skeletal muscle, esophageal muscularis, fibroblast, liver, pancreas, testis, and tibial nerve). There were 28 unique lead and 18 unique secondary (LD $\rm r^2$ was < 0.02 to the target gene's best eSNV) eSNVs identified (see Material and Methods). For example, rs2510344 of *NPC1* regulates *C18orf8* in skin and rs11663558 of *NPC1* regulates its own *NPC1* gene expressed highest in subcutaneous adipose tissue (GTEx data).


trans-eQTLs of MT-nDNA Candidate Variants


We combined the GWAS p value for the MT-nDNA SNVs with additional

evidence from trans-gene expression regulation for a specific variant using GWAS3D⁸³ (Figures S12.1–S12.3). The GWAS3D software selected 16 cell types, which included chromosomal looping data (5C or ChIA-PET or Hi-C) and important transcriptional marker data (H3K4me1, H3K27ac, DHSs, EP300, and CTCF).83 Among several trans-eQTLs, for example, rs2881156 (p = 8.1E-07) of SLC25A48 (5q31.1 [MIM: 616150], Figure S12.1) associated with obesity and trans-regulated expression of three genes: SAR1B (5q31.1 [MIM: 607690]) involved in protein transport from the endoplasmic reticulum to the Golgi (mutations in this gene are a cause of chylomicron retention disease [MIM: 246700]);⁸⁴ TRPC7 (5q31.1), a regulator of intracellular calcium levels;85 and REEP2 (5q31.2 [MIM: 609347]), which enhances the function of sweet taste receptors⁸⁶ and is about 80 times higher expressed in brain than in other tissues (GTEx data).

PPI Network

We analyzed 109 MT-nDNA proteins using the PPI network (see Web Resources)^{87,88} to identify 4,132 interacting proteins. We present the 15 top genes (Table S11) with highest PageRank score for PPI, ^{89–91} including the number of PPI, a short description of gene's function from Gene Entrez of NCBI-db, associated trait(s), and association p value(s) (see also Supplemental Material and Methods, section 9). From the PPI analysis it is evident that a gene/protein hub (which is assumed important because of a relatively large number of interactions) is not necessary, the topnotch for association with a specific trait, as shown in the Discussion section.

Discussion

This large, comprehensive study of human mitochondrial and nuclear mitochondrial genetic variation in relation to seven key risk factors for metabolic disease provides important information toward a better understanding of the causes and mechanisms of these phenotypes. The use of a twotiered approach—i.e., examining mtDNA variants for up to ~170,202 individuals and nuclear MT-nDNA candidate gene polymorphisms for up to ~339,000 individuals—facilitated the evaluation of the genetic underpinnings of seven metabolic traits reflecting adiposity/obesity and glucose-insulin metabolism and signaling. We identified two mtDNA SNVs (in MT-ATP6 and the D-loop) associated with WHR and fasting glucose, a burden of SNVs in a gene (MT-ND3) associated with BMI, and five rare SNVs of mtDNA (in MT-ATP6, MT-ND5, and MT-ND6) associated with BMI (2 of 3), with WHR (2 of 3), and with fasting insulin (1 of 3). Additionally, the MT-nDNA meta-analysis implicated significant associations with 62 of 109 protein coding candidate genes $(p \le 5E-08)$, 29 additional passing the above threshold for the metabolic traits considered herein or any other traits querying the GWAS catalog (see Web Resources). Only 16% of MT-nDNA findings passed p \leq 1E-06 but did not reach $p \le 5E-08$, and thus may be considered as new MT-nDNA contributions in association with seven metabolic traits (Tables 4 and S12). Enrichment analysis showed that 13 of MT-nDNA genes have also been identified as candidate genes for T2D risk and 18 for CVD risk. The eQTL analysis of MT-nDNA candidates revealed that approximately 27% of associations with seven metabolic traits also act as eSNVs in regulating expression of other cis-genes. In addition, trans-eQTL analysis yielded potential support for maternal

Figure 3. Glucose and Insulin Association Results with MT-nDNA Candidate Genes

and X chromosome epigenetic gene expression regulation. The PPI network analysis identified top PageRank-ed interacting genes from our significant MT-nDNA associations, but they did not necessarily represent the highest trait-specific associations. Overall, these findings indicate the important role of both the nuclear genome and mtDNA-related variants in energy production and, in turn, in the polygenic architecture of metabolic traits. Below we summarize and discuss our most salient study findings.

mtDNA and Metabolic Disease Associations

To date, nearly 290 genetic causes for rare disorders of mitochondrial

energy generation have been identified. ⁹² These rare mitochondrial genetic diseases commonly result in multiple clinical phenotypes with varying penetrance, likely due to differences in heteroplasmy. ⁹³ In our study, *MT-ATP6* variants MT-8706 and MT-8896 (rs202120082), one with MAF > 1% and the other one rare, respectively, were both associated with WHR. *MT-ATP6* is part of the proton-transporting portion of ATP synthase, contributing to its rotational mechanism. ^{94,95} rs202120082 (MT-8896) is a missense mutation (p.Ala124Thr) and conversion of the hydrophobic alanine to an uncharged, polar threonine at this site may have implications for ATP6's ability to effectively pump protons and thus decrease production of ATP energy units.

MT-16320 (rs62581338; MAF > 1%), in the *D-loop*, which contains a few mtDNA replication origins and is possibly involved in accelerating mtDNA synthesis to satisfy developmental, physiological, or aging-related demands, ⁹⁶ displayed a significant association with glucose. MT-16320 is less than 1 kb from a major mtDNA transcription initiation site (IT) that overlaps with promoters (in the D-loop in H-strand, IT_{H1} at 561 bps and IT_{H2} at 630, and in L-strand at 407 bps (IT_{L1}))⁹⁷ and is 500 bps downstream of mitochondrial-encoded cytochrome b (*MT-CYB* [MIM: 516020], plus strand) and 2 kb upstream of *MT-ND6* (minus strand).

Of the five rare SNVs, MT-14272 (rs2853814, missense), MT-14353, and MT-14584 of *MT-ND6* were associated with adiposity-related traits. *MT-ND6* is a core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I) and is part of the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH into the respiratory chain, while

coupling the flow of electrons to the pumping of protons. We also demonstrated an association between insulin and rare variant MT-14124 in the closely related *MT-ND5* gene. *MT-ND5* is also a core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Future studies need to validate these rare variant mtDNA findings.

It is also important to note that we observed several rare gene-based suggestive associations between our metabolic traits (p \leq 5E-02, Tables 2 and 3) and non-protein coding genes, primarily tRNAs. Mutations within tRNAs that impact translation would impact all of the mtDNA-encoded peptides and consequently would be expected to have significant effects on oxidative phosphorylation. The MT-ND3 gene displayed an aggregate of low-frequency variants associated with BMI. MT-ND3 is a subunit of the respiratory chain complex I that is part of the minimal assembly of core proteins required to catalyze NADH dehydrogenation and electron transfer to ubiquinone (coenzyme Q10). Interestingly, previous studies have demonstrated increased MT-ND3 gene expression associated with a higher histological severity of hepatic steatosis. 98 Genebased meta-analysis burden test, which employed inverse variance weighting to combine association results from 82 variants in MT-ND3 gene across cohorts, yielded a significant association between MT-ND3 and BMI (p = 1E-03, Figure S17). This figure illustrates that rare alleles of 82 SNVs contributing in the MT-ND3 meta-analysis have variable effects.

We used GTEx data for mtDNA genes as assembled by the Human Protein Atlas team (see Web Resources). They showed the highest expression of RNA for the *MT-ATP6*, *MT-ND3*, *MT-ND5*, and *MT-ND6* significant mtDNA genes in the heart and brain, which represent the highest energy-demanding tissues as compared, for example, to adipose tissue, in a ratio of about 3:1 (Figure S13). The importance of MT-nDNA and mtDNA gene polymorphisms in the heart is supported by recent publications that have summarized the relation of MT to vascular function, ⁹⁹ as therapeutic targets in heart failure, ¹⁰⁰ and specific genes and pathways that relate to the heart. ^{101,102}

MT-nDNA Candidate Genes Associations (Glycemic Traits)

Glucose sensing in β cells is largely controlled by the hexokinase proteins. Three of the genes encoding hexokinases, HK1 (MIM: 142600), HKDC1 (MIM: 617221), and GCK, were part of our MT-nDNA candidate list and were found to be significantly associated with glucose, HOMA-B, and/or HbA1c (Table 4). Hexokinases catalyze the conversion of glucose into glucose-6-phosphate. The phosphorylation of glucose directly couples extra-mitochondrial glycolysis to intra-mitochondrial oxidative phosphorylation. GCK, for example, with pleiotropic effects, produces an enzyme in the pancreas which plays a role in glucose-stimulated insulin secretion and affects glucose uptake and conversion to glycogen in the liver. The GCK

GWAS-identified variant rs2908289 (Table 4) has been previously associated with glucose, HOMA-B, HbA1c, 54,60 and other variants in LD with it, more recently associated with BMI (rs4607517, $r^2 = 0.65$, p = 8E-56), so with T2D $(rs1799884, r^2 = 0.81, p = 5E-18)$, and with metabolic syndrome (rs3757840, $r^2 = 0.18$, p = 4E-13). Mitochondrial metabolism, which drives the respiratory chain to produce ATP via oxidative phosphorylation, also contributes to glucose sensing, since disruption of mitochondrial oxidative metabolism blocks glucose-stimulated insulin secretion. 40,105-107 Our analysis shows that 13 additional MT-nDNA candidate genes are annotated with SNVs that associate with glucose/insulin metabolism (Figure S11). Diabetes mellitus has been associated with maternally inherited mutations in MT-TK (MIM: 590060), MT-TS2 (MIM: 590085), and MT-TE (MIM: 590025), where the molecular mechanisms involve impaired translation of mtDNA-encoded proteins.³ In addition, MT-nDNA candidate genes POLG (15q26.1 [MIM: 174763], DNA polymerase gamma); RRM2B (8q22.3 [MIM: 604712], a ribonucleotide reductase); OPA1 (3q29 [MIM: 605290], a nuclear-encoded mitochondrial protein with similarity to dynamin-related GTPases); and MPV17 (2p23.3 [MIM: 137960], a mitochondrial inner membrane protein) have been associated with diabetes mellitus, largely due to an impairment in mtDNA maintenance. 108 In our study, rs1050828, a missense mutation of G6PD (Xq28 [MIM: 305900], 154536002 bps; p = 8.2E-135) was associated with HbA1c. G6PD catalyzes the rate-limiting step of oxidative pentose-phosphate pathways, a route for dissimilation of carbohydrates besides glycolysis. It contributes to the production of NADPH and pentose phosphatases for fatty acid and nucleic acid synthesis (Table S6 and Figure S14). G6PD plays an essential role in maintaining health by protecting against oxidative damage. 109,110 The same rs1050828 variant of G6PD has previously been reported as associated with HbA1c lowering in African Americans but not in other populations, leading to misdiagnosis/under-diagnosis of T2D.⁶¹ In the last century, a number of papers reported a maternal excess transmission of T2D, 111-113 suggesting the possibility of an epigenetic transmission of diabetes mediated by the mother. To date, two genes, KLF14 (7q32.2 [MIM: 609393])¹¹⁴ and KCNQ1 (11p15.5p15.4 [MIM: 607542]), 115,116 have been described as potential candidates that show parent-of-origin effects in association with T2D. However, based on our MT-nDNA list, these two genes are not MT-nDNA candidates. In our study, GWAS3D analysis identified G6PD as trans-regulated with the expression of MECP2 (Xq28 [MIM: 300005]) (Figure S12.3). 117 MECP2 binds to methylated DNA and mediates transcriptional repression through interaction with histone deacetylase and the corepressor SIN3A (15q24.2 [MIM: 607776]) (Figure \$14). Lai et al. 118 reported meta-results that T2D-affected case subjects with G6PD deficiency had two times higher odds of developing diabetes than unaffected control subjects. 119 Furthermore,

G6PD protein has a weak score of 1 out of 5 to be found in MT. G6PD is mainly localized in the cytosol and also to the microtubule-organizing center and vesicles (Human Protein Atlas). G6PD protein has 69 interactions and was ranked 65th by the PageRank algorithm for the importance of PPI. These results taken together may suggest that G6PD contributes to the maternal epigenetics of T2D, through X chromosome inheritance and less through MT. Other candidates of MT-nDNA genes that may contribute to mitochondrial epigenetics¹²⁰ are *DNMT1* (19p13.2 [MIM: 126375], DNA methyltransferase 1), POLRMT (19p13.3 [MIM: 601778], RNA polymerase mitochondrial), TFB1M (6q25.3 [MIM: 607033], transcription factor B1, mitochondrial), TFB2M (1q44 [MIM: 607055], transcription factor B2, mitochondrial), and TFAM (10q21.1 [MIM: 600438], transcription factor A, mitochondrial), but showed no significant associations with existing data for the traits studied (for BMI: rs6926853, TFB1M, p = 1.3E-03; WHR: rs10465617, TFB2M, p = 3.1E-03; glucose: rs4804124, DNMT1, p = 7.3E-05;⁵⁴ insulin: rs7253062, DNMT1, p = 4.4E-03; 55 HOMA-B: rs12462004, DNMT1, p = 4.4E-03; ⁵⁴ HOMA-IR: rs892189, DNMT1, p = 7E-04; ⁵⁴ HbA1c: rs11006132, *TFAM*, $p = 2.4E-03^{61}$).

MT-nDNA Candidate Genes Associations (Adipose Traits)

We found that a total of 26 of the 109 MT-nDNA candidate genes showed significant associations with WHR (Tables 4 and S6 and Figure S11). For example, WARS2 (1p12 [MIM: 604733]) encodes the MT tryptophanyl-tRNA synthase. We observed an intronic rs6428792 of WARS2 in association with WHR (p = 7.95E-18).⁵⁰ Another SNV, rs10923724 in LD with rs6428792, $r^2 = 0.29$, WHR p = 9E-25)⁵² upstream of WARS2 but closer to downstream of TBX15 (1p12 [MIM: 604127]), modifies WARS2 expression in skeletal muscle (p = 1.1E-36) and in adipose-subcutaneous tissues (p = 1E-s29) (GTEx data). In our PPI analysis of 109 MT-nDNA genes and 4,132 interactants, WARS2 showed two interactions and was ranked 2,028th based on the PageRank algorithm. Taken together, these findings (our study, GTEx, and GWAS) suggest that associations with WHR might be mediated also by differential expression of WARS2.¹²¹

There were 48 MT-nDNA candidates associating with BMI. For example, *NPC1* (18q11.2, Tables 4 and S6) has been associated with early childhood onset and adult morbid obesity. ¹²² *NPC1* (a cholesterol transporter) is highly expressed in human white adipose tissue adipocytes with increased levels in obese individuals. ¹²³ Our lead SNV rs1788785 is an eSNV for *NPC1* and is not in LD with the best *NPC1* eSNV, supporting *NPC1* as a candidate gene for obesity. Indeed, studies in mice have shown that a non-functioning *NPC1* resulted in late-onset weight loss and less food intake. ¹²⁴ In humans, *NPC1* is part of the cholesterol metabolism pathway (see Web Resources). Recently, *NPC1* mutant cells were reported to have fragmented mitochondrial networks, increased respira-

tion, alterations in the composition of the respiratory chain complex, and a substantial reduction in the cellular ATP level. Thus, a primary lysosomal defect in *NPC1* mutant fibroblasts is accompanied by deregulation of the organization and function of the mitochondrial network. 125 *NPC1* was ranked 241st and had 13 interactions in the PPI network.

Other notable obesity-related variants/genes among MT-nDNA candidates include POMC (2p23.3, adrenocorticotropic peptide/hormone, p = 7.2E-07), which binds to melanocortin 2 receptor (MC2R, 18p11.21 [MIM: 607397]), stimulating release of cortisol, a steroid stressresponse hormone. MC4R (18q21.32, p = 6.4E-14) was ranked the 3rd in BMI-effects compared to FTO (16q12.2 [MIM: 610966]), the top ranked for BMI effects in Speliotes et al., 41 Locke et al., 46 and Winkler et al. 48 MC4R is another member of the melanocortin receptor family, which has a central role in energy homeostasis and somatic growth. MC4R is ranked the 82nd, with 12 PPI, when analyzed for the importance of PPI using the PageRank algorithm. CNR1 (6q15 [MIM: 114610], cannabinoid receptor, p = 9.6E-07) influences mitochondrial respiration. CRTC1 (19p13.11 [MIM: 607536], CREB regulated transcription coactivator 1, p = 8.8E-09) is a potent coactivator of PGC1a (4p15.2, officially known as PPARGC1A [MIM: 604517]), a transcriptional coactivator that regulates the genes involved in energy metabolism, and inducer of mitochondrial biogenesis.

MTCH2 (11p11.2, mitochondrial carrier homolog 2, rs7118178, BMI p = 5.1E-08) was 9th in BMI effects compared to FTO in Speliotes et al.41 and 16th in Locke et al. 46 MTCH2 is located in the inner membrane of MT, highly expressed in white adipose tissue and adipocytes, and is thought to play a regulatory role in adipocyte differentiation and biology. 126 The MTCH2 GWAS-variant rs7118178 (Table 4) has been associated with BMI, 46 glucose,^{36,55} and pro-insulin⁵⁸ (Figure 4, T1-4). MTCH2 has 87 protein interactions and ranked 14th when analyzed for the importance of PPI using PageRank algorithm. MTCH2 deficiency in mouse muscle has been shown to be beneficial, protecting mice from the obesogenic effect of high-fat diets, most likely the result of an increase in mitochondrial metabolism. MTCH2 is proposed as a repressor of muscle mitochondrial metabolism and size. 127 Using both GWAS and eQTL information, three MTCH2 SNVs co-localize within a 15 kbp DNA region. Based on GTEx data, rs4752856 in MTCH2 (Figure 4, T6) regulates gene expression of *C1QTNF4* (11p11.2 [MIM: 614911]) and PSMC3 (11p11.2 [MIM: 186852]) in subcutaneous adipose tissue. rs3817335, which is in high LD $(r^2 = 0.903)$ with rs4752856, regulates *SLC39A13* (11p11.2 [MIM: 608735]) in tibial artery tissue, while rs7118178 (in less LD to two other SNVs, $r^2 = 0.083$) regulates CELF1 (11p11.2 [MIM: 601074]) in tibial nerve tissue, and with results similar to the best eSNVs for the mentioned genes and in high LD with their eSNVs (Figure 4, T5). C1QTNF4 is reported as a potential cytokine

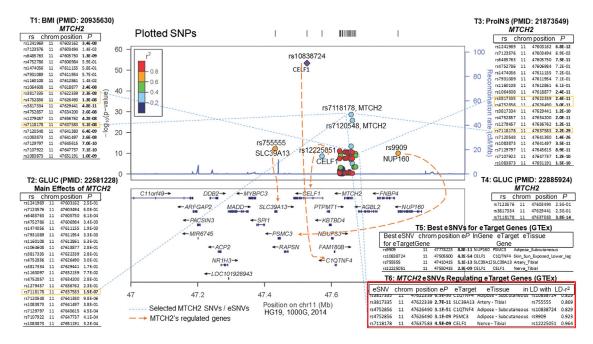


Figure 4. Selected SNVs of MTCH2 Significantly Associating with BMI, Glucose, Insulin, and a Few of Them Regulating the Expression (eSNVs) of at Least Four Genes: C1QTNF4, SLC39A13, PSMC3, and CELF1

First, we used LocusZoom¹⁴² for plotting regional information for *MTCH2* selected SNVs, which have been reported by large GWAS publications (for BMf⁴¹ [T1], for glucose^{5,5} [T2], for proinsulin^{5,8} [T3], and another large analysis for glucose^{5,6} [T4]), for strength and extent of the association signal relative to genomic position, local linkage disequilibrium, and recombination patterns and the positions of genes in the region. Second, we used GTEx⁸¹ data to identify the SNVs of *MTCH2* that are eSNVs by influencing the expression of other *cis*-target-genes (*C1QTNF4*, *PSMC3*, *SLC39A13*, *CELF1*) (T6). Third, we verified whether these eSNVs of *MTCH2* (connected with blue dashed lines) are true expression regulators, by identifying the best eSNVs of the four target genes (T5, regulation effects shown with orange-dashed lines) and evaluating the LD r² between the *MTCH2* eSNV, e.g., rs4752856 (T6) and the best eSNV rs10838724 (T5) for the corresponding target gene (*C1QTNF4*), which was found to be 0.829 in adipose-subcutaneous tissue (T6). Fourth, the *MTCH2* SNVs serving as eSNVs for the four *cis*-target-genes, shown in T6, colocalize in about 15K bps region. Thus, *MTCH2* associates with BMI, glucose, and proinsulin, and among others influence the gene expression of other *cis*-genes (*C1QTNF4*, *PSMC3*, *SLC39A13*, *CELF1*), who in itself contribute also to individuals' obesity risk (see Discussion).

that can induce the activation of both *NFKB1* (MIM: 164011) and *IL6/STAT3* (MIM: 147620/102582) signaling pathways¹²⁸ and acts in the hypothalamus to modulate food intake and peripheral energy expenditure.¹²⁹ *PSMC3* is involved in ATP-dependent degradation of misfolded and damaged proteins and in removal of no longer required proteins. This protein is also involved in cell cycle progression, apoptosis, and DNA damage repair. A knockdown of *PSMC3* in human immortalized fibroblasts increased cell proliferation.¹³⁰ *CELF1* has been associated with Alzheimer disease and obesity.¹³¹ Consequently, *MTCH2* SNVs regulate gene expression of other *cis*-genes related to obesity, food intake, and/or cell number. Thus, *MTCH2* effects on BMI may be more complex than previously accounted for.

Other Functions of MT-nDNA Candidate Genes

Mitochondrial inheritance has been previously associated with obesity, metabolic syndrome, insulin resistance, type 2 diabetes, and cardiovascular disease. 3,40,132–135 The complex genetics of MT affects processes of glucose, lipid, and amino acid catabolism, with ATP as the final energy product. By-products of these processes play an important role in signaling (e.g., ROS) and are used for

epigenetic modifications (e.g., acetyl CoA). In our study, we would expect a preponderance of glycemic and lipid genes and proteins. Out of 109 MT-nDNA candidate genes, 21 of the significantly associated genes were functionally related with cholesterol (Table S6 and Figure S11), 16 with glucose and insulin, and 5 with adipose/obesity. The 109 MT-nDNA candidate genes have other functions too. For example, rs1044661 is located at 17q25.3, overlapping two genes that run in opposite strands: TBCD (involved in tubulin folding as cofactor D) and B3GNTL1 (a putative glucosyltransferase). This SNV was associated with HbA1c (p = 1.74E-46).⁶¹ Recently, Francis et al. 136 hypothesized that the interaction between TBCD (17q25.3) and ARL2 (11q13.1 [MIM: 601175]) suggest that ARL2 serves as regulator of both mitochondrial fusion and microtubule dynamics. In 109 MT-nDNA candidates, WDR78 (1p31.3), TRIM54 (2p23.3 [MIM: 606474], regulating titin kinase [controlling elasticity in muscle] and microtubule-dependent signaling pathways in striated muscles), DNM3 (1q24.3 [MIM: 611445], involved in vesicular transport and with biased expression in brain), MAP2 (2q34 [MIM: 157130], involved in microtubule assembly and neurogenesis), GJA1 (6q22.31 [MIM: 121014], involved in the

contraction of heart) and *MAPT* (17q21.31, expressed in nervous system) produce microtubule-associated proteins in interaction with MT (Table S6 and Figure S11). It should be noted that rs1050828, a missense mutation of *G6PD* residing on X chromosome, may impact HbA1c through non-glycemic factors rather than glucose metabolism.⁶¹ Additional functions of MT-nDNA candidate genes are described in the Supplemental Material and Methods, section 7.

Strengths and Limitations

Our study had many strengths. We used large sample sizes for studying mtDNA and MT-nDNA. At the mtDNA level we validated SNVs used per cohort and imputed based on Cosmopolitan MT-1000 Genomes. At the MT-nDNA level we used the strength of many consortia contributions for associations with seven traits. As a consequence, we performed comprehensive mtDNA and MT-nDNA analyses. The seven mtDNA variants significant associations showed no statistical significant deviations from the homogeneity/ similarity of beta contributions before meta-pooling across studies as reported with Het-p in Table 1, as well as graphically represented in the Forest plot (Figure \$16). For supporting MT-future studies, we have provided mtDNA updated Tables S15-S28 for arrays used in this study including MitoMap annotation. Also, we include Table S32 of predictions from the bioinformatics platforms that have been shown to have the highest sensitivity and specificity for the mtDNA variants. 137 Our study also had some limitations. Rare mtDNA mutations are usually heteroplasmic point mutations and/or mtDNA lesions that typically result in a primary mitochondrial disease, which can manifest as a broad range of clinical outcomes. In this study we have interrogated the effect of inherited mtDNA variants, much commoner in the population than typical mtDNA mutations. Therefore, while there is a great deal of literature linking inherited mtDNA variants to disease, many of these studies have limited statistical power¹³⁸ and several have never been independently replicated. So in many respects there is not a great deal of robust literature to call upon. The harmonization of mtDNA in each study was dependent on the number of mtDNA variants and their quality. Some variants were dropped before performing any imputation, because low-quality variants matched not only to the mtDNA genome, but also to nuclear genome (see mtDNA Variant Harmonization in Material and Methods). A number of quality-control filters were applied to mtDNA, which reduced individual sample size per marker or the number of useful markers. We did not address the association of significant markers by gender, because in our study sample sizes per mtDNA marker were variable and often small.

Perspective and Conclusion

We focused on associations of MT with adipose and glycemic traits, yet we acknowledge that there is still much to be learned from other traits, for example for triglycerides, high-density lipoprotein cholesterol, and C-reactive protein. 46,139-141 Notably, we identified 21 MT genes of lipid metabolism, although this was not the direct focus of our study. For example, TMLHE (Xq28 [MIM: 300777], trimethyllysine dioxygenase associated with HbA1c, p = 2.2E-19) is the first enzyme in the carnitine biosynthesis pathway. Carnitine play an essential role in the transport of activated fatty acids across the inner mitochondrial membrane and this gene is ubiquitous for its expression in heart. Hence, MT associations with other traits at the consortia-level remain to be explored. In conclusion, we identified common, rare SNVs, and a gene burden of genetic mtDNA variants, as well as 109 MT-nDNA genes associated with metabolic traits. Of the 109 MTnDNA candidate genes, a subset pointed to associations with adipose, glucose metabolism, T2D, and CVD, and a subset of SNVs was inferred to contribute for differential regulatory genes expression. We documented in this study that the MT-candidates (SNVs/genes) have special contributions for functioning and energy homeostasis in adipose tissues and to glucose metabolism and insulin signaling.

Accession Numbers

Summary statistics for the mtDNA meta-analyses are available in the dbGaP repository for the CHARGE Consortium, phs000930. v8.p1.

Supplemental Data

Supplemental Data include 17 figures, 32 tables, Supplemental Material and Methods, Supplemental Acknowledgments, and Supplemental Study Descriptions and can be found with this article online at https://doi.org/10.1016/j.ajhg.2018.12.001.

Acknowledgments

A.E. Justice is supported by a K99/R00 from the National Institutes of Health, National Heart, Lung, and Blood Institute (NHLBI) (5K99HL130580-02 and 5R00HL130580-04). G. Hudson has received funding support by Wellcome Trust Centre for Mitochondrial Research, Grant Code G906919. J.I.R., X.G., Y.-D.I.C., K.D.T., Y.H., K.S., and J.Y. have received NIH support for research related to mitochondria. A.T.K., C. Liu, J.L.F., M. Graff, C.T.H., C.G., L.R.Y., M.F.F., D.E.A., D.I.C., K.Y., W.D.H., S.J.L., L.W., T.J.B., L.D.L.-G., T.I.A.S., G. Hudson, D.L., A.N.M., D.M.B., M.A.P., J.B.M., J.I.R., and K.E.N. were the writing group for this paper. M.A.P. and K.E.N. are from the CHARGE ADIPOSITY working group; J.I.R. and J.B.M. are from the CHARGE DIABETES working group.

Declaration of Interests

A.Y.C. is currently an employee of Merck & Co. C.T.-P. has received grants from Bayer pertaining to antithrombotic treatment of atrial fibrillation and cardiac valve replacements. D.O.M.-K. works as a part-time clinical research consultant for Metabolon, Inc. The remaining authors declare no competing financial interests.

Received: July 1, 2018 Accepted: December 6, 2018 Published: December 27, 2018

Web Resources

1000 Genomes data (released April 2016), http://ftp.1000 genomes.ebi.ac.uk/vol1/ftp/release/20130502/

dbGaP, https://www.ncbi.nlm.nih.gov/gap

EasyQC, http://www.genepi-regensburg.de/easyqc/

FCGENE, https://sourceforge.net/projects/fcgene/

GenBank (NCBI Reference Sequence: NC_012920.1), https://www.ncbi.nlm.nih.gov/nuccore/251831106

GIANT Consortium repositories, https://portals.broadinstitute. org/collaboration/giant/index.php/GIANT_consortium_data_ files

GTEx (Gene Expression Portal), https://gtexportal.org

GWAS Catalog, http://www.ebi.ac.uk/gwas/

Human Mitochondrion Sequence, https://www.mitomap.org/ MITOMAP/HumanMitoSeq

IMPUTE2, http://mathgen.stats.ox.ac.uk/impute/impute_v2.html KEGG, https://www.genome.jp/dbget-bin/www_bget?hsa04979

MAGIC consortium archives, https://www.magicinvestigators.org/downloads/

OMIM, http://www.omim.org/

Protein-Protein Interactions, ftp://ftp.ncbi.nih.gov/gene/GeneRIF/seqMeta, https://github.com/DavisBrian/seqMeta

seqMeta release notes, https://cran.r-project.org/web/packages/ seqMeta/seqMeta.pdf

SHAPEIT2, https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html#home

The Human Protein Atlas, http://www.proteinatlas.org/

References

- 1. Wang, Z., Ying, Z., Bosy-Westphal, A., Zhang, J., Schautz, B., Later, W., Heymsfield, S.B., and Müller, M.J. (2010). Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. *92*, 1369–1377.
- 2. Ernster, L., and Schatz, G. (1981). Mitochondria: a historical review. J. Cell Biol. *91*, 227s–255s.
- 3. Chow, J., Rahman, J., Achermann, J.C., Dattani, M.T., and Rahman, S. (2017). Mitochondrial disease and endocrine dysfunction. Nat. Rev. Endocrinol. *13*, 92–104.
- Prasai, K. (2017). Regulation of mitochondrial structure and function by protein import: A current review. Pathophysiology 24, 107–122.
- 5. Lang, B.F., Gray, M.W., and Burger, G. (1999). Mitochondrial genome evolution and the origin of eukaryotes. Annu. Rev. Genet. *33*, 351–397.
- Pagliarini, D.J., Calvo, S.E., Chang, B., Sheth, S.A., Vafai, S.B., Ong, S.E., Walford, G.A., Sugiana, C., Boneh, A., Chen, W.K., et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell *134*, 112–123.
- Smith, A.C., and Robinson, A.J. (2016). MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res. 44 (D1), D1258–D1261.
- 8. Febbo, P.G., Mulligan, M.G., Slonina, D.A., Stegmaier, K., Di Vizio, D., Martinez, P.R., Loda, M., and Taylor, S.C. (2007). Literature Lab: a method of automated literature inter-

- rogation to infer biology from microarray analysis. BMC Genomics 8,461.
- 9. Haag-Liautard, C., Coffey, N., Houle, D., Lynch, M., Charlesworth, B., and Keightley, P.D. (2008). Direct estimation of the mitochondrial DNA mutation rate in *Drosophila melanogaster*. PLoS Biol. *6*, e204.
- **10.** Neiman, M., and Taylor, D.R. (2009). The causes of mutation accumulation in mitochondrial genomes. Proc. Biol. Sci. *276*, 1201–1209.
- Craven, L., Alston, C.L., Taylor, R.W., and Turnbull, D.M. (2017). Recent advances in mitochondrial disease. Annu. Rev. Genomics Hum. Genet. 18, 257–275.
- Schaefer, A.M., Walker, M., Turnbull, D.M., and Taylor, R.W. (2013). Endocrine disorders in mitochondrial disease. Mol. Cell. Endocrinol. 379, 2–11.
- **13.** Malik, A.N., and Czajka, A. (2013). Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion *13*, 481–492.
- 14. Ashar, E.N., Moes, A., Moore, A.Z., Grove, M.L., Chaves, P.H.M., Coresh, J., Newman, A.B., Matteini, A.M., Bandeen-Roche, K., Boerwinkle, E., et al. (2015). Association of mitochondrial DNA levels with frailty and all-cause mortality. J. Mol. Med. (Berl.) *93*, 177–186.
- **15.** Mengel-From, J., Thinggaard, M., Dalgård, C., Kyvik, K.O., Christensen, K., and Christiansen, L. (2014). Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly. Hum. Genet. *133*, 1149–1159.
- Ashar, F.N., Zhang, Y., Longchamps, R.J., Lane, J., Moes, A., Grove, M.L., Mychaleckyj, J.C., Taylor, K.D., Coresh, J., Rotter, J.I., et al. (2017). Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol. 2, 1247–1255.
- 17. Zhang, Y., Guallar, E., Ashar, F.N., Longchamps, R.J., Castellani, C.A., Lane, J., Grove, M.L., Coresh, J., Sotoodehnia, N., Ilkhanoff, L., et al. (2017). Association between mitochondrial DNA copy number and sudden cardiac death: findings from the Atherosclerosis Risk in Communities study (ARIC). Eur. Heart J. 38, 3443–3448.
- 18. Tin, A., Grams, M.E., Ashar, F.N., Lane, J.A., Rosenberg, A.Z., Grove, M.L., Boerwinkle, E., Selvin, E., Coresh, J., Pankratz, N., and Arking, D.E. (2016). Association between mitochondrial DNA copy number in peripheral blood and incident CKD in the Atherosclerosis Risk in Communities Study. J. Am. Soc. Nephrol. 27, 2467–2473.
- 19. Heinonen, S., Buzkova, J., Muniandy, M., Kaksonen, R., Ollikainen, M., Ismail, K., Hakkarainen, A., Lundbom, J., Lundbom, N., Vuolteenaho, K., et al. (2015). Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes *64*, 3135–3145.
- **20.** De Pauw, A., Tejerina, S., Raes, M., Keijer, J., and Arnould, T. (2009). Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations. Am. J. Pathol. *175*, 927–939.
- **21.** Altshuler-Keylin, S., and Kajimura, S. (2017). Mitochondrial homeostasis in adipose tissue remodeling. Sci. Signal. *10*, 10.
- **22.** Montgomery, M.K., and Turner, N. (2015). Mitochondrial dysfunction and insulin resistance: an update. Endocr. Connect. *4*, R1–R15.
- **23.** Vernochet, C., Damilano, F., Mourier, A., Bezy, O., Mori, M.A., Smyth, G., Rosenzweig, A., Larsson, N.G., and Kahn,

- C.R. (2014). Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. FASEB J. 28, 4408-4419.
- 24. Wiklund, P., Zhang, X., Pekkala, S., Autio, R., Kong, L., Yang, Y., Keinänen-Kiukaanniemi, S., Alen, M., and Cheng, S. (2016). Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women. Sci. Rep. 6, 24540.
- 25. Beasley, T.M., Erickson, S., and Allison, D.B. (2009). Rankbased inverse normal transformations are increasingly used, but are they merited? Behav. Genet. 39, 580-595.
- 26. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., et al. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
- 27. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J., and Sham, P.C. (2007). PLINK: a tool set for wholegenome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575.
- 28. Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and Lee, J.J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7.
- 29. Delaneau, O., Zagury, J.F., and Marchini, J. (2013). Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10, 5-6.
- 30. Howie, B.N., Donnelly, P., and Marchini, J. (2009). A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529.
- 31. Delaneau, O., Marchini, J.; and 1000 Genomes Project Consortium (2014). Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat. Commun. 5, 3934.
- 32. Winkler, T.W., Day, F.R., Croteau-Chonka, D.C., Wood, A.R., Locke, A.E., Mägi, R., Ferreira, T., Fall, T., Graff, M., Justice, A.E., et al.; Genetic Investigation of Anthropometric Traits (GIANT) Consortium (2014). Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc. 9, 1192-1212.
- 33. Chen, H., Meigs, J.B., and Dupuis, J. (2013). Sequence kernel association test for quantitative traits in family samples. Genet. Epidemiol. 37, 196–204.
- 34. Liu, C., Dupuis, J., Larson, M.G., and Levy, D. (2013). Association testing of the mitochondrial genome using pedigree data. Genet. Epidemiol. 37, 239-247.
- 35. Willer, C.J., Li, Y., and Abecasis, G.R. (2010). METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191.
- 36. Huang, H., Chanda, P., Alonso, A., Bader, J.S., and Arking, D.E. (2011). Gene-based tests of association. PLoS Genet. 7, e1002177.
- 37. Wang, L., Lee, S., Gim, J., Qiao, D., Cho, M., Elston, R.C., Silverman, E.K., and Won, S. (2016). Family-based rare variant association analysis: A fast and efficient method of multivariate phenotype association analysis. Genet. Epidemiol. 40, 502-511.
- 38. Lee, S., Abecasis, G.R., Boehnke, M., and Lin, X. (2014). Rarevariant association analysis: study designs and statistical tests. Am. J. Hum. Genet. 95, 5-23.

- 39. Calvo, S.E., Clauser, K.R., and Mootha, V.K. (2016). Mito-Carta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44 (D1), D1251-D1257.
- 40. Lu, H., Koshkin, V., Allister, E.M., Gyulkhandanyan, A.V., and Wheeler, M.B. (2010). Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes. Diabetes 59, 448–459.
- 41. Speliotes, E.K., Willer, C.J., Berndt, S.I., Monda, K.L., Thorleifsson, G., Jackson, A.U., Lango Allen, H., Lindgren, C.M., Luan, J., Mägi, R., et al.; MAGIC; and Procardis Consortium (2010). Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937-948.
- 42. Yang, J., Loos, R.J., Powell, J.E., Medland, S.E., Speliotes, E.K., Chasman, D.I., Rose, L.M., Thorleifsson, G., Steinthorsdottir, V., Mägi, R., et al. (2012). FTO genotype is associated with phenotypic variability of body mass index. Nature 490, 267-272.
- 43. Berndt, S.I., Gustafsson, S., Mägi, R., Ganna, A., Wheeler, E., Feitosa, M.F., Justice, A.E., Monda, K.L., Croteau-Chonka, D.C., Day, F.R., et al. (2013). Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 45, 501–512.
- 44. Randall, J.C., Winkler, T.W., Kutalik, Z., Berndt, S.I., Jackson, A.U., Monda, K.L., Kilpeläinen, T.O., Esko, T., Mägi, R., Li, S., et al.; DIAGRAM Consortium; and MAGIC Investigators (2013). Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 9, e1003500.
- 45. Monda, K.L., Chen, G.K., Taylor, K.C., Palmer, C., Edwards, T.L., Lange, L.A., Ng, M.C., Adeyemo, A.A., Allison, M.A., Bielak, L.F., et al.; NABEC Consortium; UKBEC Consortium; BioBank Japan Project; and AGEN Consortium (2013). A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. Nat. Genet. 45, 690-696.
- 46. Locke, A.E., Kahali, B., Berndt, S.I., Justice, A.E., Pers, T.H., Day, F.R., Powell, C., Vedantam, S., Buchkovich, M.L., Yang, J., et al.; LifeLines Cohort Study; ADIPOGen Consortium; AGEN-BMI Working Group; CARDIOGRAMplusC4D Consortium; CKDGen Consortium; GLGC; ICBP; MAGIC Investigators; MuTHER Consortium; MIGen Consortium; PAGE Consortium; ReproGen Consortium; GENIE Consortium; and International Endogene Consortium (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206.
- 47. Shungin, D., Winkler, T.W., Croteau-Chonka, D.C., Ferreira, T., Locke, A.E., Mägi, R., Strawbridge, R.J., Pers, T.H., Fischer, K., Justice, A.E., et al.; ADIPOGen Consortium; CARDIOGRAM plusC4D Consortium; CKDGen Consortium; GEFOS Consortium; GENIE Consortium; GLGC; ICBP; International Endogene Consortium; LifeLines Cohort Study; MAGIC Investigators; MuTHER Consortium; PAGE Consortium; and Repro-Gen Consortium (2015). New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196.
- 48. Winkler, T.W., Justice, A.E., Graff, M., Barata, L., Feitosa, M.F., Chu, S., Czajkowski, J., Esko, T., Fall, T., Kilpeläinen, T.O., et al.; CHARGE Consortium; DIAGRAM Consortium; GLGC Consortium; Global-BPGen Consortium; ICBP Consortium; and MAGIC Consortium (2015). The influence of age and sex on genetic associations with adult body size

- and shape: a large-scale genome-wide interaction study. PLoS Genet. *11*, e1005378.
- 49. Ng, M.C.Y., Graff, M., Lu, Y., Justice, A.E., Mudgal, P., Liu, C.T., Young, K., Yanek, L.R., Feitosa, M.F., Wojczynski, M.K., et al.; Bone Mineral Density in Childhood Study (BMDCS) Group (2017). Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium. PLoS Genet. 13, e1006719.
- 50. Justice, A.E., Winkler, T.W., Feitosa, M.F., Graff, M., Fisher, V.A., Young, K., Barata, L., Deng, X., Czajkowski, J., Hadley, D., et al. (2017). Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nat. Commun. 8, 14977.
- 51. Heid, I.M., Jackson, A.U., Randall, J.C., Winkler, T.W., Qi, L., Steinthorsdottir, V., Thorleifsson, G., Zillikens, M.C., Speliotes, E.K., Mägi, R., et al.; MAGIC (2010). Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949–960.
- **52.** Graff, M., Scott, R.A., Justice, A.E., Young, K.L., Feitosa, M.F., Barata, L., Winkler, T.W., Chu, A.Y., Mahajan, A., Hadley, D., et al.; CHARGE Consortium; EPIC-InterAct Consortium; and PAGE Consortium (2017). Genome-wide physical activity interactions in adiposity A meta-analysis of 200,452 adults. PLoS Genet. *13*, e1006528.
- 53. Saxena, R., Hivert, M.F., Langenberg, C., Tanaka, T., Pankow, J.S., Vollenweider, P., Lyssenko, V., Bouatia-Naji, N., Dupuis, J., Jackson, A.U., et al.; GIANT consortium; and MAGIC investigators (2010). Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148.
- 54. Dupuis, J., Langenberg, C., Prokopenko, I., Saxena, R., Soranzo, N., Jackson, A.U., Wheeler, E., Glazer, N.L., Bouatia-Naji, N., Gloyn, A.L., et al.; DIAGRAM Consortium; GIANT Consortium; Global BPgen Consortium; Anders Hamsten on behalf of Procardis Consortium; and MAGIC investigators (2010). New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116.
- 55. Manning, A.K., Hivert, M.F., Scott, R.A., Grimsby, J.L., Bouatia-Naji, N., Chen, H., Rybin, D., Liu, C.T., Bielak, L.F., Prokopenko, I., et al.; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium; and Multiple Tissue Human Expression Resource (MUTHER) Consortium (2012). A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat. Genet. 44, 659–669.
- 56. Scott, R.A., Lagou, V., Welch, R.P., Wheeler, E., Montasser, M.E., Luan, J., Mägi, R., Strawbridge, R.J., Rehnberg, E., Gustafsson, S., et al.; DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium (2012). Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat. Genet. 44, 991–1005.
- 57. Prokopenko, I., Poon, W., Mägi, R., Prasad B, R., Salehi, S.A., Almgren, P., Osmark, P., Bouatia-Naji, N., Wierup, N., Fall, T., et al. (2014). A central role for GRB10 in regulation of islet function in man. PLoS Genet. *10*, e1004235.
- 58. Strawbridge, R.J., Dupuis, J., Prokopenko, I., Barker, A., Ahlqvist, E., Rybin, D., Petrie, J.R., Travers, M.E., Bouatia-

- Naji, N., Dimas, A.S., et al.; DIAGRAM Consortium; GIANT Consortium; MuTHER Consortium; CARDIOGRAM Consortium; and C4D Consortium (2011). Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes *60*, 2624–2634.
- 59. Walford, G.A., Gustafsson, S., Rybin, D., Stančáková, A., Chen, H., Liu, C.T., Hong, J., Jensen, R.A., Rice, K., Morris, A.P., et al. (2016). Genome-wide association study of the modified Stumvoll insulin sensitivity index identifies BCL2 and FAM19A2 as novel insulin sensitivity loci. Diabetes *65*, 3200–3211.
- 60. Soranzo, N., Sanna, S., Wheeler, E., Gieger, C., Radke, D., Dupuis, J., Bouatia-Naji, N., Langenberg, C., Prokopenko, I., Stolerman, E., et al.; WTCCC (2010). Common variants at 10 genomic loci influence hemoglobin A₁(C) levels via glycemic and nonglycemic pathways. Diabetes *59*, 3229–3239.
- 61. Wheeler, E., Leong, A., Liu, C.T., Hivert, M.F., Strawbridge, R.J., Podmore, C., Li, M., Yao, J., Sim, X., Hong, J., et al.; EPIC-CVD Consortium; EPIC-InterAct Consortium; and Lifelines Cohort Study (2017). Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. PLoS Med. *14*, e1002383.
- **62.** Chanda, P., Huang, H., Arking, D.E., and Bader, J.S. (2013). Fast association tests for genes with FAST. PLoS ONE *8*, e68585.
- 63. Zhao, W., Rasheed, A., Tikkanen, E., Lee, J.J., Butterworth, A.S., Howson, J.M.M., Assimes, T.L., Chowdhury, R., Orho-Melander, M., Damrauer, S., et al.; CHD Exome+ Consortium; EPIC-CVD Consortium; EPIC-Interact Consortium; and Michigan Biobank (2017). Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 49, 1450–1457.
- **64.** Spracklen, C.N., Chen, P., Kim, Y.J., Wang, X., Cai, H., Li, S., Long, J., Wu, Y., Wang, Y.X., Takeuchi, F., et al. (2017). Association analyses of East Asian individuals and trans-ancestry analyses with European individuals reveal new loci associated with cholesterol and triglyceride levels. Hum. Mol. Genet. *26*, 1770–1784.
- 65. Nelson, C.P., Goel, A., Butterworth, A.S., Kanoni, S., Webb, T.R., Marouli, E., Zeng, L., Ntalla, I., Lai, F.Y., Hopewell, J.C., et al.; EPIC-CVD Consortium; CARDIoGRAMplusC4D; and UK Biobank CardioMetabolic Consortium CHD working group (2017). Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 49, 1385–1391.
- 66. Eppinga, R.N., Hagemeijer, Y., Burgess, S., Hinds, D.A., Stefansson, K., Gudbjartsson, D.F., van Veldhuisen, D.J., Munroe, P.B., Verweij, N., and van der Harst, P. (2016). Identification of genomic loci associated with resting heart rate and shared genetic predictors with all-cause mortality. Nat. Genet. 48, 1557–1563.
- 67. Warren, H.R., Evangelou, E., Cabrera, C.P., Gao, H., Ren, M., Mifsud, B., Ntalla, I., Surendran, P., Liu, C., Cook, J.P., et al.; International Consortium of Blood Pressure (ICBP) 1000G Analyses; BIOS Consortium; Lifelines Cohort Study; Understanding Society Scientific group; CHD Exome+ Consortium; ExomeBP Consortium; T2D-GENES Consortium; GoT2DGenes Consortium; Cohorts for Heart and Ageing

- Research in Genome Epidemiology (CHARGE) BP Exome Consortium; International Genomics of Blood Pressure (iGEN-BP) Consortium; and UK Biobank CardioMetabolic Consortium BP working group (2017). Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat. Genet. *49*, 403–415.
- 68. Sabater-Lleal, M., Huang, J., Chasman, D., Naitza, S., Dehghan, A., Johnson, A.D., Teumer, A., Reiner, A.P., Folkersen, L., Basu, S., et al.; VTE Consortium; STROKE Consortium; Wellcome Trust Case Control Consortium 2 (WTCCC2); C4D Consortium; and CARDIoGRAM Consortium (2013). Multiethnic meta-analysis of genome-wide association studies in >100 000 subjects identifies 23 fibrinogen-associated Loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease. Circulation 128, 1310–1324.
- 69. Willer, C.J., Schmidt, E.M., Sengupta, S., Peloso, G.M., Gustafsson, S., Kanoni, S., Ganna, A., Chen, J., Buchkovich, M.L., Mora, S., et al.; Global Lipids Genetics Consortium (2013). Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283.
- 70. Mozaffarian, D., Kabagambe, E.K., Johnson, C.O., Lemaitre, R.N., Manichaikul, A., Sun, Q., Foy, M., Wang, L., Wiener, H., Irvin, M.R., et al. (2015). Genetic loci associated with circulating phospholipid trans fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium. Am. J. Clin. Nutr. 101, 398–406.
- 71. Yeo, A., Li, L., Warren, L., Aponte, J., Fraser, D., King, K., Johansson, K., Barnes, A., MacPhee, C., Davies, R., et al. (2017). Pharmacogenetic meta-analysis of baseline risk factors, pharmacodynamic, efficacy and tolerability endpoints from two large global cardiovascular outcomes trials for darapladib. PLoS ONE 12, e0182115.
- 72. Hinds, D.A., Buil, A., Ziemek, D., Martinez-Perez, A., Malik, R., Folkersen, L., Germain, M., Mälarstig, A., Brown, A., Soria, J.M., et al.; METASTROKE Consortium, INVENT Consortium (2016). Genome-wide association analysis of self-reported events in 6135 individuals and 252 827 controls identifies 8 loci associated with thrombosis. Hum. Mol. Genet. 25, 1867–1874.
- 73. Ehret, G.B., Munroe, P.B., Rice, K.M., Bochud, M., Johnson, A.D., Chasman, D.I., Smith, A.V., Tobin, M.D., Verwoert, G.C., Hwang, S.J., et al.; International Consortium for Blood Pressure Genome-Wide Association Studies; CARDI oGRAM consortium; CKDGen Consortium; KidneyGen Consortium; EchoGen consortium; and CHARGE-HF consortium (2011). Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109.
- 74. van der Harst, P., van Setten, J., Verweij, N., Vogler, G., Franke, L., Maurano, M.T., Wang, X., Mateo Leach, I., Eijgelsheim, M., Sotoodehnia, N., et al. (2016). 52 genetic loci influencing myocardial mass. J. Am. Coll. Cardiol. 68, 1435–1448.
- 75. Pott, J., Burkhardt, R., Beutner, F., Horn, K., Teren, A., Kirsten, H., Holdt, L.M., Schuler, G., Teupser, D., Loeffler, M., et al. (2017). Genome-wide meta-analysis identifies novel loci of plaque burden in carotid artery. Atherosclerosis 259, 32–40.
- 76. Yasuno, K., Bilguvar, K., Bijlenga, P., Low, S.K., Krischek, B., Auburger, G., Simon, M., Krex, D., Arlier, Z., Nayak, N., et al. (2010). Genome-wide association study of intracranial

- aneurysm identifies three new risk loci. Nat. Genet. 42, 420-425.
- Aulchenko, Y.S., Ripatti, S., Lindqvist, I., Boomsma, D., Heid, I.M., Pramstaller, P.P., Penninx, B.W., Janssens, A.C., Wilson, J.F., Spector, T., et al.; ENGAGE Consortium (2009). Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet. 41, 47–55.
- Boyle, A.P., Hong, E.L., Hariharan, M., Cheng, Y., Schaub, M.A., Kasowski, M., Karczewski, K.J., Park, J., Hitz, B.C., Weng, S., et al. (2012). Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797.
- Esteras, N., Rohrer, J.D., Hardy, J., Wray, S., and Abramov, A.Y. (2017). Mitochondrial hyperpolarization in iPSCderived neurons from patients of FTDP-17 with 10+16 MAPT mutation leads to oxidative stress and neurodegeneration. Redox Biol. 12, 410-422.
- **80.** Ward, L.D., and Kellis, M. (2012). HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. *40*, D930–D934.
- 81. Battle, A., Brown, C.D., Engelhardt, B.E., Montgomery, S.B.; GTEx Consortium; Laboratory, Data Analysis & Coordinating Center (LDACC)—Analysis Working Group; Statistical Methods groups—Analysis Working Group; Enhancing GTEx (eGTEx) groups; NIH Common Fund; NIH/NCI; NIH/ NHGRI; NIH/NIMH; NIH/NIDA; Biospecimen Collection Source Site—NDRI; Biospecimen Collection Source Site— RPCI; Biospecimen Core Resource—VARI; Brain Bank Repository—University of Miami Brain Endowment Bank; Leidos Biomedical—Project Management; ELSI Study; Genome Browser Data Integration & Visualization—EBI; Genome Browser Data Integration & Visualization—UCSC Genomics Institute, University of California Santa Cruz; Lead analysts; Laboratory, Data Analysis & Coordinating Center (LDACC); NIH program management; Biospecimen collection; Pathology; and eQTL manuscript working group (2017). Genetic effects on gene expression across human tissues. Nature 550, 204–213.
- 82. Saha, A., Kim, Y., Gewirtz, A.D.H., Jo, B., Gao, C., McDowell, I.C., Engelhardt, B.E., Battle, A.; and GTEx Consortium (2017). Co-expression networks reveal the tissue-specific regulation of transcription and splicing. Genome Res. *27*, 1843–1858.
- **83.** Li, M.J., Wang, L.Y., Xia, Z., Sham, P.C., and Wang, J. (2013). GWAS3D: Detecting human regulatory variants by integrative analysis of genome-wide associations, chromosome interactions and histone modifications. Nucleic Acids Res. *41*, W150-8.
- 84. Sané, A.T., Seidman, E., Peretti, N., Kleme, M.L., Delvin, E., Deslandres, C., Garofalo, C., Spahis, S., and Levy, E. (2017). Understanding chylomicron retention disease through Sar1b Gtpase gene disruption: insight from cell culture. Arterioscler. Thromb. Vasc. Biol. *37*, 2243–2251.
- 85. Yuasa, K., Matsuda, T., and Tsuji, A. (2011). Functional regulation of transient receptor potential canonical 7 by cGMP-dependent protein kinase Iα. Cell. Signal. 23, 1179–1187
- 86. Ilegems, E., Iwatsuki, K., Kokrashvili, Z., Benard, O., Ninomiya, Y., and Margolskee, R.F. (2010). REEP2 enhances sweet receptor function by recruitment to lipid rafts. J. Neurosci. *30*, 13774–13783.

- 87. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., et al. (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452.
- **88.** Pattin, K.A., and Moore, J.H. (2009). Role for protein-protein interaction databases in human genetics. Expert Rev. Proteomics *6*, 647–659.
- 89. Taniguchi, K., Matsumura, K., Kageyama, S., Ii, H., Ashihara, E., Chano, T., Kawauchi, A., Yoshiki, T., and Nakata, S. (2018). Prohibitin-2 is a novel regulator of p21^{WAF1/CIP1} induced by depletion of γ -glutamylcyclotransferase. Biochem. Biophys. Res. Commun. 496, 218–224.
- **90.** Fimia, G.M., Corazzari, M., Antonioli, M., and Piacentini, M. (2013). Ambra1 at the crossroad between autophagy and cell death. Oncogene *32*, 3311–3318.
- 91. Fimia, G.M., Stoykova, A., Romagnoli, A., Giunta, L., Di Bartolomeo, S., Nardacci, R., Corazzari, M., Fuoco, C., Ucar, A., Schwartz, P., et al. (2007). Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121–1125.
- 92. Frazier, A.E., Thorburn, D.R., and Compton, A.G. (2017). Mitochondrial energy generation disorders: genes, mechanisms and clues to pathology. J. Biol. Chem., jbc.R117.809194.
- 93. Malik, A.N., Parsade, C.K., Ajaz, S., Crosby-Nwaobi, R., Gnudi, L., Czajka, A., and Sivaprasad, S. (2015). Altered circulating mitochondrial DNA and increased inflammation in patients with diabetic retinopathy. Diabetes Res. Clin. Pract. *110*, 257–265.
- **94.** Guo, H., Bueler, S.A., and Rubinstein, J.L. (2017). Atomic model for the dimeric F_O region of mitochondrial ATP synthase. Science *358*, 936–940.
- 95. Nakamoto, R.K., Baylis Scanlon, J.A., and Al-Shawi, M.K. (2008). The rotary mechanism of the ATP synthase. Arch. Biochem. Biophys. 476, 43–50.
- **96.** Fish, J., Raule, N., and Attardi, G. (2004). Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis. Science *306*, 2098–2101.
- Taanman, J.W. (1999). The mitochondrial genome: structure, transcription, translation and replication. Biochim. Biophys. Acta 1410, 103–123.
- **98.** Wang, H.N., Chen, H.D., Chen, K.Y., Xiao, J.F., He, K., Xiang, G.A., and Xie, X. (2014). Highly expressed MT-ND3 positively associated with histological severity of hepatic steatosis. APMIS *122*, 443–451.
- 99. Fetterman, J.L., Liu, C., Mitchell, G.F., Vasan, R.S., Benjamin, E.J., Vita, J.A., Hamburg, N.M., and Levy, D. (2018). Relations of mitochondrial genetic variants to measures of vascular function. Mitochondrion 40, 51–57.
- 100. Brown, D.A., Perry, J.B., Allen, M.E., Sabbah, H.N., Stauffer, B.L., Shaikh, S.R., Cleland, J.G., Colucci, W.S., Butler, J., Voors, A.A., et al. (2017). Expert consensus document: Mitochondrial function as a therapeutic target in heart failure. Nat. Rev. Cardiol. 14, 238–250.
- 101. McDermott-Roe, C., Leleu, M., Rowe, G.C., Palygin, O., Bukowy, J.D., Kuo, J., Rech, M., Hermans-Beijnsberger, S., Schaefer, S., Adami, E., et al. (2017). Transcriptome-wide co-expression analysis identifies LRRC2 as a novel mediator of mitochondrial and cardiac function. PLoS ONE 12, e0170458.

- 102. Lee, H.S., and Park, T. (2017). Pathway-driven approaches of interaction between oxidative balance and genetic polymorphism on metabolic syndrome. Oxid. Med. Cell. Longev. 2017, 6873197.
- 103. Go, M.J., Hwang, J.Y., Kim, Y.J., Hee Oh, J., Kim, Y.J., Heon Kwak, S., Soo Park, K., Lee, J., Kim, B.J., Han, B.G., et al. (2013). New susceptibility loci in MYL2, C12orf51 and OAS1 associated with 1-h plasma glucose as predisposing risk factors for type 2 diabetes in the Korean population. J. Hum. Genet. *58*, 362–365.
- 104. Kristiansson, K., Perola, M., Tikkanen, E., Kettunen, J., Surakka, I., Havulinna, A.S., Stancáková, A., Barnes, C., Widen, E., Kajantie, E., et al. (2012). Genome-wide screen for metabolic syndrome susceptibility Loci reveals strong lipid gene contribution but no evidence for common genetic basis for clustering of metabolic syndrome traits. Circ Cardiovasc Genet *5*, 242–249.
- 105. MacDonald, M.J., and Fahien, L.A. (1990). Insulin release in pancreatic islets by a glycolytic and a Krebs cycle intermediate: contrasting patterns of glyceraldehyde phosphate and succinate. Arch. Biochem. Biophys. *279*, 104–108.
- 106. MacDonald, M.J., Fahien, L.A., Brown, L.J., Hasan, N.M., Buss, J.D., and Kendrick, M.A. (2005). Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am. J. Physiol. Endocrinol. Metab. 288, E1–E15.
- 107. Dukes, I.D., McIntyre, M.S., Mertz, R.J., Philipson, L.H., Roe, M.W., Spencer, B., and Worley, J.F., 3rd. (1994). Dependence on NADH produced during glycolysis for beta-cell glucose signaling. J. Biol. Chem. 269, 10979–10982.
- 108. El-Hattab, A.W., Emrick, L.T., Hsu, J.W., Chanprasert, S., Jahoor, F., Scaglia, F., and Craigen, W.J. (2014). Glucose metabolism derangements in adults with the MELAS m.3243A>G mutation. Mitochondrion *18*, 63–69.
- 109. Nóbrega-Pereira, S., Fernandez-Marcos, P.J., Brioche, T., Gomez-Cabrera, M.C., Salvador-Pascual, A., Flores, J.M., Viña, J., and Serrano, M. (2016). G6PD protects from oxidative damage and improves healthspan in mice. Nat. Commun. 7, 10894.
- 110. Cunningham, A.D., Colavin, A., Huang, K.C., and Mochly-Rosen, D. (2017). Coupling between protein stability and catalytic activity determines pathogenicity of G6PD variants. Cell Rep. *18*, 2592–2599.
- 111. Dörner, G., Mohnike, A., and Steindel, E. (1975). On possible genetic and epigenetic modes of diabetes transmission. Endokrinologie *66*, 225–227.
- 112. Thomas, F., Balkau, B., Vauzelle-Kervroedan, F., Papoz, L.; and CODIAB-INSERM-ZENECA Study Group (1994). Maternal effect and familial aggregation in NIDDM. The CODIAB Study. Diabetes *43*, 63–67.
- 113. Lin, R.S., Lee, W.C., Lee, Y.T., Chou, P., and Fu, C.C. (1994). Maternal role in type 2 diabetes mellitus: indirect evidence for a mitochondrial inheritance. Int. J. Epidemiol. *23*, 886–890.
- 114. Voight, B.F., Scott, L.J., Steinthorsdottir, V., Morris, A.P., Dina, C., Welch, R.P., Zeggini, E., Huth, C., Aulchenko, Y.S., Thorleifsson, G., et al.; MAGIC investigators; and GIANT Consortium (2010). Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 42, 579–589.

- 115. Yasuda, K., Miyake, K., Horikawa, Y., Hara, K., Osawa, H., Furuta, H., Hirota, Y., Mori, H., Jonsson, A., Sato, Y., et al. (2008). Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 40, 1092–1097.
- 116. Unoki, H., Takahashi, A., Kawaguchi, T., Hara, K., Horikoshi, M., Andersen, G., Ng, D.P., Holmkvist, J., Borch-Johnsen, K., Jørgensen, T., et al. (2008). SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet. 40, 1098–1102.
- 117. Heard, E., Rougeulle, C., Arnaud, D., Avner, P., Allis, C.D., and Spector, D.L. (2001). Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell *107*, 727–738.
- 118. Lai, Y.K., Lai, N.M., and Lee, S.W. (2017). Glucose-6-phosphate dehydrogenase deficiency and risk of diabetes: a systematic review and meta-analysis. Ann. Hematol. *96*, 839–845.
- 119. Heymann, A.D., Cohen, Y., and Chodick, G. (2012). Glucose-6-phosphate dehydrogenase deficiency and type 2 diabetes. Diabetes Care *35*, e58.
- **120.** van der Wijst, M.G., and Rots, M.G. (2015). Mitochondrial epigenetics: an overlooked layer of regulation? Trends Genet. *31*, 353–356.
- 121. Schleinitz, D., Klöting, N., Lindgren, C.M., Breitfeld, J., Dietrich, A., Schön, M.R., Lohmann, T., Dreßler, M., Stumvoll, M., McCarthy, M.I., et al. (2014). Fat depot-specific mRNA expression of novel loci associated with waist-hip ratio. Int. J. Obes. 38, 120–125.
- **122.** Meyre, D., Delplanque, J., Chèvre, J.C., Lecoeur, C., Lobbens, S., Gallina, S., Durand, E., Vatin, V., Degraeve, F., Proença, C., et al. (2009). Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat. Genet. *41*, 157–159.
- **123.** Bambace, C., Dahlman, I., Arner, P., and Kulyté, A. (2013). NPC1 in human white adipose tissue and obesity. BMC Endocr. Disord. *13*, 5.
- **124.** Jelinek, D., Castillo, J.J., and Garver, W.S. (2013). The C57BL/6J Niemann-Pick C1 mouse model with decreased gene dosage has impaired glucose tolerance independent of body weight. Gene *527*, 65–70.
- 125. Woś, M., Szczepanowska, J., Pikuła, S., Tylki-Szymańska, A., Zabłocki, K., and Bandorowicz-Pikuła, J. (2016). Mitochondrial dysfunction in fibroblasts derived from patients with Niemann-Pick type C disease. Arch. Biochem. Biophys. *593*, 50–59.
- **126.** Bernhard, F., Landgraf, K., Klöting, N., Berthold, A., Büttner, P., Friebe, D., Kiess, W., Kovacs, P., Blüher, M., and Körner, A. (2013). Functional relevance of genes implicated by obesity genome-wide association study signals for human adipocyte biology. Diabetologia *56*, 311–322.
- 127. Buzaglo-Azriel, L., Kuperman, Y., Tsoory, M., Zaltsman, Y., Shachnai, L., Zaidman, S.L., Bassat, E., Michailovici, I., Sarver, A., Tzahor, E., et al. (2016). Loss of muscle MTCH2 increases whole-body energy utilization and protects from diet-induced obesity. Cell Rep. *14*, 1602–1610.
- 128. Li, Q., Wang, L., Tan, W., Peng, Z., Luo, Y., Zhang, Y., Zhang, G., Na, D., Jin, P., Shi, T., et al. (2011). Identification of C1qTNF-related protein 4 as a potential cytokine that stimulates the STAT3 and NF-κB pathways and promotes cell survival in human cancer cells. Cancer Lett. 308, 203–214.

- 129. Byerly, M.S., Petersen, P.S., Ramamurthy, S., Seldin, M.M., Lei, X., Provost, E., Wei, Z., Ronnett, G.V., and Wong, G.W. (2014). C1q/TNF-related protein 4 (CTRP4) is a unique secreted protein with two tandem C1q domains that functions in the hypothalamus to modulate food intake and body weight. J. Biol. Chem. 289, 4055–4069.
- **130.** Sepe, M., Festa, L., Tolino, F., Bellucci, L., Sisto, L., Alfano, D., Ragno, P., Calabrò, V., de Franciscis, V., La Mantia, G., and Pollice, A. (2011). A regulatory mechanism involving TBP-1/Tat-Binding Protein 1 and Akt/PKB in the control of cell proliferation. PLoS ONE *6*, e22800.
- 131. Hinney, A., Albayrak, O., Antel, J., Volckmar, A.L., Sims, R., Chapman, J., Harold, D., Gerrish, A., Heid, I.M., Winkler, T.W., et al.; GERAD Consortium; IGAP Consortium; and GIANT Consortium (2014). Genetic variation at the CELF1 (CUGBP, elav-like family member 1 gene) locus is genome-wide associated with Alzheimer's disease and obesity. Am. J. Med. Genet. B. Neuropsychiatr. Genet. *165B*, 283–293.
- **132.** Ridler, C. (2016). Obesity: Inheritance via mitochondria. Nat. Rev. Endocrinol. *12*, 497.
- 133. Semenkovich, C.F. (2017). We know more than we can tell about diabetes and vascular disease: The 2016 Edwin Bierman Award Lecture. Diabetes *66*, 1735–1741.
- **134.** Szendroedi, J., Phielix, E., and Roden, M. (2011). The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat. Rev. Endocrinol. *8*, 92–103.
- **135.** West, A.P., and Shadel, G.S. (2017). Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. *17*, 363–375.
- 136. Francis, J.W., Turn, R.E., Newman, L.E., Schiavon, C., and Kahn, R.A. (2016). Higher order signaling: ARL2 as regulator of both mitochondrial fusion and microtubule dynamics allows integration of 2 essential cell functions. Small GTPases 7, 188–196.
- 137. Castellana, S., Fusilli, C., Mazzoccoli, G., Biagini, T., Capocefalo, D., Carella, M., Vescovi, A.L., and Mazza, T. (2017). High-confidence assessment of functional impact of human mitochondrial non-synonymous genome variations by APOGEE. PLoS Comput. Biol. *13*, e1005628.
- 138. Samuels, D.C., Carothers, A.D., Horton, R., and Chinnery, P.F. (2006). The power to detect disease associations with mitochondrial DNA haplogroups. Am. J. Hum. Genet. *78*, 713–720.
- 139. Guo, Y., Lanktree, M.B., Taylor, K.C., Hakonarson, H., Lange, L.A., Keating, B.J.; and IBC 50K SNP array BMI Consortium (2013). Gene-centric meta-analyses of 108 912 individuals confirm known body mass index loci and reveal three novel signals. Hum. Mol. Genet. 22, 184–201.
- 140. Middelberg, R.P., Ferreira, M.A., Henders, A.K., Heath, A.C., Madden, P.A., Montgomery, G.W., Martin, N.G., and Whitfield, J.B. (2011). Genetic variants in LPL, OASL and TOMM40/APOE-C1-C2-C4 genes are associated with multiple cardiovascular-related traits. BMC Med. Genet. *12*, 123.
- 141. Kraja, A.T., Chasman, D.I., North, K.E., Reiner, A.P., Yanek, L.R., Kilpeläinen, T.O., Smith, J.A., Dehghan, A., Dupuis, J., Johnson, A.D., et al.; Cross Consortia Pleiotropy Group; Cohorts for Heart and; Aging Research in Genetic Epidemiology; Genetic Investigation of Anthropometric Traits Consortium; Global Lipids Genetics Consortium; Meta-Analyses of Glucose; Insulin-related

traits Consortium; Global BPgen Consortium; ADIPOGen Consortium; Women's Genome Health Study; and Howard University Family Study (2014). Pleiotropic genes for metabolic syndrome and inflammation. Mol. Genet. Metab. 112, 317-338.

142. Pruim, R.J., Welch, R.P., Sanna, S., Teslovich, T.M., Chines, P.S., Gliedt, T.P., Boehnke, M., Abecasis, G.R., and Willer, C.J. (2010). LocusZoom: regional visualization of genomewide association scan results. Bioinformatics 26, 2336-2337.

Supplemental Data

Associations of Mitochondrial and Nuclear

Mitochondrial Variants and Genes

with Seven Metabolic Traits

Aldi T. Kraja, Chunyu Liu, Jessica L. Fetterman, Mariaelisa Graff, Christian Theil Have, Charles Gu, Lisa R. Yanek, Mary F. Feitosa, Dan E. Arking, Daniel I. Chasman, Kristin Young, Symen Ligthart, W. David Hill, Stefan Weiss, Jian'an Luan, Franco Giulianini, Ruifang Li-Gao, Fernando P. Hartwig, Shiow J. Lin, Lihua Wang, Tom G. Richardson, Jie Yao, Eliana P. Fernandez, Mohsen Ghanbari, Mary K. Wojczynski, Wen-Jane Lee, Maria Argos, Sebastian M. Armasu, Ruteja A. Barve, Kathleen A. Ryan, Ping An, Thomas J. Baranski, Suzette J. Bielinski, Donald W. Bowden, Ulrich Broeckel, Kaare Christensen, Audrey Y. Chu, Janie Corley, Simon R. Cox, Andre G. Uitterlinden, Fernando Rivadeneira, Cheryl D. Cropp, E. Warwick Daw, Diana van Heemst, Lisa de las Fuentes, He Gao, Ioanna Tzoulaki, Tarunveer S. Ahluwalia, Renée de Mutsert, Leslie S. Emery, A. Mesut Erzurumluoglu, James A. Perry, Mao Fu, Nita G. Forouhi, Zhenglong Gu, Yang Hai, Sarah E. Harris, Gibran Hemani, Steven C. Hunt, Marguerite R. Irvin, Anna E. Jonsson, Anne E. Justice, Nicola D. Kerrison, Nicholas B. Larson, Keng-Hung Lin, Latisha D. Love-Gregory, Rasika A. Mathias, Joseph H. Lee, Matthias Nauck, Raymond Noordam, Ken K. Ong, James Pankow, Amit Patki, Alison Pattie, Astrid Petersmann, Qibin Qi, Rasmus Ribel-Madsen, Rebecca Rohde, Kevin Sandow, Theresia M. Schnurr, Tamar Sofer, John M. Starr, Adele M. Taylor, Alexander Teumer, Nicholas J. Timpson, Hugoline G. de Haan, Yujie Wang, Peter E. Weeke, Christine Williams, Hongsheng Wu, Wei Yang, Donglin Zeng, Daniel R. Witte, Bruce S. Weir, Nicholas J. Wareham, Henrik Vestergaard, Stephen T. Turner, Christian Torp-Pedersen, Evie Stergiakouli, Wayne Huey-Herng Sheu, Frits R. Rosendaal, M. Arfan Ikram, Oscar H. Franco, Paul M. Ridker, Thomas T. Perls, Oluf Pedersen, Ellen A. Nohr, Anne B. Newman, Allan Linneberg, Claudia Langenberg, Tuomas O. Kilpeläinen, Sharon L.R. Kardia, Marit E. Jørgensen, Torben Jørgensen, Thorkild I.A. Sørensen, Georg Homuth, Torben Hansen, Mark O. Goodarzi, Ian J. Deary, Cramer Christensen, Yii-Der Ida Chen, Aravinda Chakravarti, Ivan Brandslund, Klaus Bonnelykke, Kent D. Taylor, James G. Wilson, Santiago Rodriguez, Gail Davies, Bernardo L. Horta, Bharat Thyagarajan, D.C. Rao, Niels Grarup, Victor G. Davila-Roman, Gavin Hudson, Xiuqing Guo, Donna K. Arnett, Caroline Hayward, Dhananjay Vaidya, Dennis O. Mook-Kanamori, Hemant K. Tiwari, Daniel Levy, Ruth J.F. Loos, Abbas Dehghan, Paul Elliott, Afshan N. Malik, Robert A. Scott, Diane M. Becker, Mariza de Andrade, Michael A. Province, James B. Meigs, Jerome I. Rotter, and Kari E. North

Supplement:

Figures, Tables, Methods, References, Acknowledgments and Study Descriptions

Content

1. Supplementary Figures

Figure S1. BMI mtDNA Association Tests and QQ-plot Distribution

Figure S2. WHR mtDNA Association Tests and QQ-plot Distribution

Figure S3. Glucose mtDNA Association Tests and QQ-plot Distribution

Figure S4. Insulin mtDNA Association Tests and QQ-plot Distribution

Figure S5. HOMA-B mtDNA Association Tests and QQ-plot Distribution

Figure S6. HOMA-IR mtDNA Association Tests and QQ-plot Distribution

Figure S7. HbA1C mtDNA Association Tests and QQ-plot Distribution

Figure S8. HOMA-B and HOMA-IR Association Results with MT-nDNA candidate Genes

Figure S9. HbA1c Association Results with MT-nDNA Candidate Genes

Figure S10. Six Clusters of Associations Among 109 MT-nDNA candidate Genes and Biological Terms Using Literature Lab

Figure S11. A Diagram on MT-nDNA Candidate Genes Commonalities and Functions Summary. Details are presented in Table 4 and Table S6 and Discussion

Figure S12.1. Detecting trans-Regulatory Variants by Combining GWAS *P*-value and Probable Functional Variants that Affect Transcriptional Regulation

Figure S12.2. Detecting trans-Regulatory Variants by Combining GWAS *P*-value and Probable Functional Variants that Affect Transcriptional Regulation

Figure S12.3. Detecting trans-Regulatory Variants by Combining GWAS *P*-value and Probable Functional Variants that Affect Transcriptional Regulation

Figure S13. RNA Expression Patterns for Selected mtDNA Genes in Different Human Tissues

Figure S14. *G6PD* Interactions. G6PD (chrX:154,531,390-154,547,586, right-picture) trans-regulates MECP2 (chrX:154,021,573-154,137,103, left picture) and *MECP2* interacts with *SIN3A* (STRING protein-protein interaction evidence), which together (SIN3A and MECP2) contribute to transcription repression of other genes (depicted from QIAGEN team, middle picture)

Figure S15. Selection of 25th Upper Quartile LPF of Genes Associated with the Terms "Mitochondrial diseases" and "Pathway analysis"

Figure S16. Forest plot of beta coefficients and their 95% confidence intervals for studies contributing to seven significant mtDNA variants

Figure S17. Forest plot of beta coefficients and their 95% confidence intervals for studies contributing to MT-ND3-Gene based meta-analysis

2. Supplementary Tables

Table S1. Summary Statistics for 7 Phenotypes Studied by Cohort **Table S2**.(a, b) Details by Cohort of_mtDNA Variants Associated with BMI, WHR, Glucose, Insulin, HOMA-B, HOMA-IR and HbA1c METAL Meta-Analysis **Single Variant** Results

Table S3. Association Results at Cohort Level for SOL-HA

Table S4. GWAS Publications Summary Results Used for Identifying Significant MT-nDNA Candidate Genes

Table S5. Domain Terms (in Pathways and Metabolism-MeSH) Enriched for MT-nDNA gene Clusters and their Assigned Abstracts in Percent

Table S6. Functional Annotation of 109 MT-nDNA candidate Genes

(Separate Excel Worksheet)

Table S7. Thirteen and Fifteen Genes out of 109 MT-nDNA Candidates Associated Respectively with T2D and CVD

Table S8. Several Variants of MT-nDNA Candidates Are eSNV, Affecting Expression of Some of Their Corresponding Genes or Other cis-Located Genes

Table S9. Transcription Regulation Evidence on 588 SNVs of 109 MT-nDNA Genes Using RegulomeDB and HaploReg (**Separate Excel Worksheet**)

Table S10. Transcription Regulation of MT-nDNA Candidate Variants Using GTEx Software (Separate Excel worksheet)

Table S11. Fifteen Genes out of 109 MT-nDNA Candidates Ranked with Highest PageRank Score for PPI

Table S12. A Comparison of 109 MT-nDNA Candidate Genes Detected with P<1E-06, and Additional SNVs for the Same Genes from GWAS-Catalog Conditional They Pass P<5E-08 (Separate Excel Worksheet)

Table S13. A Comparison of mtDNA Association Results of Three Papers with Our Overlapping Results for Different Traits (**Separate Excel Worksheet**)

Table S14. Summary of Chips Used for Studying mtDNA Variants per Cohort and Summary Statistics for Imputation

Table S15. Illumina Infinium Omni Express Exome v1.1

Table S16. Infinium Core Exome v1.0

Table S17. Infinium Core Exome v1.1

Table S18. Infinium Human Exome v1.2

Table S19. Illumina HumanExome-12v1-1

Table S20. Illumina Human 1M Duo v3

Table S21. Human Omni2.5-8v1

Table S22. Illumina Human660W-Quad_v1

Table S23. Affymetrix 6.0

Table S24. Illumina HumanHap550v3.0

Table S25. Illumina CardioMetaboChip

Table S26. Illumina Human 610 Quad v1

Table S27. Affymetrix Axiom UKBiobank

Table S28. Illumina Human1Mv1C

Table S29. MT-MeSH Terms Extracted from Literature Lab

Table S30. Selected 2,282 Candidate Genes (MT-nDNA) that May Contribute to Mitochondria (Separate Excel Worksheet)

Table S31. Final list of genes (HUGO approved names) as mtDNA- and possible MT-genes candidates for contributing to mitochondria and corresponding MIM number and location. (Separate Excel Worksheet)

Table S32. Predicted Functional Effects of mtDNA Non-Synonymous Mutations Present in Our Arrays. (**Separate DOCX Table**)

3. Supplementary Methods

- 1. Phenotype Preparation

- Mitochondrial Single Nucleotide Variant Annotation
 mtDNA Genotyping and Imputation QC
 mtDNA Variants Association Tests (Single variant linear regression and gene based SKAT tests)
- 5. mtDNA Meta-Analyses (single-variant and gene-based)
- 6. mtDNA Genomic Associations
- 7. MT-nDNA Candidate Genes
- 8. Enrichment Analysis of MT-nDNA Candidate Genes
- 9. Biological Functional Annotations

4. References

- 5. CHARGEmtDNA+ Study Acknowledgments
- 6. CHARGEmtDNA+ Working Group Study Descriptions

1. Supplementary Figures

Figure S1. BMI mtDNA Association Tests and QQ-plot Distribution

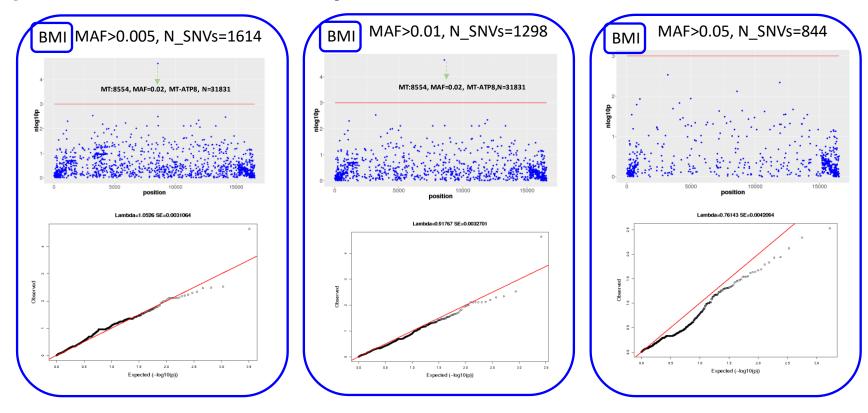


Figure S2. WHR mtDNA Association Tests and QQ-plot Distribution

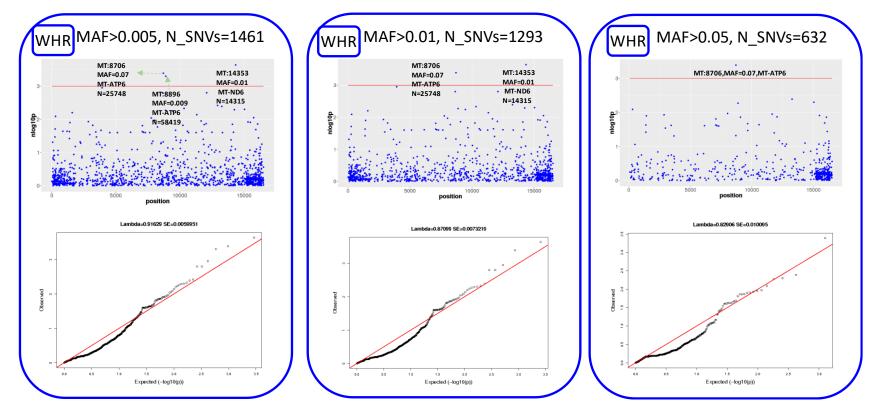


Figure S3. Glucose mtDNA Association Tests and QQ-plot Distribution

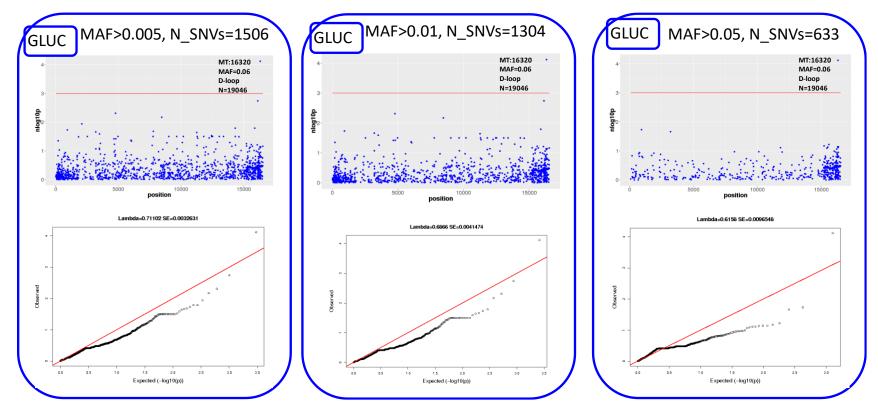


Figure S4. Insulin mtDNA Association Tests and QQ-plot Distribution

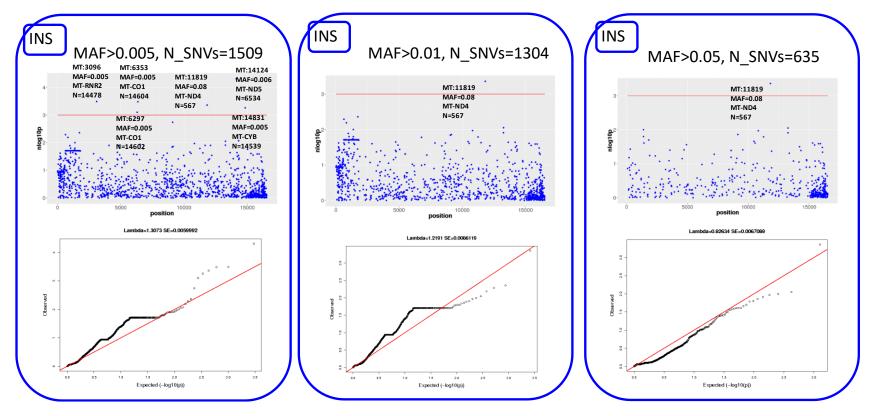


Figure S5. HOMA-B mtDNA Association Tests and QQ-plot Distribution

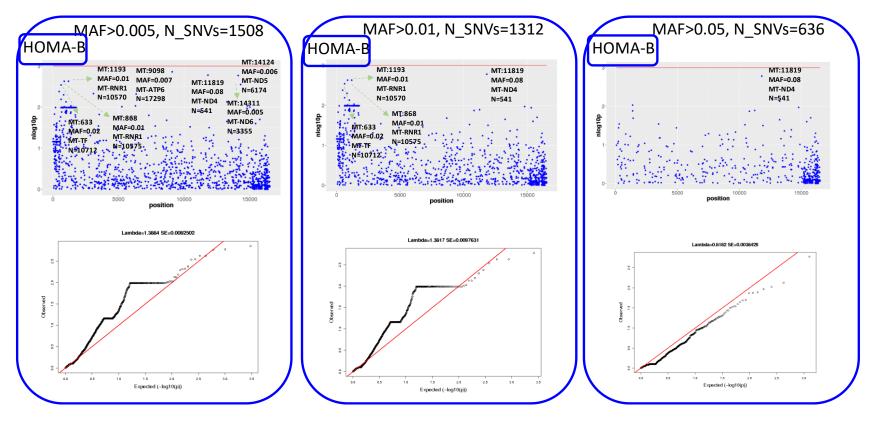


Figure S6. HOMA-IR mtDNA Association Tests and QQ-plot Distribution

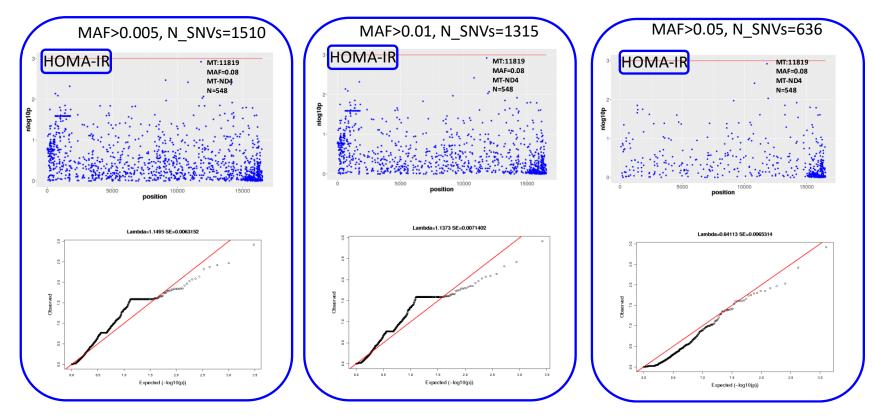
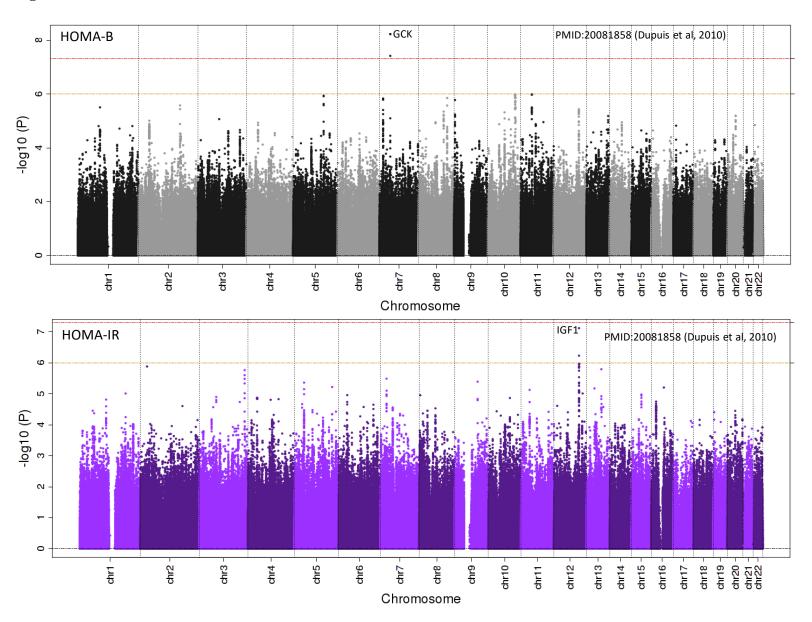
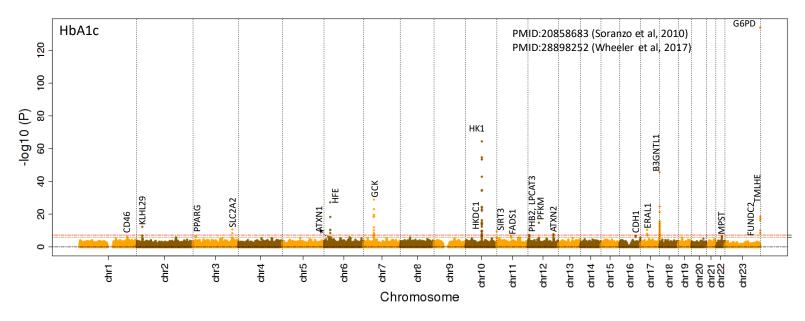
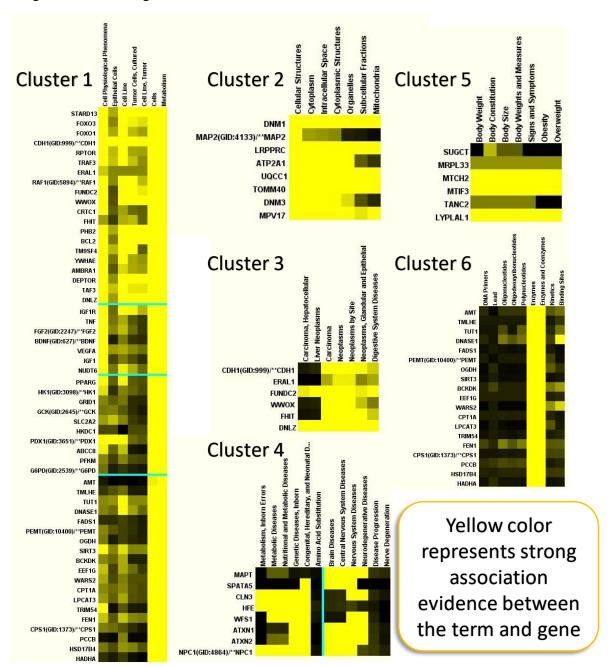
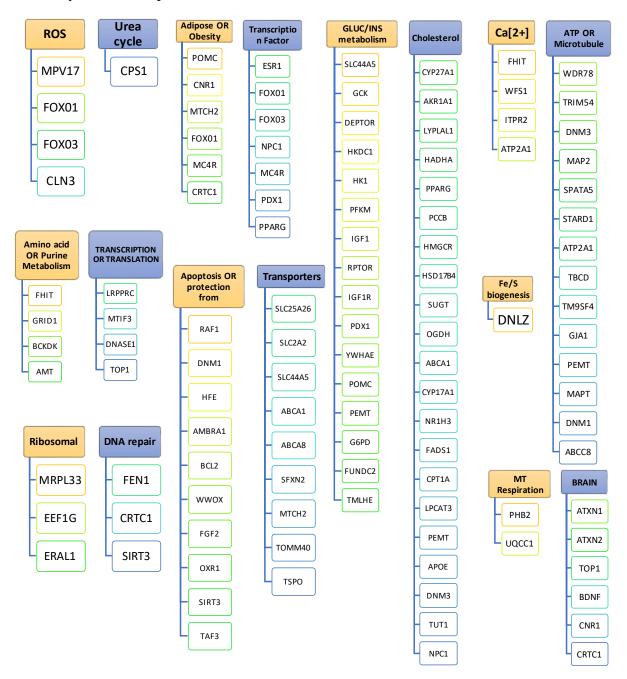


Figure S7. HbA1c mtDNA Association Tests and QQ-plot Distribution

Figure S8. HOMA-B and HOMA-IR Association Results for MT-nDNA Candidate Genes


Figure 9. HbA1c Association Results with MT-nDNA Candidate Genes

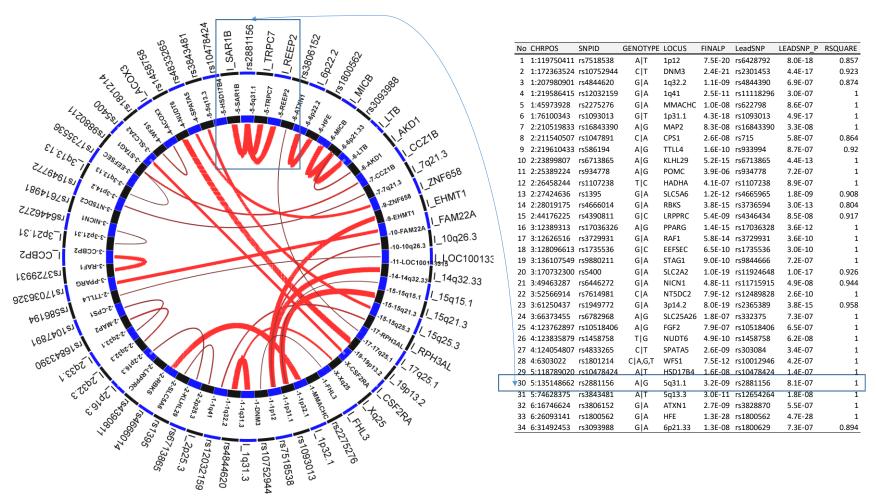

Figure S10. Six Clusters of Associations Among 109 MT-nDNA candidate Genes and Biological Terms Using Literature Lab.

Figure S11. A Diagram on MT-nDNA Candidate Genes Commonalities and Functions Summary. Details are presented in Table 4 and Table S6 and Discussion.

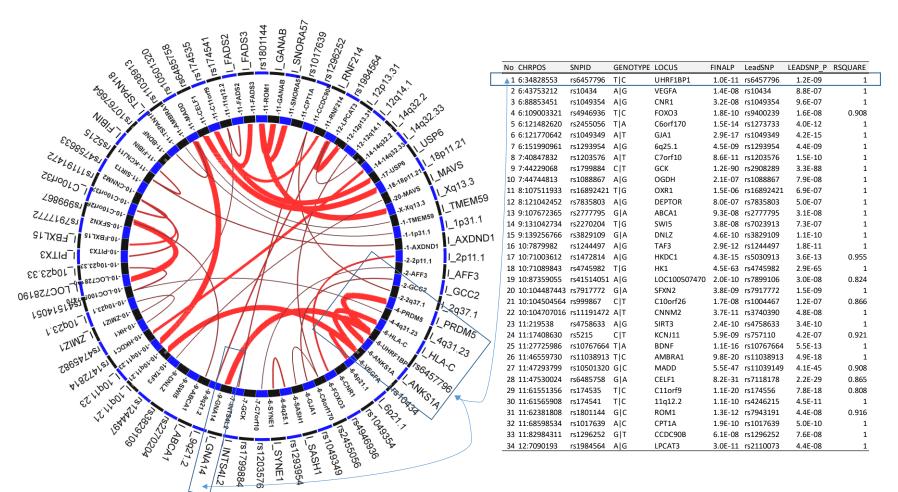


Figure S12.1. Detecting trans-Regulatory Variants by Combining GWAS *P*-value and Probable Functional Variants that Affect Transcriptional Regulation

Footnotes: The red line thickness depicts the significance (FINALP in the corresponding tables embedded into Figures S12.1-S12.3). An eSNV of our study (or an eSNV proxy in very high LD with ours) in the outer circle connects with a gene(s)/ cytogenetic band(s), where the "I" letter in front of it means trans-regulatory Interaction (see Supplement, section 8).

Figure S12.2. Detecting trans-Regulatory Variants by Combining GWAS *P*-value and Probable Functional Variants that Affect Transcriptional Regulation

Figure S12.3. Detecting trans-Regulatory Variants by Combining GWAS *P*-value and Probable Functional Variants that Affect Transcriptional Regulation

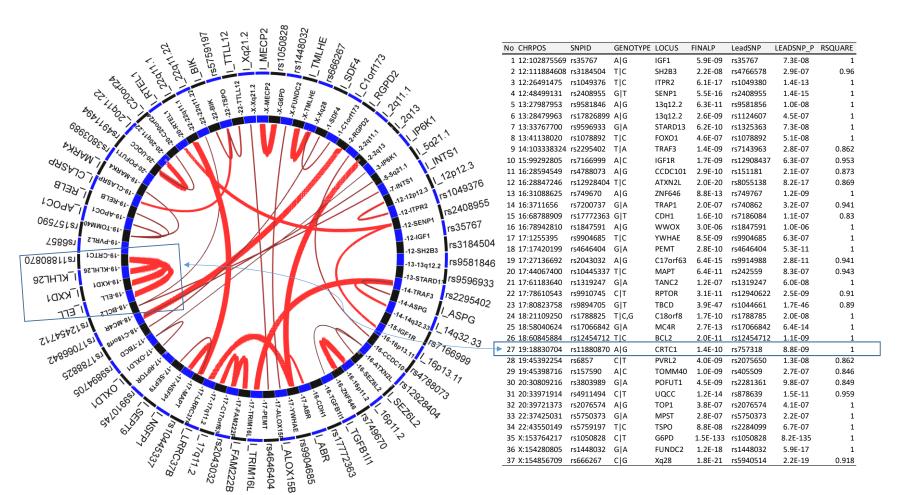
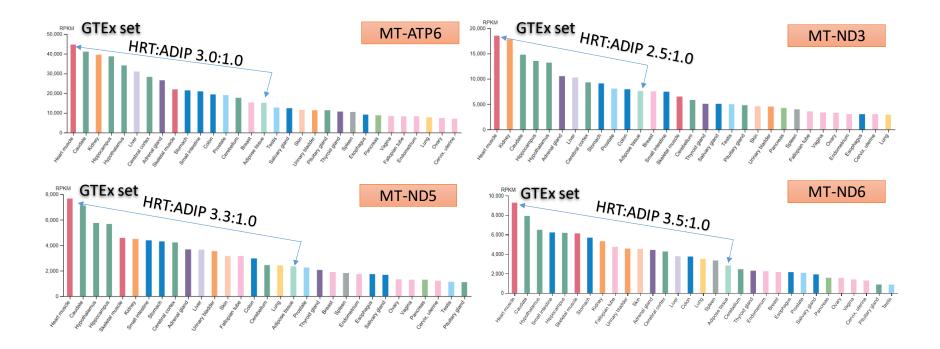
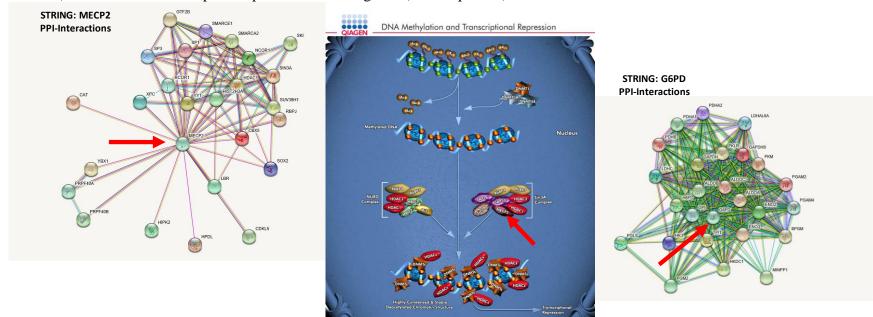
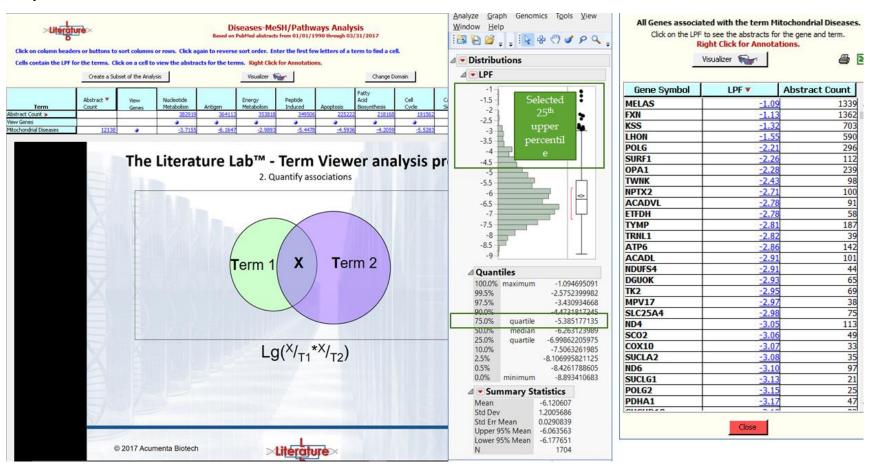




Figure S13. RNA Expression Patterns for Selected mtDNA Genes in Different Human Tissues.

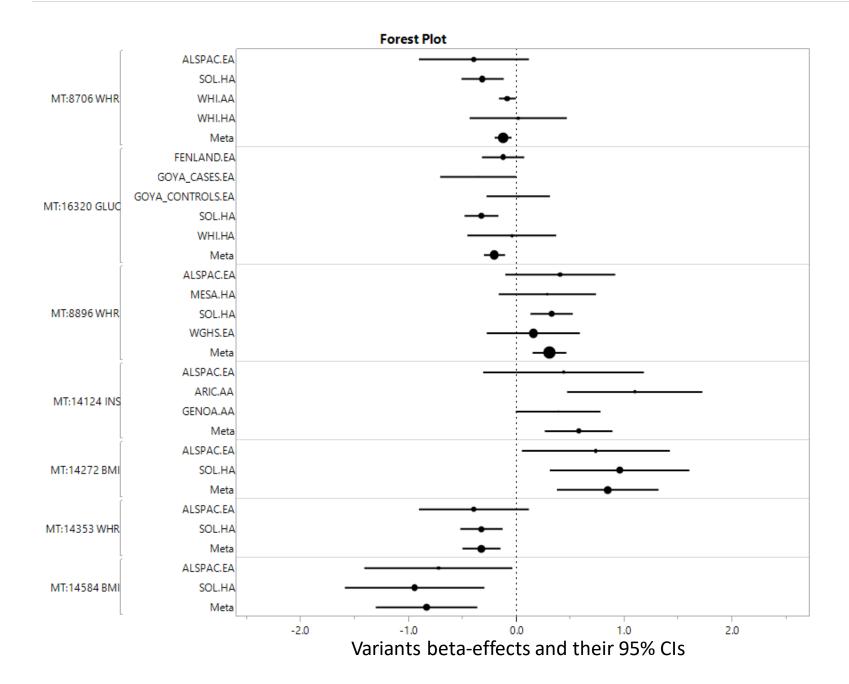
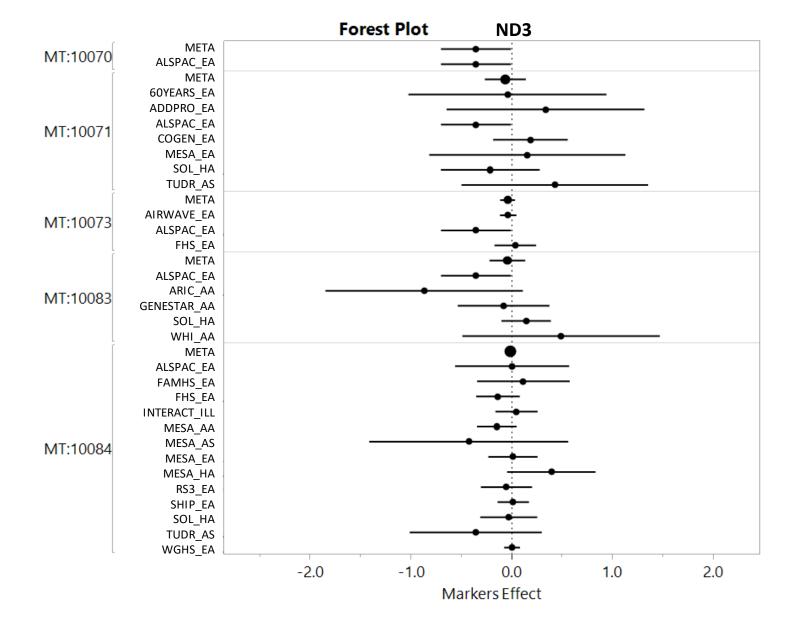
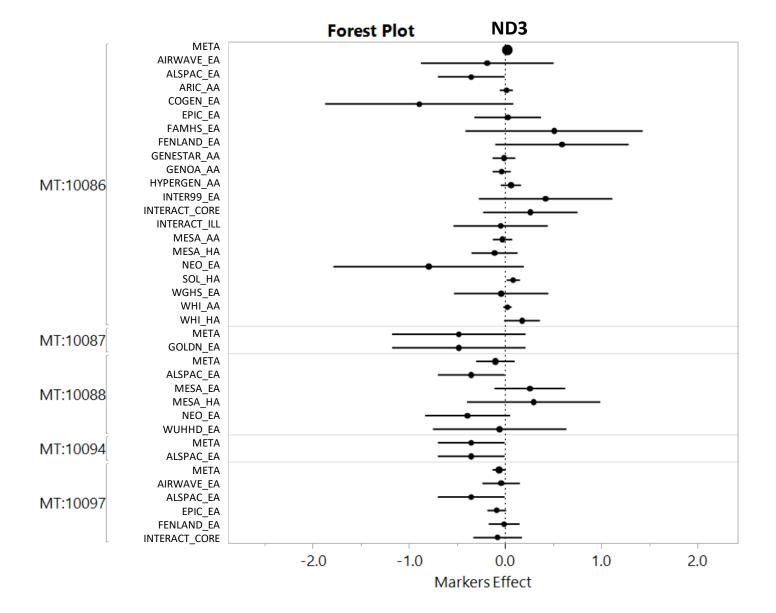
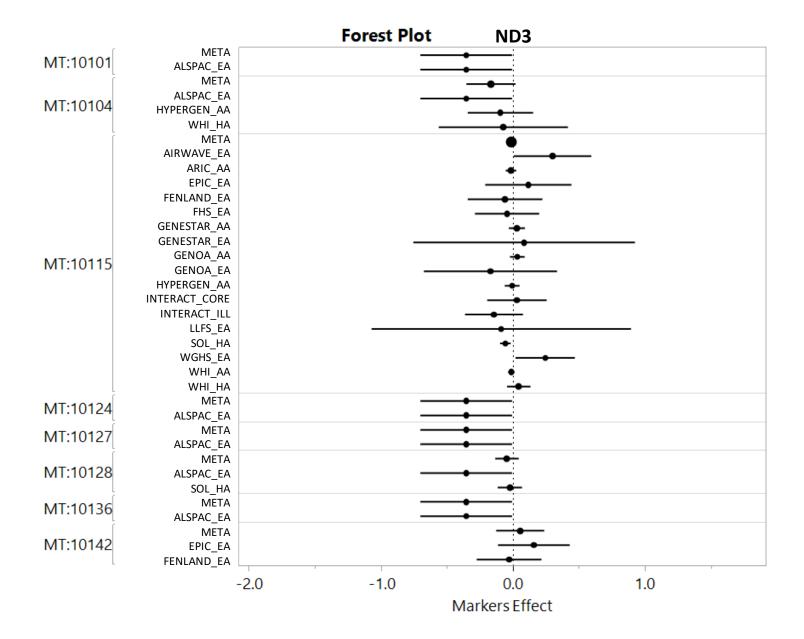
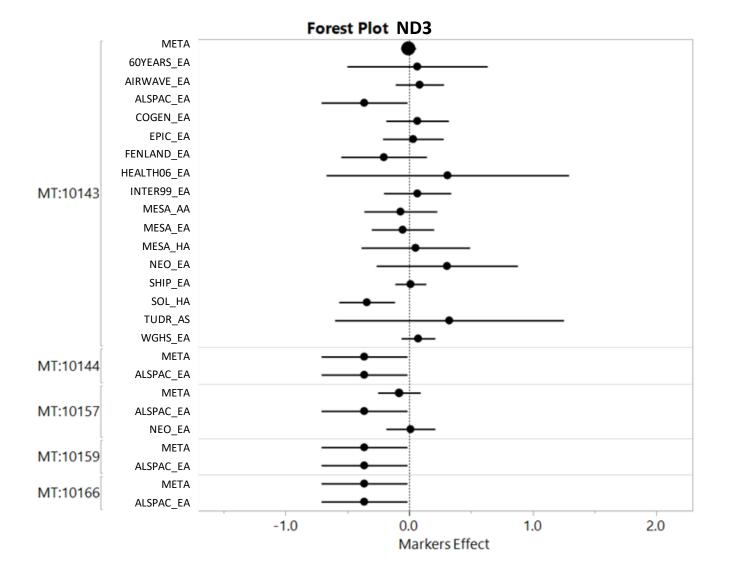


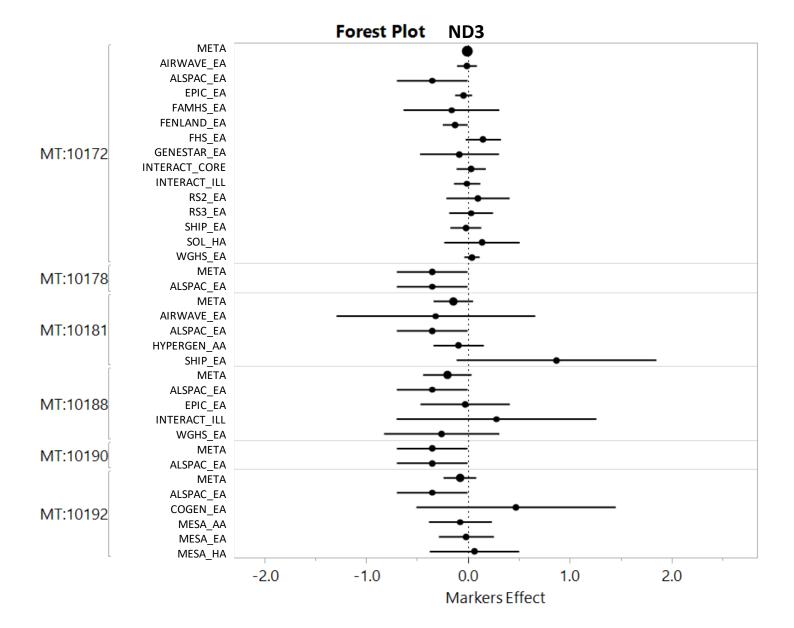
<u>Footnotes</u>: The RNAseq of GTEx is reported as median RPKM (reads per kilobase per million mapped reads) with varying N: 412 for heart muscle to 577 individuals for adipose tissue. The ratio of RNA expression between heart (HRT) and adipose (ADIP) for each gene reflects the trend of more- versus less energy demanding tissues (using tools of Human Protein Atlas (www.proteinatlas.org).

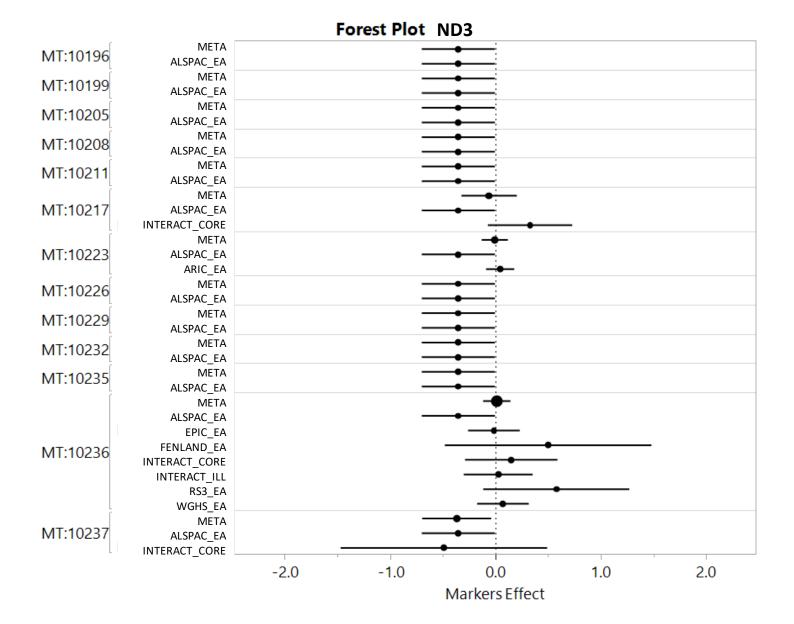
Figure S14. *G6PD* interactions. *G6PD* (chrX:154,531,390-154,547,586, right-picture) trans-regulates *MECP2* (chrX:154,021,573-154,137,103, left picture) and *MECP2* interacts with *SIN3A* (protein-protein interaction evidence), which together (SIN3A and MECP2) contribute to transcription repression of other genes (middle picture)

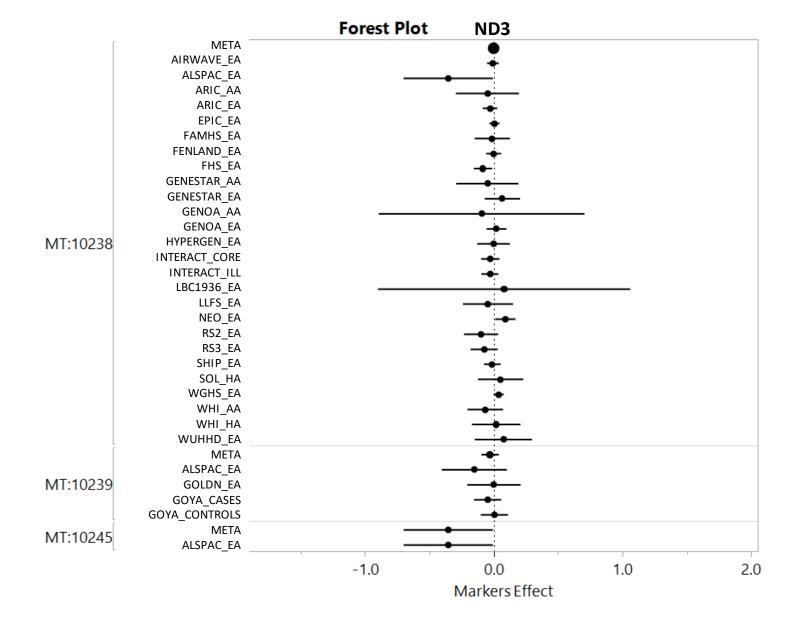
Figure S15. Selection of 25th Upper Quartile LPF of Genes Associated with the Terms "Mitochondrial diseases" and "Pathway analysis".

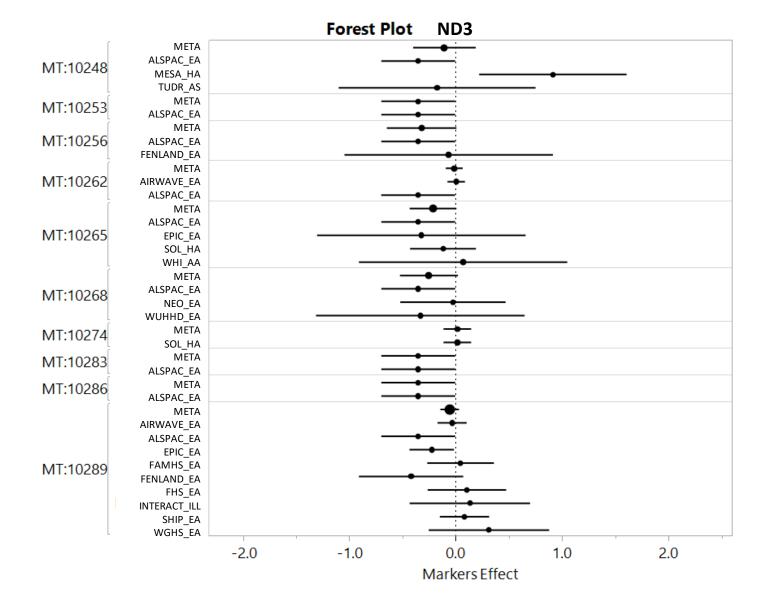
Figure S16. Forest plot of beta coefficients and their 95% confidence interval for studies contributing to seven significant mtDNA variants

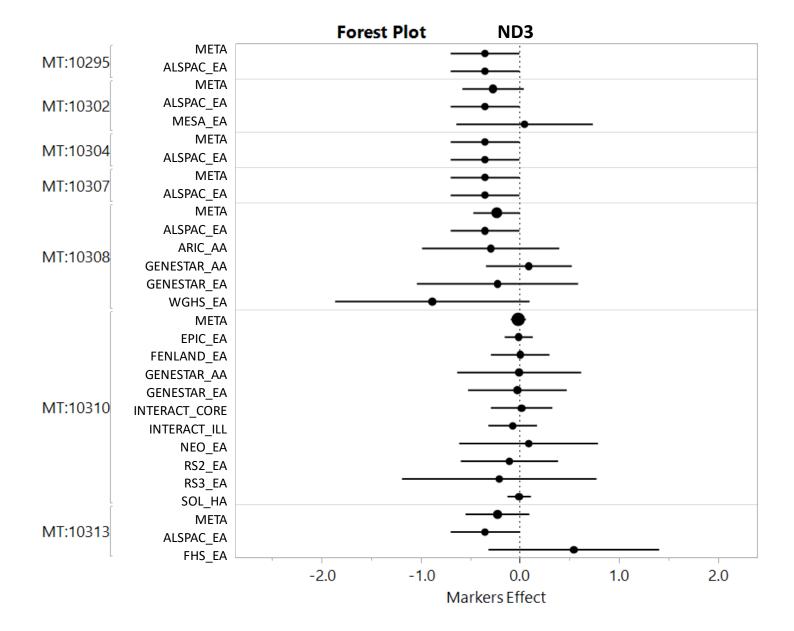






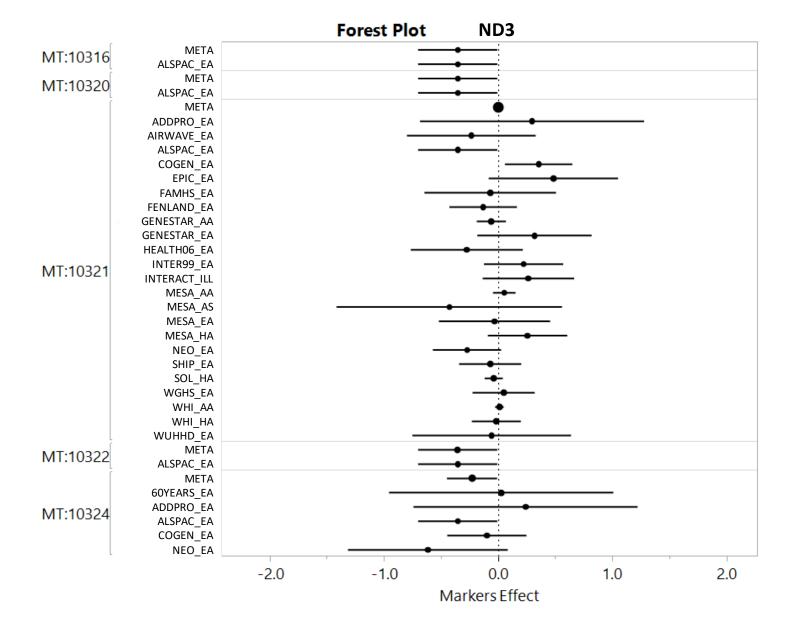

Figure S17. Forest plot of beta coefficients and their 95% confidence interval for studies contributing to MT-ND3-Gene based meta-analysis of 82 rare SNVs

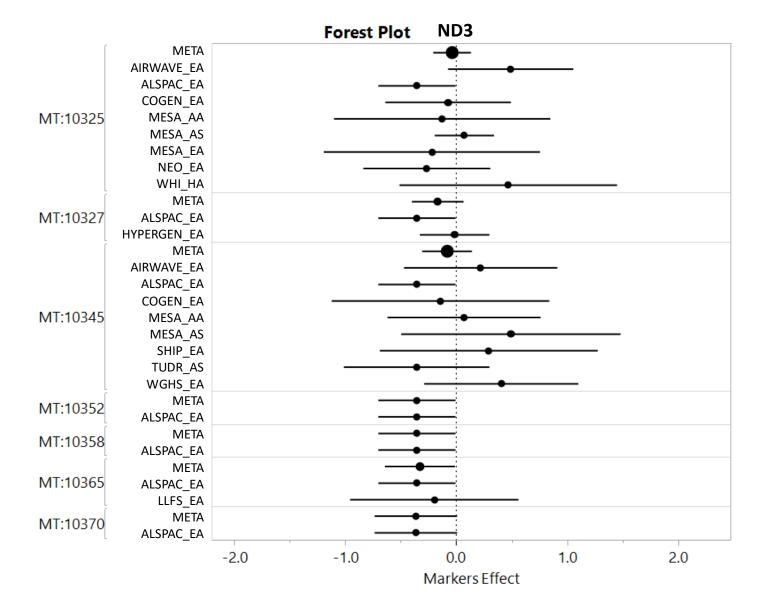


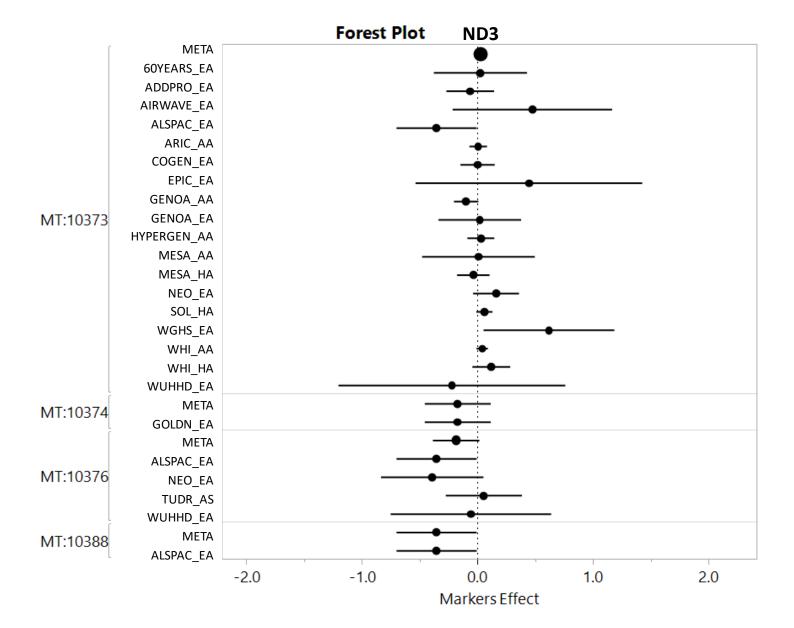


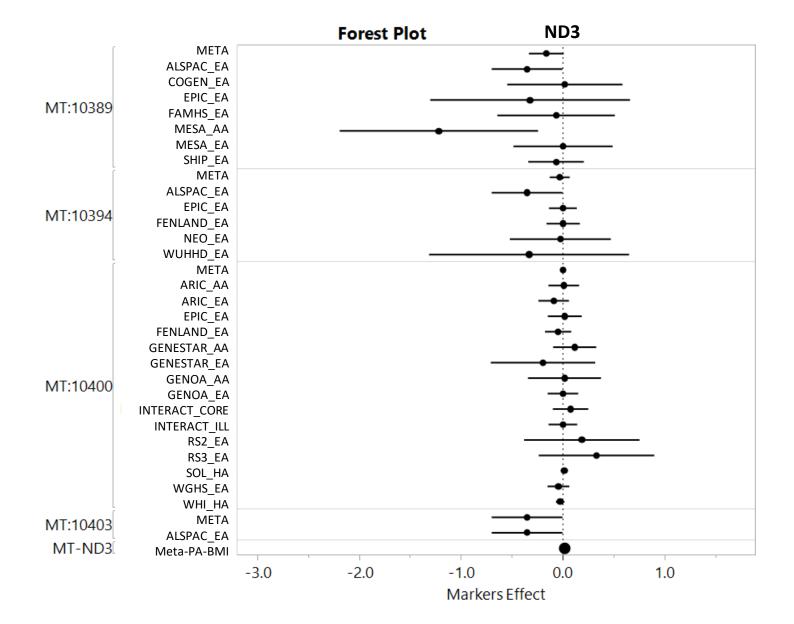












2. Supplementary Tables

Table S1. Summary Statistics for 7 Phenotypes Studied by Cohort

	tu. Cabart		вмі		WHR			GLUC			INS				нома	3	ı	HOMAIR		HBA1C		
Ancestry	Cohort	N	Mean	SD	N	Mean	SD	N	Mean	SD	N	Mean	SD	N	Mean	SD	N	Mean	SD	N	Mean	SD
European	AIRWAVE	16025	27.2	4.1	15979	0.86	0.07	958	95.5	9.5										16012	5.58	0.39
-	ALSPAC	3628	22.7	3.9	5303	0.84	0.06	2761	93.76	6.39	2767	10.01	4.92	2752	108.53	55.65	2752	2.33	1.21	1456	4.91	0.29
	ARIC	9481	27	4.86	9473	0.93	0.08	8651	98.73	9.21	9277	13.45	13.25	8646	112.91	74.94	8648	3.05	2.47			
	DANISH-60YEARS	642	26.58	3.76	651	0.90	0.09	612	94.42	9.72	612	7.18	4.07	612	76.54	38.17	612	1.72	1.11			
	DANISH-ADDPRO	1505	27.17	4.18	1532	0.94	0.08	1264	105.68	9.62	1262	7.16	4.87	1262	55.78	41.05	1262	1.90	1.38	1539	5.75	0.47
	DANISH-COGEN	5653	27.26	4.40				1843	103.18	12.38										557	6.16	1.80
	DANISH-GOYA_CASES	3197	35.54	2.90	787	1.02	0.07	197	103.80	9.01	196	11.06	7.71	196	91.57	62.02	196	2.88	2.09	224	5.94	1.02
	DANISH-GOYA_CONTROLS	3243	22.34	2.71	910	0.93	0.06	307	101.15	8.57	302	6.39	4.68	302	55.39	37.50	302	1.63	1.26	317	5.63	0.43
	DANISH-HEALTH06	2815	25.44	3.89	2907	0.87	0.09	2616	97.55	9.73	2616	6.81	4.65	2616	64.33	95.72	2616	1.68	1.25	2906	5.43	0.48
	DANISH-INTER99	5979	25.86	3.86	6136	0.86	0.09	5723	98.02	9.20	5506	6.85	4.50	5500	66.08	59.27	5500	1.68	1.16	6153	5.86	0.63
	DANISH-VEJLE	2367	28.65	5.41	2392	0.95	0.08													2408	6.68	1.13
	EPIC-INTERACT_CORE	6745	27.26	4.79	6036	0.87	0.1	632	90.33	12.71										4056	5.42	0.35
	EPIC-INTERACT_ILL	8364	27.92	4.96	7583	0.88	0.09	714	90.07	13.62										4065	5.43	0.34
	EPIC-NORFOLK	19225	26.29	3.82	19199	0.86	0.09													8499	5.19	0.55
	FAMHS	3677	27.74	5.47	3674	0.92	0.09	3362	94.04	9.86	3610	11.57	13.43	3353	116.10	211.22	3356	2.48	2.10			
	FENLAND	8453	26.91	4.83	8437	0.88	0.09	8407	86.43	8.75	7084	7.96	6.51	7066	112.68	85.9	7066	1.74	1.57	5377	5.52	0.33
	FHS	6930	27.44	5.46	6046	0.93	0.08	6423	93.51	8.7	5984	29.85	16.5	5982	364.97	218.5	5984	7.07	4.31	5175	5.46	0.3
	GENESTAR	1887	28.37	5.88	337	0.89	0.097	1577	89.85	10.05	651	9	7.41	646	123.38	102.7	650	2.03	1.87			
	GENOA	1016	30.77	6.20	1012	0.91	0.10	1042	90.69	7.91	1021	8.01	5.09	1021	94.97	55.70	1021	1.67	1.13			
	GOLDN	842	28.47	5.49	842	0.90	0.10	842	102.01	19.53	841	14.07	8.23	841	126.88	63.01	835	3.61	2.47			
	HYPERGEN	1267	29.42	6.14	1251	0.91	0.09	1105	94.25	9.79	1103	7.49	5.3	985	86.74	33.9	985	1.06	0.68			
	LBC1921	513	26.19	4.09																452	5.7	0.7
	LBC1936	1004	27.79	4.32																999	5.93	0.74
	LLFS	4401	27.13	4.85				3840	91.73	11.42	3812	7.93	5.51	3779	97.33	79.86	3799	1.85	1.44	4163	5.53	0.35
	MESA	2378	27.52	4.93	2378	0.92	0.09	2372	87.89	10.14	2372	8.76	4.98	2370	120.36	69.31	2370	1.95	1.26	2217	5.34	0.37
	NEO	5744	29.99	4.83	5739	0.92	0.08	5096	98.53	9.71	5089	11.75	7.56	5089	110.97	69.82	5089	2.92	2.03	5097	5.34	0.26
	OOA	2296	26.73	5.03	2231	0.87	0.07	2023	85.76	9.47	829	10.45	5.33	752	153.43	113.8	759	2.35	1.41	720	5.14	0.54
	PELOTAS	850	26.87	5.34	852	0.81	0.08													842	5.06	0.41
	RS-II	2152	27.23	3.99	1938	0.91	0.09	1758	100.6	9.14	1744	12.74	6.8	1744	114.57	58.89	1744	3.22	1.85			
	RS-III	3026	27.7	4.59	2926	0.87	0.08	2740	95.16	10.09	2665	14.94	9.38	2643	157.71	119.1	2658	3.59	2.49			
	SHIP	8205	27.73	5.01	8196	0.88	0.09	2741	95.98	10.47	477	1.58	0.58	471	3.9	0.56	477	0.17	0.62	6982	5.19	0.51
	WGHS	22203	25.88	4.88	19568	0.83	0.08													21970	5.01	0.28
	WUHHD	710	29.82	6.38	681	0.87	0.08	558	87.34	12.48	567	9.4	7.87	541	142.05	160.3	548	2.1	1.88			
African	ARIC	2860	29.7	6.06	2857	0.92	0.08	2250	98.73	10.13	2587	19.32	28.42	2244	152.5	103.1	2249	4.1	3.49			
	GENESTAR	1165	31.36	7.52	552	0.88	0.076	949	90.49	11.79	500	10.78	7.04	496	141.03	109.2	499	2.49	1.83			
	GENOA	1003	31.74	6.57	1001	0.90	0.06	688	91.56	8.28	687	9.22	7.95	687	106.80	94.22	687	1.94	1.72			
	HYPERGEN	1256	32.54	8.02	1242	0.9	0.08	991	93.01	10.49	989	10.03	8.03	904	105.25	42.38	904	1.37	0.88			
	MESA	1345	29.74	5.77	1345	0.91	0.08	1339	90.13	10.83	1336	9.84	5.92	1335	122.97	97.94	1335	2.24	1.51	1168	5.56	0.44
	WHI	8116	31.03	6.50	8088	0.82	0.07	5514	91.84	9.98	5364	8.94	5.64	5357	104.34	66.04	5366	2.08	1.46			
Asian	MESA	672	23.83	3.2	672	0.91	0.07	670	91.47	9.78	671	8.91	4.61	669	108.54	64.67	669	2.03	1.13	605	5.51	0.37
	TUDR	895	24.75	4.33	168	0.93	0.05													835	8.88	2.47
Hispanic	HCHS-SOL	10120	29.73	5.71	9013	0.92	0.07	8108	94.64	8.79	8071	12.23	8.50	8077	128.86	86.01	8073	2.91	2.16	8106	5.46	0.38
	MESA	1187	29.04	4.88	1187	0.95	0.07	1185	90.78	10.86	1185	11.03	14.24	1184	135.77	129.6	1184	2.54	3.89	1063	5.49	0.41
	WHI	3463	28.76	5.36	3448	0.82	0.07	2623	91.55	8.88	2572	8.22	5.45	2568	95.55	60.25	2572	1.90	1.39			
Brazilian	PELOTAS	1925	26.92	5.59	1943	0.82	0.08		J				·							1921	5.09	0.43

Table S2(a,b). Details by Cohort of mtDNA Variants Associated with BMI, WHR, Glucose, Insulin, HOMA-B, HOMA-IR and HbA1c METAL Meta-Analysis **Single Variant** Results

a. Meta-analysis results of variants with MAF > 1% (see Table 1.a) including information at the cohort level selected with MAC \geq 5.

No	Results	Pos	rsID	Gene	Annotation	Trait	Ancestry	A1/2	Freq1	MAF	MAC	INFO	β(SE)	P -value	Dir	Het-P	N	Missing Rate
1	Metal	8706		MT-ATP6		WHR	PA	A/G	0.9676	0.0324	834	n.a.	-0.13(0.04)	4.07E-04	+	9.44E-02	25,748	n.a.
	ALSPAC.EA								0.9974	0.0026	14	0.816	-0.40(0.26)	1.27E-01			5,303	0.00000
	SOL.HA								0.9880	0.0120	108	0.960	-0.32(0.10)	8.05E-04			8,989	0.00266
	WHI.AA								0.9135	0.0865	693	0.968	-0.09(0.04)	2.10E-02			8,011	0.00952
	WHI.HA								0.9945	0.0055	19	0.447	0.01(0.23)	9.68E-01			3,445	0.00087
2	Metal	16320	rs62581338	D-loop		GLUC	PA	T/C	0.0158	0.0158	301	n.a.	-0.21(0.05)	7.59E-05	+	1.77E-01	19,046	n.a.
	FENLAND.EA								0.0028	0.0028	23	0.432	-0.13(0.10)	2.19E-01			8,209	0.02300
	GOYA_CASES.EA								0.2439	0.2439	40	1.000	-0.36(0.18)	5.24E-02			164	0.00000
	GOYA_CONTROLS	.EA							0.2402	0.2402	61	1.000	0.01(0.15)	9.63E-01			254	0.00000
	SOL.HA								0.0195	0.0195	153	0.791	-0.33(0.08)	4.63E-05			7,849	0.03194
	WHI.HA								0.0093	0.0093	24	0.704	-0.05(0.21)	8.19E-01			2,570	0.01908

Footnotes: No-order number; Pos - MT position in bps; Gene- gene name or region; rsID - rsID-name from NCBI dbSNP database when available; Annotation - role of the variants when available; Trait - one or more of seven traits studied; Ancestry – AA – African Americans, EA – European, HA- Hispanics or Latino, and PA - Pan-ancestry; A1/2 - the coded and non-coded alleles; Freq1 - allele frequency for coded allele; FreqSE - Standard error of allele frequency from METAL; MINFreq - a minimum allele frequency for contributing cohorts; MAXFreq - a maximum allele frequency for contributing cohorts; MAF - minor allele frequency; MAC - minor allele count, calculated as MAF*N; $\beta(SE)$ - beta coefficient and the corresponding standard error; P-value - from single variant regression analysis; Dir - direction sign of contributing cohort's beta; Het-P - heterogeneity P-value test from METAL; N - individuals' sample contributing in a particular marker meta-analysis.

$\textbf{b}. \ \ \text{Meta-analysis results of variants with MAF} < 1\% \ (\text{see Table 1.b}) \ including information at the cohort level selected with MAC} \geq 5.$

No	Results	Pos	rsID	Gene	Annotation	Trait	Ancestry	A1/2	Freq1	MAF	MAC	INFO	β(SE)	P-value	Dir	Het-P	N	Missing Rate
1	Metal	8896	rs202120082	MT-ATP6	missense	WHR	PA	A/G	0.0038	0.0038	134	n.a.	0.30(0.08)	1.12E-04	++++	8.80E-01	34,959	n.a.
	ALSPAC.EA								0.0026	0.0026	14	0.821	0.40(0.26)	1.27E-01			5,303	0.00000
	MESA.HA								0.0059	0.0059	6	1.000	0.28(0.23)	2.20E-01			1,075	0.00000
	SOL.HA								0.0121	0.0121	109	1.000	0.32(0.10)	7.66E-04			9,013	0.00000
	WGHS.EA								0.0003	0.0003	5	1.000	0.15(0.22)	5.09E-01			19,568	0.00000
2	Metal	14124		MT-ND5		INS	PA	T/C	0.0035	0.0035	21	n.a.	0.57(0.16)	2.95E-04	+++	1.62E-01	6,035	n.a.
	ALSPAC.EA								0.0022	0.0022	6	0.995	0.43(0.38)	2.51E-01			2,767	0.00037
	ARIC.AA								0.0035	0.0035	9	0.948	1.09(0.32)	5.80E-04			2,581	0.00070
	GENOA.AA								0.0087	0.0087	6	0.999	0.38(0.20)	5.97E-02			687	0.00000
3	Metal	14272	rs2853814	MT-ND6	missense	BMI	PA	T/C	0.0012	0.0012	17	n.a.	0.84(0.24)	4.90E-04	++	6.49E-01	13,636	n.a.
	ALSPAC.EA								0.0022	0.0022	8	0.994	0.73(0.35)	3.99E-02			3,628	0.00037
	SOL.HA								0.0009	0.0009	9	0.469	0.95(0.33)	4.38E-03			10,008	0.01107
4	Metal	14353		MT-ND6		WHR	PA	T/C	0.9916	0.0084	120	n.a.	-0.33(0.09)	2.29E-04		8.00E-01	14,315	n.a.
	ALSPAC.EA								0.9978	0.0022	12	0.994	-0.40(0.26)	1.27E-01			5,303	0.00037
	SOL.HA								0.9880	0.0120	108	0.967	-0.33(0.10)	7.75E-04			9,012	0.00011
5	Metal	14584		MT-ND6		BMI	PA	T/C	0.9988	0.0012	17	n.a.	-0.84(0.24)	4.90E-04		6.49E-01	13,636	n.a.
	ALSPAC.EA								0.9978	0.0022	8	0.994	-0.73(0.35)	3.99E-02			3,628	0.00037
	SOL.HA								0.9991	0.0009	9	0.469	-0.95(0.33)	4.38E-03			10,008	0.01107

Table S3. Association Results at Cohort Level for SOL-HA.

No	POS	rsID	Trait	Ancestry	A1	A2	Freq1	MAF	β	SE	<i>P</i> -value	N	missRate
1*	8706		WHR	Central American	Α	G	0.924361	0.075639	-0.26	0.12	2.68E-02	1018	0.00196
				Cuban	Α	G	0.992486	0.007514	-0.46	0.29	1.11E-01	1730	0.00518
				Dominican	NA	NA	NA	NA	NA	NA	NA	NA	NA
				Mexican	Α	G	0.996458	0.003542	-0.46	0.29	1.13E-01	3106	0.00064
				Puerto Rican	NA	NA	NA	NA	NA	NA	NA	NA	NA
				South American	Α	G	0.989766	0.010234	-0.93	0.37	1.24E-02	684	0.00437
2	16320 rs	62581338	GLUC	Central American	С	Т	0.994536	0.005464	-0.04	0.41	9.23E-01	915	0.01719
				Cuban	С	Т	0.950067	0.049933	0.31	0.12	8.57E-03	1502	0.06125
				Dominican	С	Т	0.958032	0.041968	0.47	0.19	1.30E-02	691	0.07989
				Mexican	С	Т	0.995448	0.004552	0.17	0.28	5.46E-01	2856	0.00626
				Puerto Rican	С	Τ	0.982595	0.017405	0.27	0.23	2.47E-01	1264	0.04242
				South American	С	Т	0.985507	0.014493	0.73	0.32	2.21E-02	621	0.01741
No	POS	rsID	Trait	Ancestry	A1	A2	A1_AF	MAF	β	SE	P-value	N	missRate
1	8896 rs	202120082	WHR	Central American	G	Α	0.923529	0.076471	-0.26	0.11	2.59E-02	1020	0.00000
				Cuban	G	Α	0.992524	0.007476	-0.46	0.29	1.09E-01	1739	0.00000
				Dominican	NA	NA	NA	NA	NA	NA	NA	NA	NA
				Mexican	G	Α	0.996461	0.003539	-0.46	0.29	1.13E-01	3108	0.00000
				Puerto Rican	NA	NA	NA	NA	NA	NA	NA	NA	NA
				South American	G	Α	0.989811	0.010189	-0.93	0.37	1.24E-02	687	0.00000
3	14272 rs	2853814	BMI	Central American	NA	NA	NA	NA	NA	NA	NA	NA	NA
				Cuban	С	Т	0.998395	0.001605	0.33	0.57	5.64E-01	1869	0.02351
				Dominican	С	Т	0.998881	0.001119	-2.63	0.96	6.61E-03	894	0.02826
				Mexican	NA	NA	NA	NA	NA	NA	NA	NA	NA
				Puerto Rican	С	T	0.997762	0.002238	-1.34	0.56	1.79E-02	1787	0.00887
				South American	С	Т	0.998628	0.001372	-1.74	0.90	5.22E-02	729	0.00410
4	14353		WHR	Central American	Т	С	0.924436	0.075564	-0.26	0.12	2.66E-02	1019	0.00098
				Cuban	Т	С		0.007476		-			0.00000
				Dominican		NA	NA	NA	NA	NA	NA	NA	NA
				Mexican	Т	С		0.003539					0.00000
				Puerto Rican		NA	NA	NA	NA	NA	NA	NA	NA
				South American	Т	С		0.010189				687	0.00000
5	14584		BMI	Central American			NA	NA	NA	NA	NA	NA	NA
				Cuban	Т	С		0.001605			5.64E-01		0.02351
				Dominican	Т	С		0.001119				894	0.02826
				Mexican		NA	NA	NA	NA	NA	NA	NA	NA
				Puerto Rican	Т	С		0.002238					0.00887
				South American	T	С	0.998628	0.001372	-1.74	0.90	5.22E-02	729	0.00410

Footnote: *These order numbers match with the ones on Tables 1.a-1.b and Tables S2.a-2.b.

 Table S4. GWAS Publications, which Summary Results Were Used for Identifying Significant MT-nDNA Candidate Genes

		вмі
Author(s)	PMID	Publication
Speliotes et al, 2010	PMID: 20935630	Speliotes, E.K. <i>et al.</i> Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. <i>Nat Genet</i> 42 , 937-48 (2010).
		Yang, J. et al. FTO genotype is associated with phenotypic variability of body mass index. Nature 490 , 267-72 (2012).
Yang et al, 2012	PMID: 22982992	
Berndt et al, 2013	PMID: 23563607	Berndt, S.I. <i>et al.</i> Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. <i>Nat Genet</i> 45 , 501-12 (2013).
Randall et al, 2013	PMID: 23754948	Randall, J.C. <i>et al.</i> Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. <i>PLoS Genet</i> 9 , e1003500 (2013).
Monda et al, 2013	PMID: 23583978	Monda, K.L. <i>et al.</i> A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. <i>Nat Genet</i> 45 , 690-6 (2013).
Locke <i>et al</i> , 2015	PMID: 25673413	Locke, A.E. <i>et al.</i> Genetic studies of body mass index yield new insights for obesity biology. <i>Nature</i> 518 , 197-206 (2015).
Shungin et al, 2015	PMID: 25673412	Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518 , 187-196 (2015).
Winkler et al, 2015	PMID: 26426971	Winkler, T.W. <i>et al.</i> The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. <i>PLoS Genet</i> 11 , e1005378 (2015).
NG et al, 2017	PMID: 28430825	Ng, M.C.Y. <i>et al.</i> Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium. <i>PLoS Genet</i> 13 , e1006719 (2017).
Justice et al, 2017	PMID: 28443625	Justice, A.E. <i>et al.</i> Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. <i>Nat Commun</i> 8 , 14977 (2017).
	•	WHR
Heid et al, 2010	PMID: 20935629	Heid, I.M. <i>et al.</i> Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. <i>Nat Genet</i> 42 , 949-60 (2010).

Randall et al, 2013	PMID: 23754948	Randall, J.C. <i>et al.</i> Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. <i>PLoS Genet</i> 9 , e1003500 (2013).
Berndt et al, 2013	PMID: 23563607	Berndt, S.I. <i>et al.</i> Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. <i>Nat Genet</i> 45 , 501-12 (2013).
Shungin et al, 2015	PMID: 25673412	Shungin, D. <i>et al.</i> New genetic loci link adipose and insulin biology to body fat distribution. <i>Nature</i> 518 , 187-196 (2015).
Winkler et al, 2015	PMID: 26426971	Winkler, T.W. <i>et al.</i> The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape: A Large-Scale Genome-Wide Interaction Study. <i>PLoS Genet</i> 11 , e1005378 (2015).
Justice et al, 2017	PMID: 28443625	Justice, A.E. <i>et al.</i> Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. <i>Nat Commun</i> 8 , 14977 (2017).
NG et al, 2017	PMID: 28430825	Ng, M.C.Y. <i>et al.</i> Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium. <i>PLoS Genet</i> 13 , e1006719 (2017).
Graph <i>et al</i> , 2017	PMID: 28448500	Graff, M. et al. Genome-wide physical activity interactions in adiposity - A meta- analysis of 200,452 adults. PLoS Genet 13, e1006528 (2017).
		Glucose
		Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses
Saxena et al, 2010	PMID:20081857	to an oral glucose challenge. <i>Nat Genet</i> 42 , 142-8 (2010).
Dupuis et al, 2010	PMID:20081858	Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42, 105-16 (2010).
Manning et al, 2010	PMID:22581228	Manning, A.K. <i>et al.</i> A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. <i>Nat Genet</i> 44 , 659-69 (2012).
Scott et al, 2012	PMID:22885924	Scott, R.A. <i>et al.</i> Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. <i>Nat Genet</i> 44 , 991-1005 (2012).
		INS
		Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their
Dupuis et al, 2010	PMID:20081858	impact on type 2 diabetes risk. <i>Nat Genet</i> 42 , 105-16 (2010).
		Strawbridge, R.J. et al. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the
Strawbridge et al, 2011	PMID: 21873549	pathophysiology of type 2 diabetes. Diabetes 60, 2624-34.

Manning et al, 2010	PMID:22581228	Manning, A.K. <i>et al.</i> A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. <i>Nat Genet</i> 44 , 659-69 (2012).
Scott et al, 2012	PMID:22885924	Scott, R.A. <i>et al.</i> Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. <i>Nat Genet</i> 44 , 991-1005 (2012).
Prokopenko et al, 2014	PMID:24699409	Prokopenko, I. et al. A central role for GRB10 in regulation of islet function in man. PLoS Genet 10, e1004235 (2014).
Walford <i>et al</i> , 2016	PMID: 27416945	Walford, et al. Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci. Diabetes 65, 3200-11 (2016)
НОМАВ	•	·
Dupuis et al, 2010	PMID:20081858	Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42, 105-16 (2010).
		HOMAIR
Dupuis <i>et al</i> , 2010	PMID:20081858	Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42, 105-16 (2010).
-		HbA1c
Soranzo et al, 2010	PMID:20858683	Soranzo N. et al. Common variants at 10 genomic loci influence hemoglobin A ₁ (C) levels via glycemic and nonglycemic pathways. Diabetes 59,3229-39 (2010)
Wheeler et al, 2017	PMID:28898252	Wheeler, E. et al. Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genomewide meta-analysis. PLoS Med 14, e1002383 (2017).

Table S5. Domain Terms (in Pathways and Metabolism-MeSH) Enriched for MT-nDNA Gene Clusters and their Assigned Abstracts in Percent

					Mitochondrial Carnitine	
Estrogen signaling -	Antisense	RNA polymorase	Angiogenesis 🔻	IGFR-1R ▼	Palmitoyltransferase -	PPAR -
	BCL2,TNF,VEGFA,IGF1,IGF1R,ESR1,B	TNF,VEGFA,BCL2,ESR1,PPARG,				
	3GNTL1,FGF2,PPARG,BDNF,RAF1,CD	CDH1,IGF1,FGF2,B3GNTL1,IGF				
ESR1, IGF1	H1,GJA1,NUDT6,POMC,FOXO1,TUT1	1R,BDNF,DNASE1,GJA1,POMC	VEGFA,FGF2	IGF1R,IGF1	CPT1A,TOP1,PPARG	PPARG,NRH1
97,1	24,15,10,5,5,4,4,4,4,3,3,3,2,1,1,1,1	24,12,11,8,7,4,4,4,3,3,3,2,2,1,1	93,6	88,12	66,31,2	98,1
0.0003	0.0005	0.0005	0.001	0.0011	0.0011	0.0015
Tissue distribution	Pentose phosphate pathway	Glycolysis	Cytric Acid cycle 🕶	Carbohydrate metabolisn 🔻	Metabolome -	Lipogenesis
POMC,B3GNTL1,ESR1,TSPO,TNF,IGF1,VEGFA,PP					HK1,CPS1,LPCAT3,CPT1A,G6PD,PPARG,	
ARG,FGF2,BDNF,GJA1,APOE,IGF1R,SLC25A26,AK				HK1,PFKM,G6PD,GCK,B3GNT	OGDH,CRTC1,PFKM,CYP17A1,MTCH2,T	
R1A1,DNASE1,CDH1,MAP2,MC4R,CD46,HK1,BC				L1,AKR1A1,FOXO1,PPARG,SL	NF,DNLZ,FADS1,IGF1,LRPPRC,PEMT,GC	
L2,SLC2A2,BCKDK	G6PD,PFKM,HK1	HK1,PFKM,GCK,G6PD	OGDH,HK1,G6PD	C2A2,OGDH	K,ATXN1,APOE	PPARG,NR1H3,CPT1A,FOXO1
14,10,8,7,5,5,4,3,3,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1	89,6,4	59,28,7,3	95,3,1	47,16,11,9,6,3,2,1,1,1	13,12,10,9,8,7,6,4,3,2,2,2,2,2,2,2,2,1,1,1	89,5,2,1
0.0041	0.005	0.0054	0.0071	0.0077	0.0097	0.0126

Table S6. Functional Annotation of 109 MT-nDNA Candidate Genes

(Separate Excel Worksheet)

Table S7. Thirteen and Fifteen Genes out of 109 MT-nDNA Candidates Associated Respectively with T2D and CVD

No	Gene	Mapping	T2D Association Candidates: Function	Trait	P-value	PMID
1	ATXN2	12q24.12	It is involved in endocytosis, and modulates mTOR signals, modifying ribosomal translation and mitochondrial function. GWAs indicate that loss-of-function mutations in this gene may be associated with susceptibility to type I diabetes, obesity and hypertension	Glycated hemoglobin levels	1.0E-08	28898252
2	BCL2	18q21.33	An integral outer mitochondrial membrane protein that blocks the apoptotic death of some cells such as lymphocytes	Type 2 diabetes	4.0E-08	28869590
3	CPS1	2q34	The mitochondrial enzyme encoded by this gene catalyzes synthesis of carbamoyl phosphate from ammonia and bicarbonate	Metabolite levels	3.0E-50	23378610
4	ERAL1	17q11.2	It is required for proper assembly of the 28S small mitochondrial ribosomal subunit	Glycated hemoglobin levels	3.0E-11	28898252
5	FADS1	11q12.2	Regulates unsaturation of fatty acids through the introduction of double bonds between defined carbons of the fatty acyl chain	Fasting glucose related traits	2.0E-15	20081858
6	G6PD	Xq28	Glucose-6-phosphate dehydrogenase produces NADPH, a key electron donor in the defense against oxidizing agents and in reductive biosynthetic reactions	Glycated hemoglobin levels	8.0E-135	28898252
7	HFE	6p22.2	Iron regulator, associates with beta2-microglobulin	Glycated hemoglobin levels	5.0E-28	28898252
8	HK1	10q22.1	Hexokinases phosphorylate glucose to produce glucose-6-phosphate, the first step in most glucose metabolism pathways	Glycated hemoglobin levels	3.0E-65	28898252
9	IGF1	12q23.2	It is similar to insulin in function and structure and is involved in mediating growth and development	HOMA-IR	2.0E-09	20081858
10	РНВ2	12p13.31	PHB2 plays a central role in p21 upregulation following GGCT knockdown and as such may promote deregulated proliferation of cancer	Glycated hemoglobin levels	4.0E-08	28898252
11	<i>PPARG</i>	3p25.2	It is a regulator of adipocyte differentiation.	T2D	2.0E-19	28869590
12	SLC2A2	3q26.2	Known also as GLUT2: The encoded protein mediates facilitated bidirectional glucose transport. Because of its low affinity for glucose, it has been suggested as a glucose sensor	HbA1c reduction in T2D	7.0E-14	27500523
13	WFS1	4p16.1	Down-regulation of WFS1 in neurons leads to changes in mitochondrial dynamics (inhibited mitochondrial fusion, altered mitochondrial trafficking, and augmented mitophagy), delaying neuronal development	T2D	1.0E-15	28869590

No	Gene	Mapping	CVD Association Candidates: Function	Trait	P-value	PMID
1	APOE	19q13.32	It is essential for the normal catabolism of triglyceride-rich lipoprotein constituents. Mutations in this gene result in familial dysbetalipoproteinemia, or type III hyperlipoproteinemia (HLP III), in which increased plasma cholesterol and triglycerides are the consequence of impaired clearance of chylomicron and VLDL remnants	LDL	2.0E-286	28334899
2	ATXN2	12q24.12	It is involved in endocytosis, and modulates mTOR signals, modifying ribosomal translation and mitochondrial function	Coronary artery disease	9.0E-14	28714975
3	CD46	1q32.2	The encoded protein has cofactor activity for inactivation of complement components C3b and C4b by serum factor I, which protects the host cell from damage by complement	Resting heart rate	5.0E-31	27798624
4	CPS1	2q34	This mitochondrial enzyme catalyzes synthesis of carbamoyl phosphate from ammonia and bicarbonate. This reaction is the first committed step of the urea cycle, which is important in the removal of excess urea from cells	Fibrinogen	2.0E-11	23969696
5	ESR1	6q25.1	The estrogen receptor is a ligand-activated transcription factor composed of several domains important for hormone binding, DNA binding, and	Pulse pressure	2.0E-18	28135244
6	FADS1	11q12.2	Desaturase enzymes regulate unsaturation of fatty acids through the introduction of double bonds between defined carbons of the fatty acyl chain	LDL	2.0E-39	24097068
7	FEN1	11q12.2	Structure-specific nuclease with 5-flap endonuclease and 5-3 exonuclease activities involved in DNA replication and repair	Trans fatty acid levels	5.0E-13	25646338
8	FHIT	3p14.2	The protein encoded by this gene is a P1-P3-bis(5'-adenosyl) triphosphate hydrolase involved in purine metabolism	Major coronary event	3.0E-08	28753643
9	FUNDC2	Xq28	Ubiquitous expression in heart (RPKM 26.0)	Thrombosis	7.0E-13	26908601
10	GJA1	6q22.31	The encoded protein is the major protein of gap junctions in the heart that are thought to have a crucial role in the synchronized contraction of the heart and in embryonic development.	Resting heart rate	3.0E-17	27798624
11	HFE	6p22.2	The protein encoded by this gene is a membrane protein that is similar to MHC class I-type proteins and associates with beta2-microglobulin (beta2M)	Diastolic blood pressure	2.0E-15	21909115

No	Gene	Mapping	CVD Association Candidates: Function	Trait	P-value	PMID
12	HMGCR	5q13.3	HMG-CoA reductase is the rate-limiting enzyme for cholesterol synthesis and is regulated via a negative feedback mechanism mediated by sterols and non-sterol metabolites derived from mevalonate, the product of the reaction catalyzed by reductase	LDL	3.0E-95	28334899
13	MAPT	17q21.31	Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity	QRS complex (12-leadsum)	2.0E-14	27659466
14	SFXN2	10q24.32	Potential iron transporter	Carotid plaque burden	2.0E-08	28282560
15	STARD13	13q13.1	It may be involved in regulation of cytoskeletal reorganization, cell proliferation, and cell motility, and acts as a tumor suppressor in hepatoma cells	Intracranial aneurysm	3.0E-09	20364137
16	SUGCT	7p14.1	Catalyzes the succinyl-CoA-dependent conversion of glutarate to glutaryl-CoA	Pulse pressure	7.0E-12	28135244
17	TOMM40	19q13.32	It is the channel-forming subunit of the translocase of the mitochondrial outer membrane	LDL	2.0E-19	19060911
18	TOP1	20q12	Topoisomerases are ubiquitously expressed enzymes that overcome topological problems in genomic DNA, which can result from DNA replication, transcription and repair	LDL	2.0E-34	28334899

Table S8. Several Variants of MT-nDNA Candidates Are eSNV, Affecting Expression of Some of Their Corresponding Genes or Other cis-Located Genes.

No	eSNV	mainGene	TargetGene	AssociatedGWASTrait	eSNV Tissue	eSNVType
1	rs622798	AKR1A1	TESK2	BMI	Blood	1
19	rs10494221	WARS2	RP11-418J17.1	WHR	Esophagus muscularis	2
41	rs17369123	DNM3	SUCO	WHR	Pancreas	2
45	rs6657476	CD46	CD46	HbA1c	Esophagus muscularis	1
60	rs933994	CYP27A1	RP11-459I19.1	BMI	Blood	1
78	rs11715915	AMT	RBM6	GLUC	Skin	2
78	rs11715915	AMT	MST1	GLUC	Thyroid	1
84	rs10012946	WFS1	WFS1	GLUC	Skin	1
110	rs9469886	UHRF1BP1	SNRPC	BMI	Esophagus muscularis	1
140	rs3734264	UHRF1BP1	UHRF1BP1	BMI	Artery tibial	1
149	rs1799884	GCK	GCK	GLUC,HOMA-B,HbA1c	Thyroid	2
151	rs3829109	DNLZ	CARD9	GLUC	Blood	2
157	rs1475644	SFXN2	C10orf32	WHR	Artery tibial	2
159	rs1004467	CYP17A1	NT5C2	BMI	Testis	2
164	rs7098825	AS3MT	CYP17A1-AS1	BMI	Testis	1
164	rs7098825	AS3MT	MARCKSL1P1	BMI	Adipose subcutaneous	1
165	rs7085104	AS3MT	RP11-724N1.1	BMI	Brain Cerrebellum	1
166	rs3740390	AS3MT	NT5C2	BMI	Testis	2
173	rs11030108	BDNF	LIN7C	BMI	Artery tibial	2
177	rs12573978	AMBRA1	ATG13	INS	Thyroid	1
180	rs10838681	NR1H3	ATG13	GLUC	Thyroid	1
180	rs10838681	NR1H3	MADD	INS	Brain Cerrebellum	2
184	rs7120118	NR1H3	ACP2	GLUC	Skin	1
184	rs7120118	NR1H3	NR1H3	GLUC	Testis	1
184	rs7120118	NR1H3	MADD	GLUC	Brain Cerrebellum	2
186	rs3817335	MTCH2	C1QTNF4	BMI,INS	Adipose subcutaneous	1
186	rs3817335	MTCH2	SLC39A13	BMI,INS	Artery tibial	1
187	rs4752856	MTCH2	PSMC3	BMI,INS	Adipose subcutaneous	1
190	rs7118178	MTCH2	CELF1	BMI,GLUC,INS	Nerve tibial	1
193	rs174538	FEN1	TMEM258	GLUC	Fibroblast	1
199	rs174549	FADS1	TMEM258	GLUC,HbA1c	Fibroblast	1
201	rs174555	FADS1	FADS1	GLUC,HbA1c	Blood	1
202	rs174556	FADS1	FADS3	GLUC	Brain Cerrebellum	1
205	rs7124057	EEF1G	EML3	WHR	Esophagus muscularis	1
206	rs11231150	TUT1	MTA2	WHR	Skin	1
206	rs11231150	TUT1	EEF1G	WHR	Artery tibial	1
226	rs740862	DNASE1	TRAP1	BMI	Muscle skeletal	2
227	rs1053874	DNASE1	CLUAP1	BMI	Skin	2
227	rs1053874	DNASE1	NLRC3	BMI	Artery tibial	2

Table S8 (Cont.). Several Variants of MT-nDNA Candidates Are eSNV, Affect Expression of Some of Their Corresponding Genes or Other cis-Located Genes.

No	eSNV	mainGene	TargetGene	AssociatedGWASTrait	eSNV Tissue	eSNVType
236	rs10499	ATP2A1	RP11-1348G14.4	BMI	Artery tibial	1
237	rs14235	BCKDK	KAT8	BMI	Skin	1
237	rs14235	BCKDK	VKORC1	BMI	Liver	1
237	rs14235	BCKDK	ZNF668	BMI	Blood	1
237	rs14235	BCKDK	PRSS53	BMI	Liver	1
247	rs242559	MAPT	PROCA1	HbA1c	Thyroid	2
247	rs2242345	ERAL1	TRAF4	HbA1c	Fibroblast	1
248	rs6803	ERAL1	TLCD1	HbA1c	Thyroid	2
261	rs3603	B3GNTL1	RAB40B	HbA1c	Muscle skeletal	2
271	rs7222773	B3GNTL1	TBCD	HbA1c	Pancreas	2
273	rs9906163	B3GNTL1	FN3KRP	HbA1c	Skin	2
289	rs2510344	NPC1	C18orf8	BMI	Skin	1
304	rs11663558	NPC1	NPC1	BMI	Adipose subcutaneous	1
326	rs2425056	UQCC1	UQCC1	WHR	Fibroblast	1
366	rs989711	TMLHE	TMLHE	HbA1c	Muscle skeletal	1

Notes: No – order number in Supplementary Table 8 matches with order number of eSNVs in Table S10; eSNV – expression variant that affect expression of Target Gene; mainGene is the gene we anchor the eSNV; eSNVs selected are also associated with any of the 7 studied traits (BMI/WHR/GLUC/INS/HOMA-B/HOMA-IR/HbA1c/; the eSNV affect target gene is specific tissue (eSNV Tissue), but there are more tissues where the same eSNV affects the target gene expression; eSNVType is annotated as 1, when the finding is as 'lead' or in high LD with 'lead' regulator (LD r2≥0.80), when annotated as 2 then the finding may represent a 'secondary' regulator independent from the primary regulator (LD r2<0.20). We observed that 'secondary' eSNVs were with larger *P*-values than the 'lead" SNVs, thus will relatively lower contributions to transcription regulation compared to 'lead' eSNVs.

Table S9. Transcription Regulation Evidence on 588 SNVs of 109 MT-nDNA Genes Using RegulomeDB and HaploReg (**Separate Excel Worksheet**)

Table S10. Transcription Regulation of MT-nDNA candidate Variants Using GTEx Software (Separate Excel worksheet)

Table S11. Fifteen Genes out of 109 MT-nDNA Candidates Ranked with Highest PageRank Score for PPI

No	Gene	# Interacting Proteins	Mapping	Function	Trait	P-value*
1	WWOX	259	16q23.1-q23.2	Short-chain dehydrogenases/reductase	WHR	9.99E-07
2	YWHAE	432	17p13.3	Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon. It interacts with CDC25 phosphatases, RAF1 and IRS1 proteins, with role in diverse biochemical activities related to signal transduction, such as cell division and regulation of insulin sensitivity	BMI	6.27E-07
3	RPTOR	120	17q25.3	A component of a signaling pathway that regulates cell growth in response to nutrient and insulin levels	BMI	2.49E-09
4	TRIM54	129	2p23.3	Regulates titin kinase and microtubule-dependent signal pathways in striated muscles	Glucose	3.09E-09
5	РНВ2	151	12p13.31	Prohibitin-2 plays a central role in p21 upregulation following GGCT knockdown and as such may promote deregulated proliferation of cancer cells by suppressing p21 (CDKNIA) ⁵⁴	HbA1c	4.44E-08
6	AMBRA1	95	11p11.2	Functional deficiency of <i>Ambra1</i> in mouse embryos leads to uncontrolled cell proliferation, in addition to severe autophagy impairment ^{55,56} , glucose and insulin	glucose and insulin	4.29E-08, 4.91E-18
7	RAF1	194	3p25.2	The RAF1 protein can phosphorylate to activate the dual specificity protein kinases MEK1 and MEK2, which in turn phosphorylate to activate the serine/threonine specific protein kinases, ERK1 and ERK2. Activated ERKs are pleiotropic effectors of cell physiology and play an important role in the control of gene expression involved in the cell division cycle, apoptosis, cell differentiation and cell migration	WHR	3.60E-10
8	TOP1	173	20q12	Controls and alters the topologic states of DNA during transcription	WHR	4.11E-07
9	TOMM40	126	19q13.32	Is essential for import of protein precursors into mitochondria	BMI	1.25E-08

No	Gene	# Interacting Proteins	Mapping	Function	Trait	P-value*
10	STARD13	43	13q13.1-q13.2	It may be involved in regulation of cytoskeletal reorganization, cell proliferation, and cell motility	BMI	7.25E-08
11	ESR1	771	6q25.1-q25.2	It is an estrogen receptor, a ligand-activated transcription factor	BMI	4.41E-09
12	ATXN1	262	6p22.3	It is associated with spinocerebellar ataxia type 1	HbA1c	5.52E-07
13	LRPPRC	113	2p21	it may play a role in cytoskeletal organization, vesicular transport, or in transcriptional regulation of both nuclear and mitochondrial genes. The protein localizes primarily to mitochondria	WHR	8.52E-08
14	МТСН2	87	11p11.2	It has a regulatory role in adipocyte differentiation	BMI, glucose and insulin	5.12E-08, 3.84E-14, and 2.16E-29
15	TRAF3	121	14q32.32	It is important for the activation of the immune response	BMI	2.82E-07
*P-	values are so	urced from Table	e 4 in the main te	xt of the manuscript		

Table S12. A Comparison of 109 MT-nDNA Candidate Genes Detected with P<1E-06, and Additional SNVs for the Same Genes from GWAS-Catalog Conditional They Pass $P\leq5E-08$ (**Separate Excel Worksheet**)

Table S13. A Comparison of mtDNA Association Results of Three Papers with Our Overlapping Results for Different Traits (**Separate Excel Worksheet**)

Table S14. Summary of Chips Used for Studying mtDNA Variants per Cohort and Summary Statistics for Imputation.

No	Study/Cohort	Ancestry	mtDNA Genotyping Array	Number of mtDNA SNPs genotyped		SNPs imputed	Imputation d Accuracy (%)	
1	AIRWAVE	EA	Illumina HumanCoreExome	401	258	3399	98.9	3653
2	ALSPAC	EA	Illumina HumanHap550	33	33	3643	70.2	3641
3	ARIC	AA	Affy 6.0	111	60	3622	99.3	450
4	ARIC	EA	Affy 6.0	109	60	3622	99.4	205
5	DANISH-60 YEARS	EA	Illumina CoreExome chip	393	285	3655	98.6	549
6	DANISH-ADDITION PRO	EA	Illumina CoreExome chip	392	284	3655	98.7	595
7	DANISH-COGEN	EA	Illumina CoreExome chip	371	284	3656	98.9	672
8	DANISH-GOYA_CASES	EA	Illumina Human660W-quad	58	58	3658	68.3	3041
9	DANISH-GOYA_CONTROLS	EA	Illumina Human660W-quad	58	58	3658	68.3	3041
10	DANISH-HEALTH06	EA	Illumina Human Exome chip	226	194	3633	98.4	522
11	DANISH-INTER99	EA	Illumina Human Exome chip	226	200	3633	98.2	552
12	DANISH-VEJLE	EA	Illumina Human Exome chip	226	199	3633	98.4	548
13	EPIC-INTERACT-COREEXOME	EA	Illumina Human CoreExome-12v1-0_B	398	182	3655	99.8	780
14	EPIC-INTERACT-III660W	EA	Illumina 660w quad chip	136	135	3637	99.8	712
15	EPIC-NORFOLK	EA	Affymetrix Axiom UKBiobank	264	257	3674	99.0	928
16	FAMHS	EA	Illumina Human Exome 12v1.0 BeadChip	172	168	3631	99.9	390
17	FENLAND	EA	Affymetrix Axiom UKBiobank	268	261	3674	99.1	932
18	FHS	EA	Exome Chip, Customized Chip	199	199	3636	99.9	639
19	GENESTAR	AA	Illumina Human1M_v1C BeadChip	162	162	3642	99.8	714
20	GENESTAR	EA	Illumina Human1M_v1C BeadChip	162	162	3642	99.8	492
21	GENOA	AA	Affy 6.0, Illumina 1M-Duo	90	63	3621	99.5	3617
22	GENOA	EA	Affy 6.0, Illumina 660W, Illumina 1M-Duo	56	45	3620	99.3	3615
23	GOLDN	EA	Affy 6.0	110	110	3710	77.8	55
24	HCHS-SOL	НА	Illumina Omni 2.5M chip + 109,571 custom SNPs	392	314	3667	99.3	757
25	HYPERGEN	AA	Affy 6.0	110	44	3619	86.2	3616
26	HYPERGEN	EA	Illumina Cardio-MetaboChip	135	52	3622	98.4	3618
27	LBC-1921	EA	Exome chip	20	20	3621	61.2	2102
28	LBC-1936	EA	Exome chip	20	20	3621	60.6	2194
29	LLFS	EA	Illumina Omni chip	253	143	3653	99.7	453
	MESA	AA	Affy 6.0	226	172	3630	98.5	505
	MESA	EA	Affy 6.0	226	172	3630	99.6	512
	MESA	ASA	Affy 6.0	226	172	3630	99.3	535
	MESA	HA	Affy 6.0	226	172	3630	99.0	534
	NEO	EA	Illumina HumanCoreExome chip v1	306	262	3660	97.7	637
	00A	EA	Illumina CoreExome chip	364	350	3623	98.9	3623
	PELOTAS	EA	Illumina HumanOmni2.5-8v1	220	125	3678	99.7	356
	PELOTAS	Brazilian	Illumina HumanOmni2.5-8v1	220	125	3678	99.7	356
	ROTTERDAM STUDY II	EA	illumina 550K (duo)	73	73	3638	97.0	3630
	ROTTERDAM STUDY III	EA	Illumina 610k (quad)	110	110	3636	97.0	3630
	SHIP	EA	Illumina Infinium Human Exome BeadChip v1.0	163	163	3630	99.8	3625
	TUDR	ASA	Illumina Exome Chip	198	198	3632	99.1	547
	WGHS	EA	Illumina HumanExome Beadchip v.1.1	204	203	3643	99.2	836
	WHI	AA	Affy 6.0	119	119	3678	91.7	525
	WHI	HA	Affy 6.0	119	119	3678	91.7	426
	WUHHD	EA	Affy 6.0	167	95	3642	95.5	3640

Table S15. Illumina Infinium Omni Express Exome v1.1

				Amino	Base Substitution	Somatic Variant Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
rs41531144	Non-coding	T217C					
rs41323649	Non-coding	G228A					
2263307	Non-coding	C285T				Elderly fibroblasts	
rs41528348	Non-coding	C295T				POLG/MNGIE muscle; Glioblastoma	
2216184	Non-coding	C418T					
rs28625645	Non-coding	T489C				Ovarian carcinoma;	
rs3901846	Non-coding	G499A				Thyroid & prostate tumors	
2216185	tRNA-Phe	A606G			Myoglobinuria		
2216186	tRNA-Phe	T629C					
2216191	12S rRNA	T710C				Colorectal tumor	
2216198	12S rRNA	T921C			Possibly LVNC- associated		
2216200	12S rRNA	G951A					
2216201	12S rRNA	T961C			DEAF; Possibly LVNC- associated		
2216202	12S rRNA	T1005C			DEAF		
2216203	12S rRNA	G1018A					
2216204	12S rRNA	C1048T					
2216208	12S rRNA	T1243C				Pancreatic cancer cell line	
2216209	12S rRNA	A1382C					
2216210	12S rRNA	G1393A					
2216211	12S rRNA	T1406C				Pancreatic cancer cell line	
2216212	12S rRNA	T1413C					
2216213	12S rRNA	A1438G					
2216214	12S rRNA	G1442A					
2216216	16S rRNA	G1664A					
2216217	16S rRNA	T1694C					
2216218	16S rRNA	T1700C					
2216219	16S rRNA	C1703T					
2216220	16S rRNA	C1706T					
2216221	16S rRNA	G1709A					

				Amino	Base Substitution	Somatic Variant Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
2216222	16S rRNA	T1717C					
rs3928305	16S rRNA	G1719A					
2216228	16S rRNA	A1811G				Head/neck tumor	
2216231	16S rRNA	A1842G					
2216232	16S rRNA	G1888A					
						Bladder tumor; Acute	
2216234	16S rRNA	G2056A				leukemia platelets,	
						leukocytes, bone marrow	
2216238	16S rRNA	C2218T					
2216239	16S rRNA	C2259T					
2216240	16S rRNA	C2283T					
2216241	16S rRNA	C2332T					
2216242	16S rRNA	T2352C			Possibly LVNC-		
					associated		
2216243	16S rRNA	A2358G					
2216244	16S rRNA	T2416C					
2216245	16S rRNA	C2417G					
2216249	16S rRNA	A2706G					
2216250	16S rRNA	G2758A					
2216251	16S rRNA	A2768G					
2216252	16S rRNA	C2772T					
2216254	16S rRNA	G2831A					
2216255	16S rRNA	T2885C					
2216256	16S rRNA	G3010A			Cyclic vomiting		
2210230	103 /////	GSOTOA			syndrome with migraine		
2216257	16S rRNA	T3027C					
2216258	16S rRNA	C3116T					
2216259	16S rRNA	T3197C					
2216260	16S rRNA	T3200A					
2216261	16S rRNA	C3206T					
2216262	16S rRNA	C3210T					
rs2853516	ND1	G3316A	Nonsynonymous	A4T	Diabetes; LHON; PEO		Benign

				Amino	Base Substitution	Somatic Variant Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
2216265	ND1	T3338C	Nonsynonymous	V11A			Benign
2216266	ND1	T3394C	Nonsynonymous	Y30H	LHON; Diabetes; CPT deficiency; High altitude adaptation	Acute leukemia platelets, leukocytes, & bone marrow	Benign
2216267	ND1	T3398C	Nonsynonymous	M31T	DMDF+HCM; GDM; Possibly LVNC cardiomyopathy- associated		Benign
2216268	ND1	A3434G	Nonsynonymous	Y43C		Prostate tumor	Benign
2216269	ND1	C3497T	Nonsynonymous	A64V	LHON		Benign
2216271	ND1	A3547G	Nonsynonymous	181V			Benign
2216272	ND1	C3571T	Nonsynonymous	L89F			Probably damaging
2263308	ND1	G3736A	Nonsynonymous	V144I	LHON		Benign
2216273	ND1	C3746T	Nonsynonymous	A147V			Benign
2216274	ND1	T3866C	Nonsynonymous	I187T	LHON + limb claudication		Benign
2216277	ND1	A4021G	Nonsynonymous	T239A			Benign
2216280	ND1	A4093G	Nonsynonymous	T263A			Benign
2216281	ND1	A4123G	Nonsynonymous	1273V			Benign
2216282	ND1	A4129G	Nonsynonymous	T275A			Benign
2216284	tRNA-Ile	C4312T				Thyroid tumor	
rs41456348	tRNA-Gly	T4336C			AD; PD; Hearing loss & migraine		
2216286	tRNA-Gln	T4363C			Possibly associated with DEAF + RP + developmental delay; Hypertension		
2216294	ND2	A4732G	Nonsynonymous	N88S			Benign
2263338	ND2	A4917G	Nonsynonymous	N150D	LHON; Insulin resistance; AMD; NRTI- PN; Haplogroup T marker		Benign

				Amino	Base Substitution	Somatic Variant Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
2216303	ND2	C5331A	Nonsynonymous	L288I			Benign
rs3021088	ND2	G5460A	Nonsynonymous	A331T	AD; PD		Benign
					Mitochondrial		
2216317	tRNA-Cys	T5814C			encephalopathy;	MNGIE tissues	
					Haplogroup H2b marker		
					Prostate cancer;		
2216322	CO1	T6253C	Nonsynonymous	M117T	Enriched in POAG		Benign
					cohort		
2216323	CO1	G6261A	Nonsynonymous	A120T	Prostate cancer; LHON		Probably damaging
2216324	CO1	G6267A	Nonsynonymous	A122T	Prostate cancer	Pancreatic cancer cell line	Benign
					Prostate cancer;		
2216325	CO1	G6480A	Nonsynonymous	V193I	Enriched in POAG		Benign
					cohort		
2263312	CO1	A6663G	Nonsynonymous	1254V	Prostate cancer		Benign
2263313	CO1	A6982G	Nonsynonymous	N360S			Probably damaging
2216332	tRNA-Ser	C7476T				Thyroid hyperplasia	
2263318	ATP8	A8411C	Nonsynonymous	M16L			Benign
2216340	ATP8	C8414T	Nonsynonymous	L17F	Longevity		Probably damaging
2216341	ATP8	C8417T	Nonsynonymous	L18F			Probably Damaging
2216342	ATP8	A8460G	Nonsynonymous	N32S			Possibly Damaging
2216343	ATP8	C8478T	Nonsynonymous	S38L			Benign
2263319	ATP6	C8684T	Nonsynonymous	T53I			Benign
2263340	ATP6	A8701G	Nonsynonymous	T59A		Thyroid tumors	Benign
2263320	ATP6	G8857A	Nonsynonymous	G111S			Benign
2216361	ATP6	G8896A	Nonsynonymous	A124T			Benign
2216366	ATP6	G9053A	Nonsynonymous	S176N			Benign
					Predisposition to anti-		
2216368	ATP6	T9098C	Nonsynonymous	1191T	retroviral mitochondrial		Probably damaging
					disease		
rs2853825	CO3	G9477A	Nonsynonymous	V91I		Thyroid tumor	Benign
2263321	CO3	G9804A	Nonsynonymous	A200T	LHON	Pancreatic cancer cell line	Benign
2216376	CO3	A9855G	Nonsynonymous	1217V			Benign

				Amino	Base Substitution	Somatic Variant Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
2216377	CO3	T9903C	Nonsynonymous	F233L			Probably damaging
2216378	CO3	G9966A	Nonsynonymous	V254I			Benign
2216379	tRNA-Gly	T10007C					
2216380	tRNA-Gly	T10031C					
2263322	tRNA-Gly	T10034C					
2263323	ND3	T10084C	Nonsynonymous	19T			Benign
2216384	ND3	A10086G	Nonsynonymous	N10D	Hypertensive end-stage renal disease		Probably damaging
2216385	ND3	G10143A	Nonsynonymous	G29S			Benign
2216386	ND3	T10321C	Nonsynonymous	V88A		Bladder tumor	Benign
2216387	ND3	T10345C	Nonsynonymous	196T			Benign
rs2853826	ND3	A10398G	Nonsynonymous	T114A	PD protective factor; Longevity; Altered cell pH; Metabolic syndrome; Breast cancer risk; Haplogroup IJK marker		Benign
2216389	tRNA-Arg	T10410C					
rs28358279	tRNA-Arg	T10463C				Endometrium tumor	
2216391	ND4L	T10609C	Nonsynonymous	M47T			Benign
2216394	ND4	T11025C	Nonsynonymous	L89P			Benign
2216396	ND4	A11172G	Nonsynonymous	N138S			Probably damaging
2216397	ND4	C11177T	Nonsynonymous	P140S			Probably damaging
2216398	ND4	T11204C	Nonsynonymous	F149L			Benign
2216399	ND4	T11253C	Nonsynonymous	1165T	LHON; PD		Benign
					LHON; LDYT; DEAF;		
2216400	ND4	G11696A	Nonsynonymous	V313I	Hypertension helper mutation		Benign
2216401	ND4	G11963A	Nonsynonymous	V402I			Benign
2216402	ND4	G11969A	Nonsynonymous	A404T			Benign
2216403	ND4	T11984C	Nonsynonymous	Y409H			Probably damaging
2216406	tRNA-Ser	G12236A			DEAF	Thyroid tumor	

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
2216407	tRNA-Ser	A12248G	Type of Variant	Aciu	Associated FileHotypes	Filellotypes	PolyFileII-2 Flediction
rs2853498	tRNA-Leu2	A12308G			CPEO; Stroke; CM; Breast, renal, and prostate cancer risk; Altered brain pH; sCJD; Haplogroup U marker	Endometrium control tissue; Lung and prostate tumors	
2216414	ND5	A12397G	Nonsynonymous	T21A	Early onset PD		Unknown
2216417	ND5	G12454A	Nonsynonymous	V40I	•		Benign
2216418	ND5	C12542T	Nonsynonymous	A69V			Possibly damaging
2263325	ND5	G12820A	Nonsynonymous	A162T			Benign
2263326	ND5	A12937G	Nonsynonymous	M201V			Benign
2216420	ND5	G12940A	Nonsynonymous	A202T			Benign
2216421	ND5	A12950G	Nonsynonymous	N205S			Benign
2216422	ND5	A13105G	Nonsynonymous	1257V			Benign
2216423	ND5	G13135A	Nonsynonymous	A267T	Possible HCM susceptibility		Benign
2216424	ND5	A13276G	Nonsynonymous	M314V	. ,		Benign
2216425	ND5	G13477A	Nonsynonymous	A381T			Benign
rs28359178	ND5	G13708A	Nonsynonymous	A458T	LHON; Increased MS risk; Higher frequency in PD-ADS; Haplogroup J marker	Acute leukemia platelets, leukocytes, & bone marrow; Breast tumor	Benign
2263327	ND5	A13780G	Nonsynonymous	1482V			Benign
2216429	ND5	T13789C	Nonsynonymous	Y485H			Probably damaging
2216431	ND5	C13880A	Nonsynonymous	S515Y			Possibly damaging
2216432	ND5	T13886C	Nonsynonymous	L517P			Benign
2216433	ND5	C13924T	Nonsynonymous	P530S			Probably damaging
2216434	ND5	A13933G	Nonsynonymous	T533A			Benign
2263328	ND5	C13934T	Nonsynonymous	T533M			Benign
2216436	ND5	A13942G	Nonsynonymous	T536A			Benign
2216437	Non- Coding	G13958C	Nonsynonymous	G541A			Possibly damaging

				Amino	Base Substitution	Somatic Variant Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
2263329	ND5	A13966G	Nonsynonymous	T544A			Benign
2216439	ND5	C13981T	Nonsynonymous	P549S			Benign
2216440	ND5	T14000A	Nonsynonymous	L555Q			Probably damaging
2216441	ND5	A14053G	Nonsynonymous	T573A		Prostate tumor	Benign
2216442	ND5	A14059G	Nonsynonymous	1575V			Benign
2216443	ND5	A14148G	Synonymous	Term604T erm			
2216444	ND6	T14178C	Nonsynonymous	I166V			Benign
2216445	ND6	T14180C	Nonsynonymous	Y165C			Probably damaging
2216446	ND6	G14258A	Nonsynonymous	P139L			Benign
2216447	ND6	T14318C	Nonsynonymous	N119S			Benign
2216448	ND6	T14502C	Nonsynonymous	158V	LHON		Benign
2263330	tRNA-Glu	A14687G			Mitochondrial myopathy with respiratory failure	Mitochondrial myopathy with respiratory failure	
rs3135031	CYB	C14766T	Nonsynonymous	T7I			Benign
rs28357681	CYB	T14798C	Nonsynonymous	F18L		Glioblastoma	Benign
2216456	CYB	G14861A	Nonsynonymous	A39T			Benign
2216457	CYB	A14927G	Nonsynonymous	T61A			Benign
2216458	CYB	A14978G	Nonsynonymous	178V			Benign
2216459	CYB	T14979C	Nonsynonymous	178T			Benign
2216460	CYB	A15038G	Nonsynonymous	198V			Possibly damaging
2216461	CYB	T15071C	Nonsynonymous	Y109H			Benign
2216462	CYB	T15074C	Nonsynonymous	S110P			Benign
2216463	CYB	G15077A	Nonsynonymous	E111K	DEAF		Probably damaging
2216464	CYB	G15110A	Nonsynonymous	A122T			Benign
2216465	CYB	T15204C	Nonsynonymous	I153T			Benign
2263332	CYB	G15119A	Nonsynonymous	A125T			Benign
rs2853506	CYB	A15218G	Nonsynonymous	T158A			Possibly damaging
2216467	CYB	A15236G	Nonsynonymous	I164V			Benign
2216468	СҮВ	G15257A	Nonsynonymous	D171N	LHON; Haplogroup J2 marker		Benign

				Amino	Base Substitution	Somatic Variant Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
2263333	CYB	C15263T	Nonsynonymous	P173S			Benign
2216469	CYB	A15311G	Nonsynonymous	1189V			Benign
2216470	CYB	G15314A	Nonsynonymous	A190T			Benign
2216471	CYB	G15323A	Nonsynonymous	A193T			Benign
2216472	CYB	A15326G	Nonsynonymous	T194A			Benign
2216473	CYB	C15381T	Nonsynonymous	T212I			Benign
2216474	CYB	C15402T	Nonsynonymous	T219I			Possibly damaging
2216475	CYB	G15431A	Nonsynonymous	A229T			Benign
rs3088309	CYB	C15452A	Nonsynonymous	L236I			Benign
2216478	CYB	T15479C	Nonsynonymous	F245L			Benign
2216479	СҮВ	G15497A	Nonsynonymous	G251S	EXIT; Obesity Complex		Benign
2216481	СҮВ	A15662G	Nonsynonymous	1306V	mitochondriopathy- associated	Breast tumor	Benign
2216482	CYB	T15672C	Nonsynonymous	M309T		Breast tumor	Benign
			, ,		Possibly LVNC		· ·
2263334	СҮВ	T15693C	Nonsynonymous	M316T	cardiomyopathy- associated	Breast tumor	Benign
rs41337244	CYB	A15758G	Nonsynonymous	1338V			Benign
2216486	CYB	A15824G	Nonsynonymous	T360A		Breast tumor	Benign
2216487	CYB	C15849T	Nonsynonymous	T368I		Breast tumor	Benign
2216489	CYB	A15860G	Nonsynonymous	1372V			Benign
2263335	tRNA-Thr	T15889C	, ,				· ·
2263341	tRNA-Thr	C15904T					
2216491	tRNA-Thr	T15905C					
2216492	tRNA-Thr	A15907G					
rs2853510	tRNA-Thr	A15924G			LIMM		
2263337	tRNA-Thr	G15928A			Multiple sclerosis; Idiopathic repeat		
					miscarriage; AD protection		
2216495	tRNA-Thr	C15939T					

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
2263336	tRNA-Thr	T15940C					
2216496	tRNA-Thr	T15941C					
2216497	tRNA-Thr	T15942C			Possibly LVNC- associated		
2216498	tRNA-Thr	C15946T					
2216499	tRNA-Thr	A15951G			LHON modulator		
2216500	tRNA-Pro	C15978T					
2216501	tRNA-Pro	T16017C					
rs41378955	Non-coding	G16390A			POAG-potential for association	Breast and ovarian tumors	

ND = NADH dehydrogenase; CYB = Cytochrome b; CO = Cytochrome c oxidase; ATP = ATP synthase; POLG = Mitochondrial DNA polymerase γ; MNGIE = Mitochondrial neurogastrointestinal encephalopathy; LVNC = Left ventricular non-compaction cardiomyopathy; DEAF = Deafness; LHON = Leber Hereditary optic neuropathy; PEO = Progressive external ophthalmoplegia; CPT = Carnitine palmityltransferase deficiency; DMDF = Diabetes mellitus and deafness; HCM = Hypertrophic cardiomyopathy; GDM = Gestational diabetes mellitus; AD = Alzheimer's disease; PD = Parkinson's disease; RP = Retinitis pigmentosa; AMD = Age-related macular degeneration; POAG = Primary open angle glaucoma; LDYT = Leber hereditary optic neuropathy and dystonia; CM = Cardiomyopathy; sCJD = Sporadic Creutzfeldt-Jaokob disease; MS = Multiple sclerosis; PD-ADS = Acquired demyelinating syndromes; HCM = Hypertrophic cardiomyopathy; EXIT = Exercise intolerance; LIMM = Lethal infantile mitochondrial myopathy

Table \$16. Infinium Human Exome v1.0

	ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
_	rs28625645	Non-coding	T89C					
	rs62581312	Non-coding	C150T			Longevity; Cervical carcinoma; HPV infection risk	Elderly fibroblasts; Leukocytes, lung, thyroid, prostate tumors	

				Amino	Base Substitution	Somatic Variant Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
rs41531144	Non-coding	T217C					
rs41323649	Non-coding	G228A					
rs41528348	Non-coding	C295T				POLG &MNGIE muscle;	
	Non coung					Glioblastoma	
rs3901846	Non-coding	G499A				Thyroid & prostate tumors	
rs3928305	16S rRNA	G1719A					
rs2853516	ND1	G3316A	Nonsynonymous	A4T	Diabetes; LHON; PEO		Benign
rs41456348	tRNA-GIn	T4336C			AD; PD; Hearing loss &		
					migraine		
rs3021088	ND2	G5460A	Nonsynonymous	A331T	AD; PD		Benign
rs2853825	CO3	G9477A	Nonsynonymous	V91I		Thyroid tumor	Benign
					PD protective factor;		
					Longevity; Altered cell		
rs2853826	ND3	A10398G	Nonsynonymous	T114A	pH; Metabolic syndrome;	Thyroid tumor	Benign
					Breast cancer risk;		
					Haplogroup IJK marker		
rs28358279	tRNA-Arg	T10463C				Endometrium tumor	
rs2853498	tRNA-Leu2	A12308G					
					LHON; Increased MS risk;	Acute leukemia platelets,	
rs28359178	ND5	G13708A	Nonsynonymous	A458T	Higher frequency in	leukocytes, & bone	Benign
1320333170	NDS	G13700A	Nonsynonymous	A4301	PD/ADS; Haplogroup J	marrow; Breast tumor	Denign
					marker	marrow, breast turnor	
rs3135031	CYB	C14766T	Nonsynonymous	T7I			Benign
rs28357681	CYB	T14798C	Nonsynonymous	F18L		Glioblastoma	Benign
rs2853506	CYB	A15218G	Nonsynonymous	T158A			Possibly damaging
rs3088309	CYB	C15452A	Nonsynonymous	L236I			Benign
rs41337244	CYB	A15758G	Nonsynonymous	1338V			Benign
rs2853510	tRNA-Thr	A15924G			LIMM		
rs41378955	Non-coding	G16390A			POAG- potential for	Breast, ovarian tumor	
1371370333	Non-county	G10330A			association	bicast, ovarian tumoi	

ND = NADH dehydrogenase; CYB = Cytochrome b; CO = Cytochrome c oxidase; ATP = ATP synthase; HPV = Human papillomavirus; POLG = Mitochondrial DNA polymerase γ; MNGIE = Mitochondrial neurogastrointestinal encephalopathy; LHON = Leber Hereditary optic neuropathy; PEO = Progressive external ophthalmoplegia; AD = Alzheimer's disease; PD = Parkinson's disease; MS = Multiple sclerosis; LIMM = Lethal infantile mitochondrial myopathy; POAG = Primary open angle glaucoma

Table \$17. Infinium Core Exome v1.1

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
2010-08-MT- 841	Non-coding	T72C		_		Aging brains; POLG/PEO & control muscle; Normal tissues	1
2010-08-MT- 981	Non-coding	A93G					
200610-102	Non-coding	T125C				POLG/PEO & control muscle	
2010-08-MT- 550	Non-coding	A215G				Esophageal cancer	
rs41531144	Non-coding	T217C					
rs41323649	Non-coding	G228A					1
200610-105	Non-coding	T236C					1
2263307	Non-coding	C285T				Elderly fibroblasts	1
rs41528348	Non-coding	C295T				POLG/MNGIE muscle; Glioblastoma	
2216184	Non-coding	C418T					
rs28625645	Non-coding	T489C				Ovarian carcinoma; Prostate cancer;	
rs3901846	Non-coding	G499A				Thyroid & prostate tumors	
2216185	tRNA-Phe	A606G			Myoglobinuria		
2216186	tRNA-Phe	T629C					

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
2216191	12S rRNA	T710C				Colorectal tumor	
2010-08-MT- 830	12S rRNA	T711C					
200610-42	12S rRNA	C722T					
2216198	12S rRNA	T921C			Possibly LVNC-associated		
2216200	12S rRNA	G951A					
2216201	12S rRNA	T961C			DEAF; Possibly LVNC- associated		
2216202	12S rRNA	T1005C			DEAF		
2216203	12S rRNA	G1018A					
2010-08-MT- 27	12S rRNA	A1041G					
2216204	12S rRNA	C1048T					
200610-108	12S rRNA	T1107C					
200610-109	12S rRNA	T1119C					
2216208	12S rRNA	T1243C				Pancreatic cancer cell line	
2216209	12S rRNA	A1382C					
2216210	12S rRNA	G1393A					
2216211	12S rRNA	T1406C				Pancreatic cancer cell line	
2216212	12S rRNA	T1413C					
2216213	12S rRNA	A1438G					
2216214	12S rRNA	G1442A					
2216216	16S rRNA	G1664A					
2216217	16S rRNA	T1694C					
2216218	16S rRNA	T1700C					
2216219	16S rRNA	C1703T					
2216220	16S rRNA	C1706T					
2216221	16S rRNA	G1709A					
2216222	16S rRNA	T1717C					
rs3928305	16S rRNA	G1719A					

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
2010-08-MT- 526	16S rRNA	C1721T				Acute leukemia platelets, leukocytes, & bone marrow	
2216228	16S rRNA	A1811G				Head/neck tumor	
2216231	16S rRNA	A1842G					
2216232	16S rRNA	G1888A					
2246224	466	620564				Bladder tumor; Acute leukemia;	
2216234	16S rRNA	G2056A				Platelets/leukocytes/bon	
						e marrow	
2216238	16S rRNA	C2218T					
2216239	16S rRNA	C2259T					
2216240	16S rRNA	C2283T					
2216241	16S rRNA	C2332T					
2216242	16S rRNA	T2352C			Possibly LVNC-associated		
2216243	16S rRNA	A2358G					
2216244	16S rRNA	T2416C					
2216249	16S rRNA	A2706G					
2216250	16S rRNA	G2758A					
2216251	16S rRNA	A2768G					
2216252	16S rRNA	C2772T					
2216254	16S rRNA	G2831A					
200610-2	16S rRNA	A2880G					
2216255	16S rRNA	T2885C					
2216256	16S rRNA	G3010A			Cyclic vomiting syndrome with migraine		
2216257	16S rRNA	T3027C					
2216258	16S rRNA	C3116T					
2216259	16S rRNA	T3197C					
2216260	16S rRNA	T3200A					
2216261	16S rRNA	C3206T					
2216262	16S rRNA	C3210T					

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
rs2853516	ND1	G3316A	Nonsynonymous	A4T	Diabetes; LHON; PEO		Benign
2216265	ND1	T3338C	Nonsynonymous	V11A			Benign
200610-4	ND1	A3384G	Synonymous	K26K			
					LHON; Diabetes; CPT	Acute leukemia platelets,	
2216266	ND1	T3394C	Nonsynonymous	Y30H	deficiency; High altitude	leukocytes, & bone	Benign
					adaptation	marrow	
200610-111	ND1	T3396C	Synonymous	Y30Y	NSHL; MIDD		
						DMDF+HCM; GDM;	
2216267	ND1	T3398C	Nonsynonymous	M31T		Possibly LVNC	Benign
2210207	NDI	133360	Nonsynonymous	IVISTI		cardiomyopathy-	benign
						associated	
2216268	ND1	A3434G	Nonsynonymous	Y43C		Prostate tumor	Benign
2216269	ND1	C3497T	Nonsynonymous	A64V	LHON		Benign
2216271	ND1	A3547G	Nonsynonymous	181V			Benign
2216272	ND1	C3571T	Nonsynonymous	L89F			Probably damaging
200610-112	ND1	T3644C	Nonsynonymous	V113A	BD-associated		Benign
200610-113	ND1	T3645C	Synonymous	V113V			
2263308	ND1	G3736A	Nonsynonymous	V144I	LHON		Benign
2216273	ND1	C3746T	Nonsynonymous	A147V			Benign
200610-114	ND1	T3826C	Synonymous	L174L			
2216274	ND1	T3866C	Nonsynonymous	1187T	LHON + limb claudication		Benign
200610-45	ND1	C3921T	Synonymous	S205S			
2216277	ND1	A4021G	Nonsynonymous	T239A			Benign
200610-115	ND1	T4023C	Synonymous	T239T			
200610-47	ND1	C4025T	Nonsynonymous	T240M			Benign
2010-08-MT-	ND1	G4048A	Nonsynonymous	D248N			Benign
655			, ,				_
2216280	ND1	A4093G	Nonsynonymous	T263A			Benign
200610-116	ND1	T4117C	Synonymous	L271L			
2216281	ND1	A4123G	Nonsynonymous	1273V			Benign
2216282	ND1	A4129G	Nonsynonymous	T275A			Benign

				A	Bara Calada da	Consulta Maria at	
ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
2010-08-MT-	Gene	Vallalit	Type of Variant	Aciu	Associated Pilenotypes	Associated Phenotypes	PolyPhen-2 Prediction
664	ND1	A4164G	Synonymous	M286M			
200610-117	ND1	T4218C	Synonymous	Y304Y			
2216284	tRNA-Ile	C4312T				Thyroid tumor	
200610-48	tRNA-Gln	C4335T					
rs41456348	tRNA-Gln	T4336C			AD; PD; Hearing loss & migraine		
					Possibly associated with		
2216286	tRNA-Gln	T4363C			DEAF + RP		
2210200	thin tom	113030			+developmental delay;		
					Hypertension		
2216291	ND2	G4491A	Nonsynonymous	V8I			Benign
200610-49	ND2	C4508T	Synonymous	1131			
2216294	ND2	A4732G	Nonsynonymous	N88S			Benign
					Diabetes helper		
200610-6	ND2	A4833G	Nonsynonymous	T122A	mutation; AD; PD;		Possibly damaging
					Haplogroup G marker		
					LHON; Insulin resistance;		
2263338	ND2	A4917G	Nonsynonymous	N150D	AMD; NRTI-PN;		Benign
					Haplogroup T marker		
200610-120	ND2	T5108C	Synonymous	T213T			
200610-7	ND2	A5301G	Nonsynonymous	1278V			Benign
2216303	ND2	C5331A	Nonsynonymous	L2881			Benign
rs3021088	ND2	G5460A	Nonsynonymous	A331T	AD; PD		Benign
					Mitochondrial		
2216317	tRNA-Cys	T5814C			encephalopathy; L2b marker	MNGIE tissues	
200610-9	tRNA-Tyr	A5833G			marker		
2010-08-MT-	CO1	T5999C	Synonymous	A32A		Pancreatic cancer cell	
773	601	133330	Symonymous	7327		line; Glioblastoma	
2010-08-MT- 776	CO1	A6047G	Synonymous	L48L		Pancreatic cancer cell line; Glioblastoma	

	_			Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
200610-51	CO1	C6077T	Synonymous	V58V			
200610-121	CO1	T6248C	Synonymous	S115S			
2216322	CO1	T6253C	Nonsynonymous	M117T	Prostate cancer; Enriched in POAG cohort		Benign
2216323	CO1	G6261A	Nonsynonymous	A120T	Prostate cancer; LHON		Probably damaging
2216324	CO1	G6267A	Nonsynonymous	A122T	Prostate cancer	Pancreatic cancer cell line	Benign
200610-80	CO1	G6285A	Nonsynonymous	V128I	Prostate cancer		Benign
200610-123	CO1	T6392C	Synonymous	N163N			
200610-81	CO1	G6446A	Synonymous	T181T			
2216325	CO1	G6480A	Nonsynonymous	V193I	Prostate cancer; Enriched in POAG cohort		Benign
2263312	CO1	A6663G	Nonsynonymous	1254V	Prostate cancer		Benign
200610-82	CO1	G6734A	Synonymous	M277M			_
2263313	CO1	A6982G	Nonsynonymous	N360S			Probably damaging
2010-08-MT- 831	CO1	T7142C	Synonymous	H413H			, 5 5
2216332	tRNA-Ser	C7476T				Thyroid hyperplasia	
200610-84	CO2	G7598A	Nonsynonymous	A5T	Possible LHON helper variant		Benign
2010-08-MT- 860	CO2	T7684C	Synonymous	L33L			
2010-08-MT- 861	CO2	G7697A	Nonsynonymous	V38I	Possible HCM susceptibility		Benign
2010-08-MT- 874	CO2	G7853A	Nonsynonymous	V90I			Benign
200610-86	CO2	G7859A	Nonsynonymous	D92N	Progressive encephalomyopathy		Benign
200610-128	CO2	T7870C	Synonymous	L95L			
200610-13	CO2	A7972G	Synonymous	E129E			
200610-87	CO2	G8020A	Synonymous	P145P			
200610-129	ATP8	T8404C	Synonymous	1131			
			, ,				

15	_	.,	- (), (Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
2216340	ATP8	C8414T	Nonsynonymous	L17F	Longevity		Probably damaging
2216341	ATP8	C8417T	Nonsynonymous	L18F			Probably damaging
2216342	ATP8	A8460G	Nonsynonymous	N32S			Possibly damaging
2216343	ATP8	C8478T	Nonsynonymous	S38L			Benign
200610-14	ATP8	A8502G	Nonsynonymous	N46S			Possibly damaging
2263319	ATP6	C8684T	Nonsynonymous	T53I			Benign
2263340	ATP6	A8701G	Nonsynonymous	T59A		Thyroid tumors	Benign
200610-131	ATP6	T8793C	Synonymous	P89P			
2263320	ATP6	G8857A	Nonsynonymous	G111S			Benign
200610-55	ATP6	C8859T	Synonymous	G111G			
2216358	ATP6	A8860G	Nonsynonymous	T112A			Benign
2216360	ATP6	T8875C	Nonsynonymous	F117L			Benign
2216361	ATP6	G8896A	Nonsynonymous	A124T			Benign
2216362	ATP6	A8923G	Nonsynonymous	T133A			Probably damaging
200610-18	ATP6	A8946G	Synonymous	M140M			
200610-56	ATP6	C8964T	Synonymous	T146T			
200610-89	ATP6	G9064A	Nonsynonymous	A180T			Benign
					Predisposition to anti-		_
2216368	ATP6	T9098C	Nonsynonymous	I191T	retroviral mitochondrial		Probably damaging
			, ,		disease		,
2216369	ATP6	T9128C	Nonsynonymous	I201T			Benign
200610-57	ATP6	C9140T	Nonsynonymous	A205V			Probably damaging
2216370	ATP6	G9142A	Nonsynonymous	V206I			Benign
2010-08-MT-	ATDC	A0150C	C	12001			
969	ATP6	A9150G	Synonymous	L208L			
200610-58	CO3	C9458T	Synonymous	1841			
rs2853825	CO3	G9477A	Nonsynonymous	V91I		Thyroid tumor	Benign
200610-21	CO3	A9587G	Synonymous	L127L			_
2216375	CO3	T9682C	Nonsynonymous	M159T			Benign
200610-59	CO3	C9785T	Synonymous	Y193Y			· ·
2263321	CO3	G9804A	Nonsynonymous	A200T	LHON	Pancreatic cancer cell line	Benign

-				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Ariino	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
2216376	CO3	A9855G	Nonsynonymous	1217V	Associated FileHotypes	Associated FileHotypes	Benign
2216377	CO3	T9903C	Nonsynonymous	F233L			Probably damaging
2216377	CO3	G9966A	Nonsynonymous	V254I			Benign
2216378	tRNA-Gly	T10007C	Nonsynonymous	V 2 3 4 1			Deffigit
2216375	tRNA-Gly	T10007C					
2263322	tRNA-Gly	T10031C					
2203322	thiva diy	1100540			Hypertensive end-stage		
2216384	ND3	A10086G	Nonsynonymous	N10D	renal disease		Probably damaging
200610-133	ND3	T10118C	Synonymous	1201	Terrar disease		
2216385	ND3	G10143A	Nonsynonymous	G29S			Benign
2216386	ND3	T10321C	Nonsynonymous	V88A		Bladder tumor	Benign
2216387	ND3	T10345C	Nonsynonymous	196T			Benign
200610-22	ND3	A10397G	Synonymous	W113W			- 0
2216389	tRNA-Arg	T10410C					
rs28358279	tRNA-Arg	T10463C				Endometrium tumor	
NA'L - NAOFFAC		1405506				Endometrial control	
MitoA10551G	ND4L	A10550G	Synonymous	M27M		tissue	
200610-60	ND4L	C10607T	Synonymous	L46L			
2216391	ND4L	T10609C	Nonsynonymous	M47T			Benign
200610-135	ND4L	T10640C	Synonymous	N57N		Endometrium tumor	
200610-23	ND4L	A10754G	Synonymous	L95L			
200610-92	ND4	G11016A	Nonsynonymous	S86N		Thyroid tumor	Benign
2216394	ND4	T11025C	Nonsynonymous	L89P			Benign
200610-61	ND4	C11061T	Nonsynonymous	S101F			Benign
2216396	ND4	A11172G	Nonsynonymous	N138S			Probably damaging
2216397	ND4	C11177T	Nonsynonymous	P140S			Probably damaging
2216398	ND4	T11204C	Nonsynonymous	F149L			Benign
MitoA11252G	ND4	A11251G	Synonymous	L164L			
2216399	ND4	T11253C	Nonsynonymous	1165T	LHON; PD		Benign
200610-63	ND4	C11288T	Synonymous	L177L			
MitoA11468G	ND4	A11467G	Synonymous	L236L	Altered brain pH; sCJD		
					patients		

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
200610-65	ND4	C11536T	Synonymous	Y259Y			
2010-08-MT-	ND4	A11560G	Synonymous	W267W			
82	745 7	7(115000	Synonymous	***207***			
					LHON; LDYT; DEAF;		
2216400	ND4	G11696A	Nonsynonymous	V313I	Hypertension helper mutation		Benign
200610-25	ND4	A11959G	Synonymous	M400M			
2216401	ND4	G11963A	Nonsynonymous	V402I			Benign
2216402	ND4	G11969A	Nonsynonymous	A404T			Benign
2216403	ND4	T11984C	Nonsynonymous	Y409H			Probably damaging
200610-136	ND4	T12121C	Synonymous	14541			
2216406	tRNA-Ser	G12236A			DEAF	Thyroid tumor	
2216407	tRNA-Ser	A12248G					
200610-137	tRNA-Leu2	T12285C					
rs2853498	tRNA-Leu2	A12308G			CPEO; Stroke; CM; Breast, Renal, & Prostate cancer risk; Altered brain pH; sCJD; Haplogroup U marker	Endometrium control tissue; Lung tumor; Prostate tumor	
2216417	ND5	G12454A	Nonsynonymous	V40I			Benign
2216418	ND5	C12542T	Nonsynonymous	A69V			Possibly damaging
2010-08-MT- 143	ND5	A12642G	Synonymous	E102E			
200610-94	ND5	G12771A	Synonymous	E145E			
2263325	ND5	G12820A	Nonsynonymous	A162T			Benign
200610-27	ND5	A12822G	Synonymous	A162A			
2263326	ND5	A12937G	Nonsynonymous	M201V			Benign
2216420	ND5	G12940A	Nonsynonymous	A202T			Benign
2216421	ND5	A12950G	Nonsynonymous	N205S			Benign
2216422	ND5	A13105G	Nonsynonymous	1257V			Benign
2216423	ND5	G13135A	Nonsynonymous	A267T	Possible HCM susceptibility		Benign

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Ariino	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
200610-30	ND5	A13183G	Nonsynonymous	1283V	Associated i fichiotypes	Associated FileHotypes	Benign
200610-30	ND5	T13215C	Synonymous	L293L			Demgn
2216424	ND5	A13276G	Nonsynonymous	M314V			Benign
					LHON; Increased MS risk; Higher frequency in PD-	Acute leukemia platelets,	-
rs28359178	ND5	G13708A	Nonsynonymous	A458T	ADS; Haplogroup J marker	leukocytes, & bone marrow; Breast tumor	Benign
2010-08-MT- 204	ND5	G13759A	Nonsynonymous	A475T			Benign
2263327	ND5	A13780G	Nonsynonymous	1482V			Benign
2216429	ND5	T13789C	Nonsynonymous	Y485H			Probably damaging
2216431	ND5	C13880A	Nonsynonymous	S515Y			Possibly damaging
2216432	ND5	T13886C	Nonsynonymous	L517P			Benign
2216433	ND5	C13924T	Nonsynonymous	P530S			Probably damaging
2216434	ND5	A13933G	Nonsynonymous	T533A			Benign
2263328	ND5	C13934T	Nonsynonymous	T533M			Benign
2216436	ND5	A13942G	Nonsynonymous	T536A			Benign
2216437	Non-coding	G13958C	Nonsynonymous	G541A			Possibly damaging
2263329	ND5	A13966G	Nonsynonymous	T544A			Benign
2216439	ND5	C13981T	Nonsynonymous	P549S			Benign
2216440	ND5	T14000A	Nonsynonymous	L555Q			Probably damaging
200610-139	ND5	T14025C	Synonymous	P563P			
2216441	ND5	A14053G	Nonsynonymous	T573A		Prostate tumor	Benign
2216442	ND5	A14059G	Nonsynonymous	1575V			Benign
2216443	ND5	A14148G	Premature Termination	Term60 4Term			
2216444	ND6	T14178C	Nonsynonymous	1166V			Benign
2010-08-MT- 232	ND6	T14182C	Synonymous	V164V			S
2216446	ND6	G14258A	Nonsynonymous	P139L			Benign
2216447	ND6	T14318C	Nonsynonymous	N119S			Benign
200610-96	ND6	G14323A	Synonymous	N117N			

				A*	Dece Coloute dec	Carralla Maria at	
ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	DalyDhan 2 Dradiction
200610-71	ND6	C14338T	Type of Variant	V112V	Associated Phenotypes	Associated Pileflotypes	PolyPhen-2 Prediction
200610-71 2010-08-MT-	NDO	C143381	Synonymous	VIIZV		Papillary thyroid	
251	ND6	A14417G	Nonsynonymous	V86A		carcinoma	Benign
2216448	ND6	T14502C	Nonsynonymous	158V	LHON	carcinoma	Benign
200610-141	ND6	T14502C	Synonymous	M54M	LHON		Denign
200610-141	ND6	G14544A	Synonymous	L44L			
200610-97	ND6	G14569A	Synonymous	S35S			
	NDO		Synonymous	3333	Mitochondrial myopathy	Mitochondrial myopathy	
2263330	ND6	A14687G			with respiratory failure	with respiratory failure	
2263331	СҮВ	A14793G	Nonsynonymous	H16R	with respiratory randre	With respiratory randre	Benign
rs28357681	CYB	T14798C	Nonsynonymous	F18L		Glioblastoma	Benign
2216456	CYB	G14861A	Nonsynonymous	A39T		G.1.6.5.146.66.1114	Benign
2010-08-MT-			, ,				
288	СҮВ	C14872T	Synonymous	1421			
200610-33	CYB	A14890G	Synonymous	G48G			
200610-34	CYB	A14893G	Synonymous	L49L			
2216457	CYB	A14927G	Nonsynonymous	T61A			Benign
2216458	CYB	A14978G	Nonsynonymous	178V			Benign
2216459	CYB	T14979C	Nonsynonymous	178T			Benign
2216460	CYB	A15038G	Nonsynonymous	198V			Possibly damaging
2216461	CYB	T15071C	Nonsynonymous	Y109H			Benign
2216462	CYB	T15074C	Nonsynonymous	S110P			Benign
2216463	CYB	G15077A	Nonsynonymous	E111K	DEAF		Probably damaging
2263332	CYB	G15119A	Nonsynonymous	A125T			Benign
200610-99	CYB	G15148A	Synonymous	P134P			
200610-100	CYB	G15172A	Synonymous	G142G		Endometrial tumor	
2216465	CYB	T15204C	Nonsynonymous	I153T			Benign
rs2853506	CYB	A15218G	Nonsynonymous	T158A			Possibly damaging
2216467	CYB	A15236G	Nonsynonymous	1164V			Benign
2216468	СҮВ	G15257A	Nonsynonymous	D171N	LHON; Haplogroup J2 marker		Benign
2263333	CYB	C15263T	Nonsynonymous	P173S			Benign

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
2216470	СҮВ	G15314A	Nonsynonymous	A190T			Benign
2216471	CYB	G15323A	Nonsynonymous	A193T			Benign
2216472	CYB	A15326G	Nonsynonymous	T194A			Benign
2216473	CYB	C15381T	Nonsynonymous	T212I			Benign
2216474	CYB	C15402T	Nonsynonymous	T219I			Possibly damaging
2216475	CYB	G15431A	Nonsynonymous	A229T			Benign
rs3088309	CYB	C15452A	Nonsynonymous	L236I			Benign
2216478	CYB	T15479C	Nonsynonymous	F245L			Benign
200610-35	CYB	A15487T	Synonymous	P247P			
2216479	CYB	G15497A	Nonsynonymous	G251S	EXIT; Obesity		Benign
200610-143	CYB	T15514C	Synonymous	Y256Y			
					Complex		
2216481	CYB	A15662G	Nonsynonymous	1306V	mitochondriopathy-	Breast tumor	Benign
					associated		
2216482	CYB	T15672C	Nonsynonymous	M309T		Breast tumor	Benign
					Possibly LVNC		
2263334	CYB	T15693C	Nonsynonymous	M316T	cardiomyopathy-	Breast tumor	Benign
					associated		
rs41337244	CYB	A15758G	Nonsynonymous	1338V			Benign
2216485	CYB	G15812A	Nonsynonymous	V356M	LHON		Benign
2216486	CYB	A15824G	Nonsynonymous	T360A		Breast tumor	Benign
2216487	CYB	C15849T	Nonsynonymous	T368I		Breast tumor	Benign
2216489	CYB	A15860G	Nonsynonymous	1372V			Benign
2263335	tRNA-Thr	T15889C					
2263341	tRNA-Thr	C15904T					
2216491	tRNA-Thr	T15905C					
2216492	tRNA-Thr	A15907G					
rs2853510	tRNA-Thr	A15924G			LIMM		
2216494	tRNA-Thr	G15927A			MS; DEAF1555 increased penetrance; CHD		

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		MS; Idiopathic repeat		
2263337	tRNA-Thr	G15928A			miscarriage; AD		
					protection		
2216495	tRNA-Thr	C15939T					
2263336	tRNA-Thr	T15940C					
2216496	tRNA-Thr	T15941C					
2216497	tRNA-Thr	T15942C			Possibly LVNC-associated		
2216498	tRNA-Thr	C15946T					
2216499	tRNA-Thr	A15951G			LHON modulator		
2216500	tRNA-Pro	C15978T					
2216501	tRNA-Pro	T16017C					
2010-08-MT-	Non-coding	C16069T					
395	rton counig	010003.					
2010-08-MT- 398	Non-coding	T16086C					
200610-146	Non-coding	T16217C				Prostate tumor	
	_				POAG- potential for		
rs41378955	Non-coding	G16390A			association	Breast, ovarian tumor	
2010-08-MT-	Nan andi:	A462006				Castula sausinaus	
511	Non-coding	A16399G				Gastric carcinoma	
200610-37	Non-coding	A16482G					

ND = NADH dehydrogenase; CYB = Cytochrome b; CO = Cytochrome c oxidase; ATP = ATP synthase; POLG = Mitochondrial DNA polymerase γ; MNGIE = Mitochondrial neurogastrointestinal encephalopathy; LVNC = Left ventricular non-compaction cardiomyopathy; DEAF = Deafness; LHON = Leber Hereditary optic neuropathy; PEO = Progressive external ophthalmoplegia; CPT = Carnitine palmityltransferase deficiency; DMDF = Diabetes mellitus and deafness; HCM = Hypertrophic cardiomyopathy; GDM = Gestational diabetes mellitus; AD = Alzheimer's disease; PD = Parkinson's disease; RP = Retinitis pigmentosa; AMD = Age-related macular degeneration; POAG = Primary open angle glaucoma; LDYT = Leber hereditary optic neuropathy and dystonia; CM = Cardiomyopathy; sCJD = Sporadic Creutzfeldt-Jaokob disease; MS = Multiple sclerosis; PD-ADS = Acquired demyelinating syndromes; HCM = Hypertrophic cardiomyopathy; EXIT = Exercise intolerance; LIMM = Lethal infantile mitochondrial myopathy; CHD = Coronary heart disease

Table S18. Infinium Human Exome v1.2

	10. IIIIIIII aiii 11e			Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
rs41531144	Non-coding	T217C					
rs41323649	Non-coding	G228A					
rs41528348	Non-coding	C295T				POLG/MNGIE muscle; Glioblastoma	
rs3901846	Non-coding	G499A				Thyroid & prostate tumors	
rs3928305	16S rRNA	G1719A					
rs2853516	ND1	G3316A	Nonsynonymous	A4T	Diabetes; LHON; PEO		Benign
rs41456348	tRNA-Gln	T4336C			AD; PD; Hearing loss & migraine		
rs3021088	ND2	G5460A	Nonsynonymous	A331T	AD; PD		Benign
rs2853825	COX3	G9477A	Nonsynonymous	V91I		Thyroid tumor	Benign
					PD protective factor; Longevity; Altered cell pH;		
rs2853826	ND3	A10398G	Nonsynonymous	T114A	Metabolic syndrome; Breast cancer risk; Haplogroup IJK marker	Thyroid tumor	Benign
rs28358279	tRNA-Arg	T10463C			Trapiograp ist market	Endometrium tumor	
rs2853498	tRNA-Leu2	A12308G			CPEO; Stroke; CM; Breast, Renal, & Prostate cancer risk; Altered brain pH; sCJD; Haplogroup U marker	Endometrium control tissue; Lung & prostate tumors	
					LHON; Increased MS risk;	Acute leukemia platelets,	
rs28359178	ND5	G13708A	Nonsynonymous	A458T	Higher frequency in PD- ADS; Haplogroup J marker	leukocytes, & bone marrow; Breast tumor	Benign
rs28357681	CYB	T14798C	Nonsynonymous	F18L		Glioblastoma	Benign
rs2853506	CYB	A15218G	Nonsynonymous	T158A			Possibly damaging
rs3088309	CYB	C15452A	Nonsynonymous	L236I			Benign
rs41337244	CYB	A15758G	Nonsynonymous	1338V			Benign

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
rs2853510	tRNA-Thr	A15924G			LIMM		
rs41378955	Non-coding	G16390A			POAG- potential for association	Breast, ovarian tumor	

ND = NADH dehydrogenase; CYB = Cytochrome b; CO = Cytochrome c oxidase; ATP = ATP synthase; LHON = Leber Hereditary optic neuropathy; PEO = Progressive external ophthalmoplegia; AD = Alzheimer's disease; PD = Parkinson's disease; POLG = Mitochondrial DNA polymerase γ; MNGIE = Mitochondrial neurogastrointestinal encephalopathy; CPEO = Chronic progressive external ophthalmoplegia syndrome; CM = Cardiomyopathy; sCJD = Sporadic Creutzfeldt-Jaokob disease; MS = Multiple sclerosis; PD-ADS = Acquired demyelinating syndromes; LIMM = Lethal infantile mitochondrial myopathy; POAG = Primary open angle glaucoma

Table \$19. Illumina Human Core 12v1

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
2010-08-MT-			1,000110	710.0	7.00001010001	Aging brains;	1 61,1 11611 2 1 1 661 611
841	Non-Coding	T72C				POLG/PEO & control	
						muscle; Normal tissues	!
2010-08-MT- 981	Non-Coding	A93G					1
200610-102	Non-Coding	T125C				POLG/PEO & control	1
	Non coams	11250				muscle	
2010-08-MT-	Non-Coding	T199C				Ovarian carcinoma;	
544	•					POLG/MNGIE muscle	
200610-104	Non-Coding	T212C					
2010-08-MT-						Control skeletal	
550	Non-Coding	A215G				muscle; Esophageal	
330						cancer	

						Somatic Variant	
				Amino	Base Substitution	Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
MitoT217C	Non-Coding	T217C					
MitoG228A	Non-Coding	G228A					
200610-105	Non-Coding	T236C					
200610-106	Non-Coding	T246C					
MitoG247A	Non-Coding	G247A					
MitoC295T	Non-Coding	C295T				POLG/MNGIE muscle; glioblastoma	
MitoC458T	Non-Coding	C456T				Thyroid tumor	
MitoT479C	Non-Coding	T477C				AD brains; Ovarian tumor	
200610-107	Non-Coding	T482C					
2010-08-MT- 830	12S rRNA	T711C					
200610-42	12S rRNA	C722T					
MitoG752A	12S rRNA	A750G			SZ-associated		
2010-08-MT- 27	12S rRNA	A1041G					
200610-108	12S rRNA	T1107C					
200610-109	12S rRNA	T1119C					
MitoT1191C	12S rRNA	T1189C					
2010 00 NAT						Acute leukemia	
2010-08-MT- 526	16S rRNA	C1721T				platelets, leukocytes, &	
520						bone marrow	
MitoA1738G	16S rRNA	A1736G					
MitoC2485T	16S rRNA	T2483C					
200610-2	16S rRNA	A2880G					
MitoT2887C	16S rRNA	T2885C					
MitoG3012A	16S rRNA	G3010A			Cyclic vomiting syndrome with migraine		
MitoA3349G	ND1	A3348G	Synonymous				
200610-111	ND1	T3396C	Synonymous		NSHL; MIDD		

						Somatic Variant	
				Amino	Base Substitution	Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
200610-112	ND1	T3644C	Nonsynonymous	V113A	BD-associated		Benign
200610-113	ND1	T3645C	Synonymous				
MitoG3667A	ND1	G3666A	Synonymous				
MitoA3721G	ND1	A3720G	Synonymous				
200610-114	ND1	T3826C	Synonymous				
MitoG3916A	ND1	G3915A	Synonymous				
MitoG3919A	ND1	G3918A	Synonymous			Breast tumor	
200610-45	ND1	C3921T	Synonymous				
MitoC3971T	ND1	C3970T	Synonymous				
MitoC3993T	ND1	C3992T	Nonsynonymous	T229M		Thyroid tumor	Benign
200610-115	ND1	T4023C	Synonymous				
MitoA4025G	ND1	A4024G	Nonsynonymous	T240A			Benign
200610-47	ND1	C4025T	Nonsynonymous	T240M			Benign
2010-08-MT-	ND1	G4048A	Noncynonymous	D248N			Donign
655	NDI	G4046A	Nonsynonymous	D246IN			Benign
200610-116	ND1	T4117C	Synonymous				
2010-08-MT-	ND1	A4164G	Synonymous				
664	NDI	A4104G	Synonymous				
200610-117	ND1	T4218C	Synonymous				
200610-48	tRNA-Gln	C4335T					
MitoT4337C	+DNA Cla	T4336C			AD; PD; Hearing loss &		
WIILU14337C	tRNA-Gln	14336C			migraine		
200610-49	ND2	C4508T	Synonymous				
MitoG4770A	ND2	A4769G	Synonymous				
MitoG4821A	ND2	G4820A	Synonymous				
MitoA4825G	ND2	A4824G	Nonsynonymous	T119A			Possibly damaging
					Diabetes helper		
200610-6	ND2	A4833G	Nonsynonymous	T122A	mutation; AD; PD;		Possibly damaging
			•		Haplogroup G marker		
NA:+- N 4010C	MD3	A 4017C	Nanaunanun artis	NATOR	LHON; Insulin		Donies
MitoA4918G	ND2	A4917G	Nonsynonymous	N150D	resistance; AMD; NRTI-		Benign

						Somatic Variant	
	_			Amino	Base Substitution	Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
					PN; Haplogroup T		
			•		marker		
MitoT4978C	ND2	T4977C	Synonymous	L170L			
MitoT5005C	ND2	T5004C	Synonymous	L179L			
MitoG5047A	ND2	G5046A	Nonsynonymous	V193I			Benign
200610-119	ND2	T5048C	Synonymous	V193V			
200610-120	ND2	T5108C	Synonymous	T213T			
MitoC5264T	ND2	C5263T	Nonsynonymous	A265V			Benign
200610-7	ND2	A5301G	Nonsynonymous	1278V			Benign
MitoA5391G	ND2	A5390G	Synonymous	M307M			
MitoT5443C	ND2	T5442C	Nonsynonymous	F325L			Benign
MitoA5657G	Non-Coding	A5656G					
MitoG5774A	tRNA-Cys	G5773A					
200610-9	tRNA-Tyr	A5833G					
MitoA5952G	CO1	A5951G	Synonymous	G16G			
2010-08-MT-	CO1	T5999C	Synonymous	A32A		Pancreatic cancer cell	
773						line; Glioblastoma	
MitoG6027A	CO1	G6026A	Synonymous	L41L			
MitoC6046T	CO1	C6045T	Synonymous	L48L			
2010-08-MT-	CO1	A6047G	Synonymous	L48L		Pancreatic cancer cell	
776						line; Glioblastoma	
200610-51	CO1	C6077T	Synonymous	V58V			
MitoT6222C	CO1	T6221C	Synonymous	P106P			
200610-121	CO1	T6248C	Synonymous	S115S			
MitoG6261A	CO1	G6260A	Synonymous	E119E			
200610-80	CO1	G6285A	Nonsynonymous	V128I	Prostate cancer		Benign
200610-123	CO1	T6392C	Synonymous	N163N			
200610-81	CO1	G6446A	Synonymous	T181T			
MitoT6681C	CO1	T6680C	Synonymous	T259T			
200610-82	CO1	G6734A	Synonymous	M277M			
MitoT6777C	CO1	T6776C	Synonymous	H291H		Breast cystic masses	

						Somatic Variant	
				Amino	Base Substitution	Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
MitoA7056G	CO1	A7055G	Synonymous	G384G		MNGIE fibroblasts	
2010-08-MT- 831	CO1	T7142C	Synonymous	H413H			
MitoT7176C	CO1	T7175C	Synonymous	F414F			
MitoC7275T	CO1	C7274T	Synonymous	G457G			
MitoG7522A	tRNA-Asp	G7521A				Thyroid tumor	
200610-84	CO2	G7598A	Nonsynonymous	A5T	Possible LHON helper variant		Benign
2010-08-MT- 860	CO2	T7684C	Synonymous	L33L			
2010-08-MT- 861	CO2	G7697A	Nonsynonymous	V38I	Possible HCM susceptibility		Benign
MitoA7769G	CO2	A7768G	Synonymous	M61M			
200610-85	CO2	G7852A	Synonymous	E89E			
2010-08-MT- 874	CO2	G7853A	Nonsynonymous	V90I			Benign
200610-86	CO2	G7859A	Nonsynonymous	D92N	Progressive Encephalomyopathy		Benign
200610-127	CO2	T7861C	Synonymous	D92D			
200610-128	CO2	T7870C	Synonymous	L95L			
200610-13	CO2	A7972G	Synonymous	E129E			
200610-87	CO2	G8020A	Synonymous	P145P			
200610-129	ATP8	T8404C	Synonymous	1131			
200610-53	ATP8	C8472T	Nonsynonymous	P36L			Benign
200610-14	ATP8	A8502G	Nonsynonymous	N46S			Possibly damaging
MitoG8617T	ATP8	G8616T	Nonsynonymous	L30F			Unknown
200610-131	ATP6	T8793C	Synonymous	P89P			
200610-55	ATP6	C8859T	Synonymous	G111G			
MitoA8870G	ATP6	A8869G	Nonsynonymous	M115V			Benign
200610-18	ATP6	A8946G	Synonymous	M140M			
200610-56	ATP6	A8964T	Nonsynonymous	M140I			Possibly damaging

						Somatic Variant	
				Amino	Base Substitution	Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
200610-89	ATP6	G9064A	Nonsynonymous	A180T			Benign
MitoA9073G	ATP6	A9072G	Synonymous	S182S			
MitoA9094G	ATP6	A9093G	Synonymous	T189T			
200610-57	ATP6	C9140T	Nonsynonymous	A205V			Probably damaging
2010-08-MT- 969	ATP6	A9150G	Synonymous	L208L			
MitoG9378A	CO3	A9377G	Synonymous	W57W			
200610-58	CO3	C9458T	Synonymous	1841			
MitoC9541T	CO3	T9540C	Synonymous	L112L			
200610-21	CO3	A9587G	Synonymous	L127L			
MitoA9668G	CO3	A9667G	Nonsynonymous	N154S			Benign
MitoT9699C	CO3	T9698C	Synonymous	L164L			
MitoT9717C	CO3	T9716C	Synonymous	G170G			
200610-59	CO3	C9785T	Synonymous	Y193Y			
MitoT9900C	CO3	T9899C	Synonymous	H231H			
MitoT9951C	CO3	T9950C	Synonymous	V248V			
MitoT10035C	tRNA-Gly	T10034C					
200610-133	ND3	T10118C	Synonymous	1201			
MitoT10239C	ND3	T10238C	Synonymous	1601			
MitoG10311A	ND3	G10310A	Synonymous	L84L			
200610-22	ND3	A10397G	Synonymous	W113W			
MitoA10551G	ND4L	A10550G	Synonymous	M27M		Endometrium control tissue	
MitoG10587A	ND4L	G10586A	Synonymous	S39S			
MitoG10590A	ND4L	G10589A	Synonymous	L40L			
200610-135	ND4L	T10640C	Synonymous	N57N		Endometrium tumor	
MitoG10689A	ND4L	G10688A	Synonymous	V73V			
200610-23	ND4L	A10754G	Synonymous	L95L			
200610-91	ND4	G10914A	Nonsynonymous	C52Y			Benign
MitoT10916C	ND4	T10915C	Synonymous	C52C			-
200610-92	ND4	G11016A	Nonsynonymous	S86N		Thyroid tumor	Benign
						-	-

				A	Dece Colored to	Somatic Variant	
		.,	T (14)	Amino	Base Substitution	Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
200610-61	ND4	C11061T	Nonsynonymous	S101F			Benign
MitoA11252G	ND4	A11251G	Synonymous	L164L			
200610-63	ND4	C11288T	Synonymous	L177L			
MitoG11378A	ND4	G11377A	Synonymous	K206K			
MitoA11468G	ND4	A11467G	Synonymous	L236L	Altered brain pH; sCJD		
200610-65	ND4	C11536T	Synonymous	Y259Y			
2010-08-MT- 82	ND4	A11560G	Synonymous	W267W			
MitoT11900C	ND4	T11899C	Synonymous	S380S			
MitoG11915A	ND4	G11914A	Synonymous	T385T			
200610-136	ND4	T12121C	Synonymous	14541			
200610-137	tRNA-Leu2	T12285C					
MitoG12631A	ND5	G12630A	Synonymous	W98W			
2010-08-MT-	ND5	A12642G	Synonymous	E102E			
143	NDS	A12042G	Symonymous	E102E			
MitoC12670T	ND5	C12669T	Synonymous	D111D			
MitoT12706C	ND5	C12705T	Synonymous	11231		Prostate tumor	
200610-94	ND5	G12771A	Synonymous	E145E			
2010-08-MT- 158	ND5	T12811C	Nonsynonymous	Y159H			Benign
200610-27	ND5	A12822G	Synonymous	A162A			
MitoG12851A	ND5	A12850G	Nonsynonymous	1172V			Possibly damaging
MitoA13106G	ND5	A13105G	Nonsynonymous	1257V			Benign
200610-30	ND5	A13183G	Nonsynonymous	1283V			Benign
200610-138	ND5	T13215C	Synonymous	L293L			
MitoA13264G	ND5	A13263G	Synonymous	Q309Q			
MitoC13651T	ND5	C13650T	Synonymous	P438P			
2010-08-MT- 204	ND5	G13759A	Nonsynonymous	A475T			Benign
MitoT13966C	ND5	T13965C	Synonymous	L543L			

						Somatic Variant	
				Amino	Base Substitution	Associated	
ID 3010 00 MT	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
2010-08-MT-	ND5	A14133G	Synonymous	L599L			
226							
2010-08-MT-	ND6	T14182C	Synonymous	V164V			
232	NDC	A14222C	Company management	D147D			
MitoA14234G	ND6	A14233G	Synonymous				
200610-96	ND6	G14323A	Synonymous	N117N			
200610-71	ND6	C14338T	Synonymous	V112V			
2010-08-MT- 251	ND6	A14417G	Nonsynonymous	V86A			Benign
200610-141	ND6	T14512C	Synonymous	M54M			
200610-97	ND6	G14544A	Synonymous	L44L			
200610-98	ND6	G14569A	Synonymous	S35S			
2010-08-MT- 288	СҮВ	C14872T	Synonymous	1421			
200610-33	CYB	A14890G	Synonymous	G48G			
200610-34	CYB	A14893G	Synonymous	L49L			
MitoG15044A	CYB	G15043A	Synonymous	G99G	MDD-associated		
200610-99	CYB	G15148A	Synonymous	P134P			
200610-100	CYB	G15172A	Synonymous	G142G		Endometrial tumor	
MitoA15302G	CYB	G15301A	Synonymous	L185L		Tumor	
200610-143	CYB	T15514C	Synonymous	Y256Y			
MitoT15671C	CYB	T15670C	Synonymous	H308H			
MitoT15785C	СҮВ	T15784C	Synonymous	P346P	POAG-potential for association	Pancreatic cancer cell line; Breast tumor	
MitoC15834T	CYB	C15833T	Synonymous	L363L			
MitoC15905T	tRNA-Thr	C15904T					
MitoA15925G	tRNA-Thr	A15924G					
MitoG15929A	tRNA-Thr	G15928A			MS; Idiopathic repeat miscarriage; AD protection; Possible helper mutation		

				Amino	Base Substitution	Somatic Variant Associated	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Phenotypes*	PolyPhen-2 Prediction
MitoG15931A	tRNA-Thr	G15930A	,,		· · · · · · · · · · · · · · · · · · ·	,.	•
2010-08-MT- 395	Non-Coding	C16069T					
2010-08-MT- 398	Non-Coding	T16086C					
MitoG16130A	Non-Coding	G16129A			Cyclic vomiting syndrome with migraine		
MitoT16145C	Non-Coding	T16144C					
MitoG16146A	Non-Coding	G16145A					
MitoC16149T	Non-Coding	C16148T				Aging brains	
MitoA16163G	Non-Coding	A16162G					
MitoA16164G	Non-Coding	A16163G					
200610-146	Non-Coding	T16217C				Prostate tumor	
MitoC16272T	Non-Coding	C16270T			Melanoma patients		
2010-08-MT- 502	Non-Coding	T16356C				Glioblastoma	
2010-08-MT- 504	Non-Coding	T16362C					
MitoG16393A	Non-Coding	G16391A					
2010-08-MT- 511	Non-Coding	A16399G				Gastric carcinoma	
200610-37	Non-Coding	A16482G					

ND = NADH dehydrogenase; CYB = Cytochrome b; CO = Cytochrome c oxidase; ATP = ATP synthase; POLG = Mitochondrial DNA polymerase γ ; PEO = Progressive external ophthalmoplegia; MNGIE = Mitochondrial neurogastrointestinal encephalopathy; AD = Alzheimer's disease; SZ = Schizophrenia; NSHL = Non-syndromic hearing loss; MIDD = Maternally inherited diabetes and deafness; BD = Bipolar disorder; PD = Parkinson's disease; LHON = Leber Hereditary optic neuropathy; AMD = Age-related macular degeneration; NRTI = Nucleoside reverse transcriptase inhibitor; HCM = Hypertrophic cardiomyopathy; sCJD = Sporadic Creutzfeldt-Jaokob disease; MDD = Major depressive disorder; POAG = Primary open angle glaucoma; MS = Multiple sclerosis

Table S20. Illumina Human1M Duo v3

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
MitoT217C	Non-Coding	T217C					
MitoG228A	Non-Coding	G228A					
MitoG247A	Non-Coding	G247A					
MitoC295T	Non-Coding	C295T				POLG/MNGIE muscle; Glioblastoma	
MitoC458T	Non-Coding	C456T				Thyroid tumor	
MitoC464T	Non-Coding	C462T				Thyroid tumor	
MitoT479C	Non-Coding	T477C				AD brains; Ovarian tumor	
MitoT491C	Non-Coding	T489C				Ovarian carcinoma; Prostate tumor	
MitoG752A	12S rRNA	A750G					
MitoA829G	12S rRNA	A827G			DEAF; Haplogroup B4b'd marker		
MitoC1050T	12S rRNA	C1048T					
MitoT1191C	12S rRNA	T1189C					
MitoG1440A	12S rRNA	A1438G					
MitoG1721A	16S rRNA	G1719A					
MitoA1738G	16S rRNA	A1736G					
MitoT2160C	16S rRNA	T2158C					
MitoC2485T	16S rRNA	T2483C					
MitoG2708A	16S rRNA	A2706G					
MitoC2791T	16S rRNA	C2789T					
MitoT2887C	16S rRNA	T2885C					
MitoG3012A	16S rRNA	G3010A			Cyclic vomiting syndrome with migraine		
MitoT3198C	16S rRNA	T3197C					
MitoA3349G	ND1	A3348G	Synonymous	L14L			

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
					LHON/Diabetes/CPT	Acute leukemia	
MitoT3395C	ND1	T3394C	Nonsynonymous	Y30H	deficiency/High altitude	platelets, leukocytes, &	Benign
					adaptation	bone marrow	
MitoA3481G	ND1	A3480G	Synonymous	K58K		Prostate tumor	
MitoC3595T	ND1	C3594T	Synonymous	V96V		Thyroid tumor	
MitoG3667A	ND1	G3666A	Synonymous	G120G			
MitoA3721G	ND1	A3720G	Synonymous	Q138Q			
MitoG3916A	ND1	G3915A	Synonymous	G203G			
MitoG3919A	ND1	G3918A	Synonymous	E204E		Breast tumor	
MitoC3971T	ND1	C3970T	Synonymous	L222L			
MitoC3993T	ND1	C3992T	Nonsynonymous	T229M			Benign
MitoA4025G	ND1	A4024G	Nonsynonymous	T240A			Benign
MitoT4337C	tRNA-Gln	T4336C			AD; PD; Hearing loss &		
					migraine		
MitoT4562C	ND2	T4561C	Nonsynonymous	V31A			Benign
MitoG4770A	ND2	A4769G	Synonymous	M100			
			Synonymous	М			
MitoG4821A	ND2	G4820A	Synonymous	E117E			
MitoA4825G	ND2	A4824G	Nonsynonymous	T119A			Possibly damaging
MitoC4884T	ND2	C4883T	Synonymous	P138P	Glaucoma		
					LHON; Insulin		
MitoA4918G	ND2	A4917G	Nonsynonymous	N150D	resistance; AMD; NRTI-		Benign
WIILUA4318G	NDZ	A4317G	Nonsynonymous	MIJOD	PN; Haplogroup T		benign
					marker		
MitoT4978C	ND2	T4977C	Synonymous	L170L			
MitoT5005C	ND2	T5004C	Synonymous	L179L			
MitoG5047A	ND2	G5046A	Nonsynonymous	V193I			Benign
MitoC5264T	ND2	C5263T	Nonsynonymous	A265V			Benign
MitoA5391G	ND2	A5390G	Synonymous	M307			
MINIONOSSIG	NUZ	ADSSUG	Symonymous	М			
MitoT5443C	ND2	T5442C	Nonsynonymous	F325L			Benign
MitoG5461A	ND2	G5460A	Nonsynonymous	A331T	AD; PD		Benign

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
MitoT5496C	ND2	T5495C	Synonymous	F342F			
MitoA5657G	NC	A5656G					
MitoG5774A	tRNA-Cys	G5773A					
MitoA5952G	CO1	A5951G	Synonymous	G16G			
MitoG6027A	CO1	G6026A	Synonymous	L41L			
MitoC6046T	CO1	C6045T	Synonymous	L48L			
MitoT6153C	CO1	T6152C	Synonymous	V83V			
MitoT6222C	CO1	T6221C	Synonymous	P106P			
MitoG6261A	CO1	G6260A	Synonymous	E119E			
MitoT6681C	CO1	T6680C	Synonymous	T259T			
MitoG6735A	CO1	G6734A	Synanymaus	M277			
WIILUGO/33A	COI	G6/34A	Synonymous	M			
MitoA6753G	CO1	A6752G	Synonymous	L283L			
MitoT6777C	CO1	T6776C	Synonymous	H291H		Breast cystic masses	
MitoA7056G	CO1	A7055G	Synonymous	G384G		MNGIE fibroblasts	
MitoT7176C	CO1	T7175C	Synonymous	T424T			
MitoC7275T	CO1	C7274T	Synonymous	G457G			
MitoG7522A	tRNA-Asp	G7521A				Thyroid tumor	
MitoA7769G	CO2	A7768G	Synonymous	M61M			
				Term2			
MitoG8270A	CO2	G8269A	Synonymous	28Ter			
				m			
MitoT8278C	Non-Coding	T8277C					
MitoG8617T	ATP6	G8616T	Nonsynonymous	L30F			Probably damaging
MitoC8656T	ATP6	C8655T	Synonymous	1431			
MitoA8870G	ATP6	A8869G	Nonsynonymous	M115V			Benign
MitoA9073G	ATP6	A9072G	Synonymous	S182S			
MitoA9094G	ATP6	A9093G	Synonymous	T189T			
MitoG9378A	CO3	A9377G	Synonymous	W57W			
MitoC9541T	CO3	T9540C	Synonymous	L112L		Tumor	
MitoA9668G	CO3	A9667G	Nonsynonymous	N154S			Benign
MitoT9699C	CO3	T9698C	Synonymous	L164L			

					5 6 1 111 11		
15		Markari	T C.V da l	Amino	Base Substitution	Somatic Variant	Del Diese O Desellette
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
MitoT9717C	CO3	T9716C	Synonymous	G170G			
MitoT9900C	CO3	T9899C	Synonymous	H231H			
MitoT9951C	<i>CO3</i>	T9950C	Synonymous	V248V			
MitoT10035C	tRNA-Gly	T10034C					
MitoA10045G	tRNA-Gly	A10044G			SIDS		
MitoT10239C	ND3	T10238C	Synonymous	1601			
MitoG10311A	ND3	G10310A	Synonymous	L84L			
MitoT10322C	ND3	T10321C	Nonsynonymous	V88A			Benign
					PD protective factor;		
					Longevity; Altered cell		
MitoG10399A	ND3	A10398G	Nonsynonymous	T114A	pH; Metabolic	Thyroid tumor	Benign
			,,		syndrome; Breast	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
					cancer risk; Haplogroup		
					IJK marker		
MitoT10464C	tRNA-Arg	T10463C				Endometrium tumor	
MitoA10551G	ND4L	A10550G	Synonymous	M27M		Endometrium control	
1411107 (103310	110 12		Synonymous			tissue	
MitoG10587A	ND4L	G10586A	Synonymous	S39S			
MitoG10590A	ND4L	G10589A	Synonymous	L40L			
MitoG10689A	ND4L	G10688A	Synonymous	V73V			
MitoC10874T	ND4	T10873C	Synonymous	P38P			
MitoT10916C	ND4	T10915C	Synonymous	C52C			
MitoA11252G	ND4	A11251G	Synonymous	L164L			
MitoG11378A	ND4	G11377A	Synonymous	K206K			
MitoA11468G	ND4	A11467G	Synonymous	L236L	Altered brain pH; sCJD patients		
MitoT11486C	ND4	T11485C	Synonymous	G242G	·		
MitoT11900C	ND4	T11899C	Synonymous	S380S			
MitoG11915A	ND4	G11914A	Synonymous	T385T			
			, ,		CPEO; Stroke; CM;	Endometrium control	
MitoA12309G	tRNA-Leu2	A12308G			Breast, renal, & prostate	tissue; Lung & prostate	
					cancer Risk; Altered	tumor	

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
			,,		brain pH; sCJD;	,,	,
					Haplogroup U marker		
MitoG12373A	ND5	G12372A	Synonymous	L12L	Altered brain pH; sCJD	Prostate tumor	
MitoG12631A	ND5	G12630A	Synonymous	W98W			
MitoC12670T	ND5	C12669T	Synonymous	D111D			
MitoT12706C	ND5	C12705T	Synonymous	11231		Prostate tumor	
MitoG12851A	ND5	A12850G	Nonsynonymous	1172V			Possibly damaging
MitoA13106G	ND5	A13105G	Nonsynonymous	1257V			Benign
MitoA13264G	ND5	A13263G	Synonymous	Q309Q			
MitoC13651T	ND5	C13650T	Synonymous	P438P			
MitoA13781G	ND5	A13780G	Nonsynonymous	1482V			Benign
MitoT13790C	ND5	T13789C	Nonsynonymous	Y485H			Probably damaging
MitoT13966C	ND5	T13965C	Synonymous	L543L			
MitoT14179C	ND6	T14178C	Nonsynonymous	1166V			Benign
MitoA14234G	ND6	A14233G	Synonymous	D147D			
MitoA14583G	ND6	A14582G	Nonsynonymous	V31A			Benign
MitoT14799C	CYB	T14798C	Nonsynonymous	F18L		Glioblastoma	Benign
MitoG15044A	CYB	G15043A	Synonymous	G99G	MDD-associated		
MitoA15245G	CYB	A15244G	Synonymous	G166G			
4:+aC1F2F8A	СҮВ	G15257A	Nancymanymays	D171N	LHON; Haplogroup J2		Donian
MitoG15258A	CIB	G1525/A	Nonsynonymous	DI/IN	marker		Benign
∕litoA15302G	CYB	G15301A	Synonymous	L185L		tumor	
MitoC15536T	CYB	C15535T	Synonymous	N263N		Breast tumor	
MitoT15671C	CYB	T15670C	Synonymous	H308H		Breast tumor	
MitoA15759G	CYB	A15758G	Nonsynonymous	1338V			Benign
MitoT15785C	СҮВ	T15784C	Synonymous	P346P	POAG-potential for association	Pancreatic cancer cell line; Breast tumor	
MitoC15834T	CYB	C15833T	Synonymous	L363L		,	
MitoC15905T	tRNA-Thr	C15904T					
MitoA15925G	tRNA-Thr	A15924G			LIMM		

-				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
MitoG15929A	tRNA-Thr	G15928A			MS; Idiopathic repeat miscarriage; AD protection		
MitoG15931A	tRNA-Thr	G15930A					
MitoG16130A	Non-Coding	G16129A			Cyclic vomiting syndrome with migraine		
MitoT16145C	Non-Coding	T16144C					
MitoG16146A	Non-Coding	G16145A					
MitoC16149T	Non-Coding	C16148T				Aging brains	
MitoA16163G	Non-Coding	A16162G					
MitoA16164G	Non-Coding	A16163G					
MitoC16184A	Non-Coding	A16183G				Prostate tumor	
MitoC16272T	Non-Coding	C16270T			Melanoma patients		
MitoC16329T	Non-Coding	C16327T					
MitoG16392A	Non-Coding	G16390A			POAG-potential for association	Breast & ovarian tumors	
MitoG16393A	Non-Coding	G16391A					

ND = NADH dehydrogenase; CYB = Cytochrome b; CO = Cytochrome c oxidase; ATP = ATP synthase; POLG = Mitochondrial DNA polymerase γ ; MNGIE = Mitochondrial neurogastrointestinal encephalopathy; AD = Alzheimer's disease; DEAF = Deafness; LHON = Leber Hereditary optic neuropathy; CPT = Carnitine palmityltransferase deficiency; PD = Parkinson's disease; AMD = Age-related macular degeneration; NRTI = Nucleoside reverse transcriptase inhibitors; SIDS = Sudden infant death syndrome; sCJD = Sporadic Creutzfeldt-Jaokob disease; CPEO = Chronic progressive external ophthalmoplegia syndrome; CM = Cardiomyopathy; MDD = Major depressive disorder; POAG = Primary open angle glaucoma; LIMM = Lethal infantile mitochondrial myopathy

Table S21. Human Omni 2.5-8v1.1

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
2010-08-MT- 841	Non-Coding	T72C				Aging brains; POLG, PEO & control muscle; normal tissues	
2010-08-MT- 981	Non-Coding	A93G					
200610-102	Non-Coding	T125C				POLG, PEO & control muscle	I
2010-08-MT- 544	Non-Coding	T199C				Ovarian carcinoma	1
200610-104	Non-Coding	T212C					,
2010-08-MT- 550	Non-Coding	A215G				Esophageal cancer	I
200610-105	Non-Coding	T236C					,
200610-106	Non-Coding	T246C					
200610-107	Non-Coding	T482C					'
2010-08-MT- 723	Non-Coding	G513A					
2010-08-MT- 729	Non-Coding	A523C					
2010-08-MT- 830	12S rRNA	T711C					
200610-42	12S rRNA	C722T					1
200610-75	12S rRNA	G951A					
2010-08-MT- 27	12S rRNA	A1041G					
200610-108	12S rRNA	T1107C					
200610-109	12S rRNA	T1119C					
2010-08-MT- 526	16S rRNA	C1721T				Acute leukemia platelets, leukocytes, & bone marrow	
200610-1	16S rRNA	A2755G			Possibly LVNC-associated		

200610-2 16S rRNA A2880G	lyPhen-2 Prediction
200610-110	
200610-3	
200610-43	
200610-44 <i>ND1</i> C3330T Synonymous L8L	
200610-4 <i>ND1</i> A3384G Synonymous K26K	
200610-111 ND1 T3396C Synonymous Y30Y NSHL; MIDD	
200610-112 ND1 T3644C Nonsynonymous V113A BD	Benign
200610-113 <i>ND1</i> T3645C Synonymous V113V	
200610-76 <i>ND1</i> G3705A Synonymous L133L	
200610-114 <i>ND1</i> T3826C Synonymous L174L	
200610-45 <i>ND1</i> C3921T Synonymous S205S	
200610-46 <i>ND1</i> C3970T Synonymous L222L	
200610-115 <i>ND1</i> T4023C Synonymous T239T	
200610-47 ND1 C4025T Nonsynonymous T240M	Benign
2010-08-MT- ND1 G4048A Nonsynonymous D248N	Benign
655	Demgn
200610-116 <i>ND1</i> T4117C Synonymous L271L	
2010-08-MT- ND1 A4164G Synonymous M286M	
664	
200610-117 <i>ND1</i> T4218C Synonymous Y304Y	
200610-48 <i>tRNA-Gln</i> C4335T	
200610-77 ND2 G4491A Nonsynonymous V8I	Benign
200610-49 <i>ND2</i> C4508T Synonymous I13I	
200610-118 ND2 T4646C Synonymous Y59Y Glioblastoma	
Diabetes helper	
, ,	Possibly damaging
Haplogroup G marker	
200610-119 <i>ND2</i> T5048C Synonymous V193V	
200610-120 <i>ND2</i> T5108C Synonymous T213T	
200610-7 ND2 A5301G Nonsynonymous I278V	Benign
200610-9 <i>tRNA-tyr</i> A5833G	

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
2010-08-MT- 773	CO1	T5999C	Synonymous	A32A		Pancreatic cancer cell line; Glioblastoma	
200610-79	CO1	G6026A	Synonymous	L41L			
200610-50	CO1	C6045T	Synonymous	L48L			
2010-08-MT- 776	CO1	A6047G	Synonymous	L48L		Pancreatic cancer cell line; Glioblastoma	
200610-51	CO1	C6077T	Synonymous	V58V			
200610-121	CO1	T6248C	Synonymous	S115S			
200610-80	CO1	G6285A	Nonsynonymous	V128I	Prostate Cancer		Benign
200610-122	CO1	T6374C	Synonymous	S157S			
200610-123	CO1	T6392C	Synonymous	N163N			
200610-81	CO1	G6446A	Synonymous	T181T			
200610-124	CO1	T6680C	Synonymous	T259T			
200610-82	CO1	G6734A	Synonymous	M277M			
200610-10	CO1	A6752G	Synonymous	L283L			
200610-83	CO1	G6755A	Synonymous	G284G			
200610-125	CO1	T6776C	Synonymous	H291H		Breast cystic masses	
2010-08-MT- 831	CO1	T7142C	Synonymous	H413H			
200610-52	tRNA-Ser	C7476T				Thyroid hyperplasia	
200610-12	tRNA-Asp	G7521A				Thyroid tumor	
200610-84	CO2	G7598A	Nonsynonymous	A5T	Possible LHON helper		Benign
2010-08-MT- 860	CO2	T7684C	Synonymous	L33L			
2010-08-MT- 861	CO2	G7697A	Nonsynonymous	V38I	Possible HCM susceptibility		Benign
200610-126	CO2	T7759C	Synonymous	A58A			
2010-08-MT- 874	CO2	G7853A	Nonsynonymous	V90I			Benign
200610-86	CO2	G7859A	Nonsynonymous	D92N	Progressive encephalomyopathy		Benign
200610-127	CO2	T7861C	Synonymous	D92D	,		

-				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
200610-128	CO2	T7870C	Synonymous	L95L	,,	,.	•
200610-13	CO2	A7972G	Synonymous	E129E			
200610-87	CO2	G8020A	Synonymous	P145P			
200610-129	ATP8	T8404C	Synonymous	1131			
200610-53	ATP8	C8472T	Nonsynonymous	P36L			Benign
200610-14	ATP8	A8502G	Nonsynonymous	N46S			Possibly damaging
200610-130	ATP6	T8594C	Nonsynonymous	123T			Possibly damaging
200610-131	ATP6	T8793C	Synonymous	P89P			
200610-55	ATP6	C8859T	Synonymous	G111G			
200610-18	ATP6	A8946G	Synonymous	M140M			
200610-56	ATP6	C8964T	Synonymous	T146T			
200610-89	ATP6	G9064A	Nonsynonymous	A180T			Benign
200610-57	ATP6	C9140T	Nonsynonymous	A205V			Probably damaging
2010-08-MT-	ATP6	A9150G	Synonymous	L208L			
969	AIFU	ASISUG	Syrionymous	LZUOL			
200610-58	CO3	C9458T	Synonymous	1841			
200610-21	CO3	A9587G	Synonymous	L127L			
200610-59	CO3	C9785T	Synonymous	Y193Y			
200610-133	ND3	T10118C	Synonymous	1201			
200610-22	ND3	A10397G	Synonymous	W113W			
200610-60	ND4L	C10607T	Synonymous	L46L			
200610-135	ND4L	T10640C	Synonymous	N57N		Endometrial tumor	
200610-23	ND4L	A10754G	Synonymous	L95L			
200610-92	ND4	G11016A	Nonsynonymous	S86N		Thyroid tumor	Benign
200610-61	ND4	C11061T	Nonsynonymous	S101F			Benign
200610-62	ND4	C11215T	Synonymous	Y152Y			
200610-63	ND4	C11288T	Synonymous	L177L			
200610-65	ND4	C11536T	Synonymous	Y259Y			
2010-08-MT- 82	ND4	A11560G	Synonymous	W267W			

	C Variant Phenotypes* PolyPhen-2 Prediction
LHON; LDYT; DEAF;	riienotypes rolyriien-2 riediction
, , , ,	
ZUUD 11-93 NUA GII 1696A NOOSVOODVOODS VAIAI HVOETTENSION NEIDER	Benign
mutation	Demen
200610-25 <i>ND4</i> A11959G Synonymous M400M	
200610-136 <i>ND4</i> T12121C Synonymous I454I	
200610-137 <i>tRNA-Leu2</i> T12285C	
200610-67 <i>ND5</i> C12498T Synonymous F54F	
2010-08-MT-	
143 ND5 A12642G Synonymous E102E	
200610-94 <i>ND5</i> G12771A Synonymous E145E	
2010-08-MT- ND5 T12811C Nonsynonymous Y159H Possible LHON factor	Benign
158	Denign
200610-27 <i>ND5</i> A12822G Synonymous A162A	
200610-68 <i>ND5</i> C12882T Synonymous F182F	
200610-95 <i>ND5</i> G12940A Nonsynonymous A202T	Benign
200610-30 <i>ND5</i> A13183G Nonsynonymous I283V	Benign
200610-138 <i>ND5</i> T13215C Synonymous L293L	
200610-69 <i>ND5</i> C13626T Synonymous T430T	
200610-70 <i>ND5</i> C13934T Nonsynonymous T533M	Benign
2010-08-MT- ND5 A14133G Synonymous L599L	
226	
2010-08-MT- ND6 T14182C Synonymous V164V	
232	
200610-96 <i>ND6</i> G14323A Synonymous N117N	
200610-71 <i>ND6</i> C14338T Synonymous V112V	
$ND6 \qquad \Delta 14/11/G \qquad Nonsynonymous \qquad VX6\Delta$	y thyroid Benign
251 carci	noma
200610-72 <i>ND6</i> C14433T Nonsynonymous A81T	Benign
200610-140 ND6 T14502C Nonsynonymous I58V LHON	Benign
200610-141 <i>ND6</i> T14512C Synonymous M54M	
200610-97 <i>ND6</i> G14544A Synonymous L44L	
200610-98 <i>ND6</i> G14569A Synonymous S35S	

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
2010-08-MT- 288	СҮВ	C14872T	Synonymous	1421			
200610-33	CYB	A14890G	Synonymous	G48G			!
200610-34	CYB	A14893G	Synonymous	L49L			, , , , , , , , , , , , , , , , , , ,
200610-142	CYB	T14979C	Nonsynonymous	178T			Benign
200610-99	CYB	G15148A	Synonymous	P134P			, , , , , , , , , , , , , , , , , , ,
200610-100	CYB	G15172A	Synonymous	G142G		Endometrial tumor	, , , , , , , , , , , , , , , , , , ,
200610-74	CYB	C15452T	Nonsynonymous	L236F			Benign
200610-35	CYB	A15487T	Synonymous	P247P			, , , , , , , , , , , , , , , , , , ,
200610-143	CYB	T15514C	Synonymous	Y256Y			, , , , , , , , , , , , , , , , , , ,
2010-08-MT- 395	Non-Coding	C16069T					
2010-08-MT- 398	Non-Coding	T16086C					
2010-08-MT- 418	Non-Coding	C16168T					
200610-146	Non-Coding	T16217C				Prostate tumor	·
2010-08-MT- 463	Non-Coding	C16261T					
2010-08-MT- 480	Non-Coding	C16294T					ļ
2010-08-MT- 483	Non-Coding	T16298C				Prostate tumor	l
2010-08-MT- 489	Non-Coding	A16316G					l
2010-08-MT- 502	Non-Coding	T16356C				Glioblastoma	
2010-08-MT- 504	Non-Coding	T16362C					
2010-08-MT- 511	Non-Coding	A16399G				Gastric carcinoma	
200610-37	Non-Coding	A16482G					

ND = NADH dehydrogenase; CYB = Cytochrome b; CO = Cytochrome c oxidase; ATP = ATP synthase; POLG = Mitochondrial DNA polymerase γ; PEO = Progressive external ophthalmoplegia; LVNC = Left ventricular non-compaction cardiomyopathy; NSHL = Non-syndromic hearing loss; MIDD = Maternally inherited diabetes and deafness; BD = Bipolar disorder; AD = Alzheimer's disease; PD = Parkinson's disease; LHON = Leber Hereditary optic neuropathy; HCM = Hypertrophic cardiomyopathy; LDYT = Leber hereditary optic neuropathy and dystonia; DEAF = Deafness

Table S22. Illumina Human 660W- Quad v1

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Variants*	Associated Phenotypes*	PolyPhen-2 Prediction
MitoT217C	Non-Coding	T217C					
MitoG228A	Non-Coding	G228A					
MitoG247A	Non-Coding	G247A					
MitoC295T	Non-Coding	C295T				POLG & MNGIE muscle; Glioblastoma	
MitoC458T	Non-Coding	C456T				Thyroid tumor	
MitoC464T	Non-Coding	C462T				Thyroid tumor	
MitoT479C	Non-Coding	T477C				AD brains; Ovarian & prostate tumors	
MitoT491C	Non-Coding	T489C				Ovarian carcinoma	
MitoG752A	12S rRNA	A750G					
MitoA829G	12S rRNA	A827G					
MitoC1050T	12S rRNA	C1048T					
MitoT1191C	12S rRNA	T1189C					
MitoG1440A	12S rRNA	A1438G					
MitoG1721A	16S rRNA	G1719A					
MitoA1738G	16S rRNA	A1736G					
MitoT2160C	16S rRNA	T2158C					
MitoC2485T	16S rRNA	T2483C					
MitoG2708A	16S rRNA	A2706G					

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Variants*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
MitoC2791T	16S rRNA	C2789T				,.	•
MitoT2887C	16S rRNA	T2885C					
MitoG3012A	16S rRNA	G3010A			Cyclic Vomiting Syndrome with Migraine; Reported PM		
MitoT3198C	16S rRNA	T3197C					
MitoA3349G	ND1	A3348G	Synonymous				
MitoT3395C	ND1	T3394C	Nonsynonymous	Y30H			Benign
MitoA3481G	ND1	A3480G	Synonymous			Prostate tumor	
MitoC3595T	ND1	C3594T	Synonymous		Thyroid tumor		
MitoG3667A	ND1	G3666A	Synonymous		•		
MitoA3721G	ND1	A3720G	Synonymous				
MitoG3916A	ND1	G3915A	Synonymous				
MitoG3919A	ND1	G3918A	Synonymous		Breast tumor		
MitoC3971T	ND1	C3970T	Synonymous				
MitoC3993T	ND1	C3992T	Nonsynonymous	T229M	Thyroid tumor		Benign
MitoA4025G	ND1	A4024G	Nonsynonymous	T240A	•		Benign
MitoT4337C	tRNA-Gln	T4336C	, ,		AD; PD; Hearing loss & migraine		-
MitoT4562C	ND2	T4561C	Nonsynonymous	V31A			Benign
MitoG4770A	ND2	A4769G	Synonymous		SZ-associated		
MitoG4821A	ND2	G4820A	Synonymous				
MitoA4825G	ND2	A4824G	Nonsynonymous	T119A			Possibly damaging
MitoC4884T	ND2	C4883T	Synonymous		Glaucoma		
					LHON; Insulin		
MitoA4918G	ND2	A4917G	Nonsynonymous	N150D	resistance; AMD; NRTI-PN; Haplogroup T marker		Benign
MitoT4978C	ND2	T4977C	Synonymous				
MitoT5005C	ND2	T5004C	Synonymous				
MitoG5047A	ND2	G5046A	Nonsynonymous	V193I			Benign

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Variants*	Associated Phenotypes*	PolyPhen-2 Prediction
MitoC5264T	ND2	C5263T	Nonsynonymous	A265V			Benign
MitoA5391G	ND2	A5390G	Synonymous				
MitoT5443C	ND2	T5442C	Nonsynonymous	F325L			Benign
MitoG5461A	ND2	G5460A	Nonsynonymous	A331T	AD; PD		Benign
MitoT5496C	ND2	T5495C	Synonymous				
MitoA5657G	Non-Coding	A5656G					
MitoG5774A	tRNA-Cys	G5773A					
MitoA5952G	CO1	A5951G	Synonymous				
MitoG6027A	CO1	G6026A	Synonymous				
MitoC6046T	CO1	C6045T	Synonymous				
MitoT6153C	CO1	T6152C	Synonymous				
MitoT6222C	CO1	T6221C	Synonymous				
MitoG6261A	CO1	G6260A	Synonymous				
MitoT6681C	CO1	T6680C	Synonymous				
MitoA6753G	CO1	A6752G	Synonymous				
MitoT6777C	CO1	T6776C	Synonymous		Breast cystic masses		
MitoA7056G	CO1	A7055G	Synonymous		MNGIE fibroblasts		
MitoT7176C	CO1	T7175C	Synonymous				
MitoC7275T	CO1	C7274T	Synonymous				
MitoG7522A	tRNA-Asp	G7521A			Thyroid tumor		
MitoA7769G	CO2	A7768G	Synonymous				
MitoG8270A	CO2	G8269A	Premature termination	Term228T erm			
MitoT8278C	Non-Coding	T8277C	terriniation	Cilii			
MitoG8617T	ATP6	G8616T	Nonsynonymous	L30F			Probably damaging
MitoC8656T	ATP6	C8655T	Synonymous				, 55
MitoA8870G	ATP6	A8869G	Nonsynonymous	M115V			Benign
MitoA9073G	ATP6	A9072G	Synonymous				J
MitoA9094G	ATP6	A9093G	Synonymous				
MitoG9378A	CO3	A9377G	Synonymous				
MitoC9541T	CO3	T9540C	Synonymous		Tumor		
MitoA9668G	CO3	A9667G	Nonsynonymous	N154S			Benign

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Variants*	Associated Phenotypes*	PolyPhen-2 Prediction
MitoT9699C	CO3	T9698C	Synonymous				
MitoT9717C	CO3	T9716C	Synonymous				
MitoT9900C	CO3	T9899C	Synonymous				
MitoT9951C	CO3	T9950C	Synonymous				
MitoT10035C	tRNA-Gly	T10034C					
MitoA10045G	tRNA-Gly	A10044G			SIDS		
MitoT10239C	ND3	T10238C	Synonymous				
MitoG10311A	ND3	G10310A	Synonymous				
MitoT10322C	ND3	T10321C	Nonsynonymous	V88A	Bladder tumor		Benign
					PD protective factor;		
					Longevity; Altered cell		
					pH; Metabolic		
MitoG10399A	ND3	A10398G	Nonsynonymous	T114A	syndrome; Breast		Benign
					cancer risk;		
					Haplogroup IJK		
					marker		
MitoT10464C	tRNA-Arg	T10463C			Endometrium tumor		
N4:+- A10FF1C	NDAL	A10FF0C	C		Endometrium control		
MitoA10551G	ND4L	A10550G	Synonymous		tissue		
MitoG10587A	ND4L	G10586A	Synonymous				
MitoG10689A	ND4L	G10688A	Synonymous				
MitoT10916C	ND4	T10915C	Synonymous				
MitoA11252G	ND4	A11251G	Synonymous				
MitoG11378A	ND4	G11377A	Synonymous				
MitoA11468G	ND4	A11467G	Synanymaus		Altered brain pH; sCJD		
WIILUATT400G	ND4	A1140/G	Synonymous		patients		
MitoT11486C	ND4	T11485C	Synonymous				
MitoT11900C	ND4	T11899C	Synonymous				
MitoG11915A	ND4	G11914A	Synonymous				
					CPEO; Stroke; CM;	Endometrium control	
MitoA12309G	tRNA-Leu2	A12308G			Breast, renal, prostate	tissue; Lung & prostate	
					cancer risk; Altered	tumors	

				A !	Dana Cultatitutian	CamatiaNaviant	
ID	Cana	Variant	Turn of Mariant	Amino Acid	Base Substitution Associated Variants*	Somatic Variant	DaluDhan 2 Duadiation
טו	Gene	Variant	Type of Variant	Acid	brain pH; sCJD;	Associated Phenotypes*	PolyPhen-2 Prediction
					Haplogroup U marker		
					Altered brain pH; sCJD		
MitoG12373A	ND5	G12372A	Synonymous		patients	Prostate tumor	
MitoG12631A	ND5	G12630A	Synonymous		•		
MitoC12670T	ND5	C12669T	Synonymous				
MitoT12706C	ND5	C12705T	Synonymous			Prostate tumor	
MitoG12851A	ND5	A12850G	Nonsynonymous	1172V			Possibly damaging
MitoA13106G	ND5	A13105G	Nonsynonymous	1257V			Benign
MitoA13264G	ND5	A13263G	Synonymous				
MitoC13651T	ND5	C13650T	Synonymous				
MitoA13781G	ND5	A13780G	Nonsynonymous	1482V			Benign
MitoT13790C	ND5	T13789C	Nonsynonymous	Y485H			Probably damaging
MitoT13966C	ND5	T13965C	Synonymous				
MitoT14179C	ND6	T14178C	Nonsynonymous	1166V			Benign
MitoA14234G	ND6	A14233G	Synonymous				
MitoA14583G	ND6	A14582G	Nonsynonymous	V31A			Benign
MitoT14799C	CYB	T14798C	Nonsynonymous	F18L		Glioblastoma	Benign
MitoG15044A	CYB	G15043A	Synonymous		MDD-associated		
MitoA15245G	CYB	A15244G	Synonymous				
					LHON; Haplogroup J2		
MitoG15258A	CYB	G15257A	Nonsynonymous	D171N	marker; Possible		Benign
					helper mutation		
MitoA15302G	CYB	G15301A	Synonymous				
MitoC15536T	CYB	C15535T	Synonymous				
MitoT15671C	CYB	T15670C	Synonymous			Breast tumor	
MitoA15759G	CYB	A15758G	Nonsynonymous	1338V			Benign
MitoT15785C	СҮВ	T15784C	Synonymous		POAG-potential for association	Pancreatic cancer cell line; Breast tumor	
MitoC15834T	СҮВ	C15833T	Synonymous		association	inie, breast turror	
MitoC158541 MitoC15905T	tRNA-Thr	C150331	Symonymous				
MitoA15925G	tRNA-Thr	A15924G			LIMM		
MILOATOBEO	trina-iiii	A13924G			LIIVIIVI		

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Variants*	Associated Phenotypes*	PolyPhen-2 Prediction
					MS; Idiopathic repeat		
MitoG15929A	tRNA-Thr	G15928A			miscarriage; AD		
14111001332371	CIVIVA TITI	01332071			protection; Possible		
					helper mutation		
MitoG15931A	tRNA-Thr	G15930A					
					Cyclic vomiting		
MitoG16130A	Non-Coding	G16129A			syndrome with		
					migraine		
MitoT16145C	Non-Coding	T16144C					
MitoG16146A	Non-Coding	G16145A					
MitoC16149T	Non-Coding	C16148T				Aging brains	
MitoA16163G	Non-Coding	A16162G					
MitoA16164G	Non-Coding	A16163G					
						Lung tumor back-	
MitoC16184A	Non-Coding	A16183C			Melanoma patients	mutation; Prostate	
						tumor	
MitoC16272T	Non-Coding	C16270T			Melanoma patients		
MitoC16329T	Non-Coding	C16327T					
MitoG16392A	Non-Coding	G16390A			POAG-potential for	Breast & ovarian tumors	
					association	E. case & Starian tanions	
MitoG16393A	Non-Coding	G16391A					

ND = NADH dehydrogenase; CYB = Cytochrome b; CO = Cytochrome c oxidase; ATP = ATP synthase; POLG = Mitochondrial DNA polymerase γ ; MNGIE = Mitochondrial neurogastrointestinal encephalopathy; AD = Alzheimer's disease; PD = Parkinson's disease; LHON = Leber Hereditary optic neuropathy; AMD = Age-related macular degeneration; NRTI = Nucleoside reverse transcriptase inhibitor; SZ = Schizophrenia; SIDS = Sudden infant death syndrome; sCJD = Sporadic Creutzfeldt-Jaokob disease; Chronic progressive external ophthalmoplegia; CM = Cardiomyopathy; MDD = Major depressive disorder; POAG = Primary open angle glaucoma; LIMM = Lethal infantile mitochondrial myopathy; MS = Multiple sclerosis

Table S23. Affymetrix 6.0

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
						Elderly fibroblasts;	
rs2857291	Non-coding	T195C			BD; Melanoma patients	Elderly/AD brains; Lung,	
132037231	Non-count	11930			bb, Melanoma patients	thyroid, ovarian, prostate	
						tumors; Glioblastoma	
rs3937037	Non-coding	A235G				Prostate tumor	
rs2853515	Non-coding	A263G				POLG/MNGIE muscle	
rs3883865	Non-coding	T346C					
						Elderly muscle; POLG;	
rs28412942	Non-coding	T408A				PEO; TWINKLE/PEO	
1323 123 12	rrom couning	1 100/1				frontal cortex and	
						muscle; normal tissue	
rs28625645	Non-coding	T489C				Ovarian carcinoma;	
	· ·					Prostate tumor	
rs28660704	Non-coding	C497T				Thyroid tumor	
rs28661787	Non-coding	A515G					
rs2853518	12S rRNA	A750G					
rs28358570	12S rRNA	T921C			Possibly LVNC-		
	436	60274			associated		
rs28377377	12S rRNA	G927A					
rs28579222	12S rRNA	A942G			Descible DEAE		
rs3888511	12S rRNA	T961G			Possibly DEAF-		
rc20406470	12C ~DNA	C1272T			associated		
rs28496470	12S rRNA	G1273T					
rs28673100	12S rRNA	A1374T					
rs28612532	12S rRNA	C1378T					
rs28729254	12S rRNA	A1379C					
rs28573951	12S rRNA	G1380A					
rs28493131	12S rRNA	G1389T					
rs28392533	12S rRNA	G1410A					
rs28376246	16S rRNA	C1699T					

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
rs2854126	16S rRNA	T1700C	• • • • • • • • • • • • • • • • • • • •				<u> </u>
rs28527344	16S rRNA	C1703T					
rs28491689	16S rRNA	G1750A					
rs28687354	16S rRNA	C1833A					
rs28736648	16S rRNA	T2277C					
rs28358578	16S rRNA	C2332T					
rs28358579	16S rRNA	T2352C			Possibly LVNC		
rs28558945	16S rRNA	C2415T					
rs28489580	16S rRNA	C2516A					
rs28445018	16S rRNA	T2630C					
rs2854128	16S rRNA	A2706G					
rs28406270	16S rRNA	A2753C					
rs28619217	16S rRNA	A2755G			Possibly LVNC		
rs2856980	16S rRNA	G2758A					
rs28358581	16S rRNA	C2789T					
rs3928312	16S rRNA	A2833G					
rs2854129	16S rRNA	T2857C					
rs28393169	16S rRNA	T2863C					
rs28627238	16S rRNA	A2866C					
rs2854130	16S rRNA	T2885C					
rs28597879	16S rRNA	G3001A					
rs28611051	16S rRNA	A3125G					
rs28408321	16S rRNA	C3126G					
rs28656364	16S rRNA	C3149T					
rs28434229	16S rRNA	G3196A			AD; PD		
rs2854131	16S rRNA	T3197C					
rs28553329	16S rRNA	C3210T					
					MELAS; DEAF enhancer;		
rs28358582	ND1	T3308C	Nonsynonymous	M1T	Hypertension; LVNC; Putative LHON	Colorectal tumor	Probably damaging
rs28416101	ND1	T3336C	Synonymous	1101			

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Ariirio	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
			Premature	TermG44T	Associated FileHotypes	••	r dryr fieri-2 i rediction
rs28512326	ND1	G3436A	termination	erm		Head & neck tumors	
rs28358583	ND1	C3450T	Synonymous	P48P			
1320330303		C3+301	Symonymous	1 401		Pancreatic cancer cell	
rs28358585	ND1	A3505G	Nonsynonymous	T67A		line; Prostate tumor	Benign
rs28369556	ND1	C3513T	Synonymous	Т69Т		inic) i i ostate tamoi	
rs2854133	ND1	A3565G	Nonsynonymous	T87A			Benign
rs28647976	ND1	C3604G	Nonsynonymous	L100V			Possibly damaging
rs28531858	ND1	C3613G	Nonsynonymous	L103V			Probably damaging
rs28357968	ND1	G3666A	Synonymous	G120G			,
rs28557337	ND1	C3696T	Synonymous	11301			
rs28520658	ND1	T3732C	Synonymous	Y142T			
rs28357970	ND1	A3796T	Nonsynonymous	T164S			Benign
rs28357972	ND1	G3918A	Synonymous	E204E			
rs28429662	ND2	C4926T	Nonsynonymous	L153F			Possibly damaging
rs3020561	ND2	A4985G	Synonymous	Q172Q		Thyroid tumor	
rs28494478	ND2	C5049G	Nonsynonymous	L194V			Probably damaging
rs28456039	ND2	A5319G	Nonsynonymous	T284S			
rs28357987	ND2	T5393C	Synonymous	S308S			
rs3021088	ND2	G5460A	Nonsynonymous	A331T	AD; PD		Benign
rs28588369	CO1	G6016A	Nonsynonymous	R38Q			Probably damaging
rs28580752	CO1	G6028A	Nonsynonymous	G42D			Probably damaging
rs2856983	CO1	G6257A	Synonymous	V118V			
rs28516468	CO1	C6455T	Synonymous	F184F			
rs28721398	CO1	T6481C	Nonsynonymous	V193A			Benign
rs28461189	CO1	C6489G	Nonsynonymous	L196V			Probably damaging
rs28371932	CO1	T6505C	Nonsynonymous	V201A			Probably damaging
rs1064597	ATP6	C8647G	Nonsynonymous	R41G			Probably damaging
rs28479867	ATP6	G8648A	Nonsynonymous	R41Q			Probably damaging
rs2853822	ATP6	C8655T	Synonymous	1431			
rs28624611	ATP6	G8719A	Premature Termination	GXTer			

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
rs2001031	ATP6	A8860G	Nonsynonymous	T112A			Benign
rs28358269	ATP6	A9072G	Synonymous	S182S			
rs28434399	CO3	C9314T	Synonymous	H36H			
rs28474779	CO3	A9336G	Nonsynonymous	M44V			Benign
rs2856984	CO3	C9559G	Nonsynonymous	P118R			Probably damaging
rs2856985	CO3	G9755A	Synonymous	E183E			
rs2854139	CO3	C9818T	Synonymous	H204H			
rs28411821	CO3	T9824C	Synonymous	L206L			
rs28690056	CO3	T9909C	Nonsynonymous	F235L			Probably damaging
rs28580363	CO3	G9912A	Nonsynonymous	E236K			Probably damaging
rs28715301	CO3	G9942A	Nonsynonymous	D246N		Endometrial tumor	Probably damaging
rs3134801	CO3	T9950C	Synonymous	V248V			
rs28374827	tRNA-Gly	T10015A					
rs28358274	ND3	A10086G	Nonsynonymous	N10D	Hypertension end-stage renal disease		Probably damaging
rs3899188	ND3	T10115C	Synonymous	1191			
rs28409867	ND3	A10133C	Synonymous	P25P			
rs28754574	ND3	A10135G	Nonsynonymous	Q26R			Possibly damaging
rs28358275	ND3	T10237C	Nonsynonymous	160T	LHON		Probably damaging
rs28655588	ND3	G10260A	Nonsynonymous	E68K			Possibly damaging
rs28673954	ND3	T10370C	Synonymous	Y104Y			
rs28358277	ND3	G10373A	Synonymous	E105E			
rs2853826	ND3	A10398G	Nonsynonymous	T114A	PD protective factor; Longevity; Altered cell pH; Metabolic syndrome; Breast	Thyroid tumor	Benign
		0.40555			cancer risk; Haplogroup IJK marker		
rs2853487	ND4L	G10589A	Synonymous	L40L			
rs28532736	ND4L	T10590G	Nonsynonymous	F41V			Possibly damaging
rs28645634	ND4L	A10656G	Nonsynonymous	M63V			Benign
rs2853488	ND4L	G10688A	Synonymous	V73V			

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
rs2857285	ND4	T10915C	Synonymous	C52C			
rs2857286	ND4	C10984G	Synonymous	L75L			
rs2853489	ND4	A11172G	Nonsynonymous	N138S			Probably damaging
rs2853490	ND4	G11176A	Synonymous	Q139Q			
rs28617734	ND4	C11186T	Synonymous	L143L			
rs28358285	ND4	T11299C	Synonymous	T180T			
rs28609979	ND4	T11365C	Synonymous	A202A	Found in 1 HCM patient		
rs2853493	ND4	A11467G	Synonymous	L236L	Altered brain pH; sCJD patients		
rs28371977	ND4	G11474A	Nonsynonymous	G239S			Probably damaging
rs28588421	ND4	T11547G	Nonsynonymous	V263G			Benign
rs2853495	ND4	G11719A	Synonymous	G320G			
rs28396842	ND4	G11766T	Nonsynonymous	R336L			Probably damaging
rs28384199	ND4	C11777G	Nonsynonymous	R340G			Probably damaging
rs28439211	ND4	C11819G	Nonsynonymous	L354V			Probably damaging
rs28550734	ND4	C11840T	Synonymous	L361L			
rs28713729	ND4	G11843A	Nonsynonymous	A362T			Probably damaging
rs28359169	ND4	G11969A	Nonsynonymous	A404T			Benign
rs2853497	ND4	G12007A	Synonymous	W416W			
rs28639786	ND4	C12053T	Nonsynonymous	R432W			Probably damaging
rs28695839	ND4	C12112G	Synonymous	P451P			
rs3134560	tRNA-His	G12192A			MICM		
rs28469108	tRNA-Leu2	G12275A					
rs28493891	tRNA-Leu2	G12300A			3243 suppressor mutant	Lung carcinoma cybrid	
rs28490236	ND5	A12340G	Nonsynonymous	T2A			Unknown
rs3134561	ND5	A12361G	Nonsynonymous	Т9А	Nonalcoholic fatty liver disease		Unknown
rs28709525	ND5	C12394T	Nonsynonymous	L20F			Unknown
rs28617389	ND5	G12406A	Nonsynonymous	V24I			Benign
rs28608480	ND5	T12477C	Synonymous	S47S	Possible HCM susceptibility		
rs28359172	ND5	A12612G	Synonymous	V92V	. ,		

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
rs28410409	ND5	G12684A	Synonymous	Q116Q			
rs28359173	ND5	A12693G	Synonymous	K119K			
rs2853500	ND5	A12720G	Synonymous	M128M			
rs28719001	ND5	T12880G	Nonsynonymous	F182V			Probably damaging
rs28448767	ND5	C13029T	Synonymous	P231P			
rs28477492	ND5	T13095G	Synonymous	C523V			
rs28604589	ND5	A13269G	Synonymous	G211G			
rs2853502	ND5	A13276G	Nonsynonymous	M314V			Benign
rs28371809	ND5	C13384T	Nonsynonymous	L350F			Probably damaging
rs28359176	ND5	A13485G	Synonymous	M383M			
rs28376363	ND5	C13492G	Nonsynonymous	L386V			Benign
rs28359177	ND5	G13590A	Synonymous	L418L			
rs2854123	ND5	C13650T	Synonymous	P438P			
rs2853813	ND5	C13702G	Nonsynonymous	R456G			Probably damaging
					LHON; Increased MS	Acute leukemia platelets,	
rs28359178	ND5	G13708A	Nonsynonymous	A458T	risk; Higher frequency in	leukocytes, & bone	Benign
1320333170	NDS	G13708A	Nonsynonymous	A4301	PD-ADS; Haplogroup J	marrow; Breast tumor	Denign
					marker	marrow, breast tumor	
rs28630861	ND5	T13740C	Synonymous	14681			
rs28562381	ND5	G13843T	Nonsynonymous	D503Y			Probably damaging
rs28359185	ND5	T14000A	Nonsynonymous	L555Q			Probably damaging
rs3900944	ND5	C14049T	Synonymous	15711			
rs2853814	ND6	C14272G	Nonsynonymous	L134F			Probably damaging
rs2853815	ND6	C14365G	Synonymous	V103V			
rs2853816	ND6	C14368G	Nonsynonymous	L102F			Probably damaging
rs3135030	ND6	T14470C	Synonymous	G68G			
rs28496897	ND6	A14580G	Synonymous	L32L			
rs28357678	ND6	C14668T	Synonymous	M2M	MDD		
rs2853504	CYB	A14793G	Nonsynonymous	H16R			Benign
rs28357684	CYB	G15043C	Synonymous	G99G			
rs28357687	CYB	T15204C	Nonsynonymous	I153T			Benign
rs2853506	CYB	A15218G	Nonsynonymous	T158A			Possibly damaging
			• •				

				Amino	Base Substitution	Somatic Variant	_
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
rs3134742	CYB	C15223T	Synonymous	D159D			
rs28573847	СҮВ	G15301A	Synonymous	L185L		Tumor	
rs2853507	CYB	G15317A	Nonsynonymous	A191T			Benign
rs2853508	CYB	A15326G	Nonsynonymous	T194A			Benign
rs2853509	CYB	G15431A	Nonsynonymous	A229T			Benign
rs28357370	CYB	A15487T	Synonymous	P247P			
rs3134743	CYB	C15508T	Synonymous	D254D			
rs28357372	CYB	A15607G	Synonymous	K287K		Breast tumor	
rs28357373	CYB	T15629C	Synonymous	L295L		Breast tumor	
					Complex		
rs3094280	СҮВ	A15662G	Nonsynonymous	1306V	mitochondriopathy- associated	Breast tumor	Benign
rs28357374	CYB	T15670C	Synonymous	H308H		Breast tumor	
rs28357375	СҮВ	T15784C	Synonymous	P346P	POAG- Potential for association	Pancreatic cancer cell line; Breast tumor	
rs28357376	CYB	A15824G	Nonsynonymous	T360A		Breast tumor	Benign
rs3094281	CYB	A15851G	Nonsynonymous	1369V			Benign
rs2853510	tRNA-Thr	A15923G					
					MS; DEAF1555		
rs3094282	tRNA-Thr	G15927A			increased		
					penetrance/CHD		
rs28561372	Non-coding	A15954G					
rs2853511	Non-coding	T16093C			Cyclic vomiting syndrome	Breast & prostate tumors; Normal tissues	
rs3134562	Non-coding	T16140C					
rs34100702	Non-coding	C16184T					
rs2853513	Non-coding	C16223T				Tumor	
rs2857289	Non-coding	C16256T					
rs2857290	Non-coding	C16270T			Melanoma patients		
rs34799580	Non-coding	T16311C				Prostate tumor	
*MITOMAP							

ND = NADH dehydrogenase; CYB = Cytochrome b; CO = Cytochrome c oxidase; ATP = ATP synthase; BD = Bipolar disorder; AD = Alzheimer's disease; LVNC = Left ventricular non-compaction cardiomyopathy; DEAF = Deafness; PD = Parkinson's disease; MELAS = Mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes; LHON = Leber Hereditary optic neuropathy; sCJD = Sporadic Creutzfeldt-Jaokob disease; MICM = Maternally inherited cardiomyopathy; HCM = Hypertrophic cardiomyopathy; MS = Multiple sclerosis; PD-ADS = Acquired demyelinating syndromes; MDD = Major depressive disorder; CHD = Coronary heart disease

Table S24. Illumina HumanHap550v3.0

				Amino	Base Substitution	Somatic Mutation	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
rs41473347	Non-coding	C182T				POLG/PEO muscle	
rs41323649	Non-coding	C228T					
rs41334645	Non-coding	G247A					
rs41528348	Non-coding	C295T				POLG/MNGIE muscle; Glioblastoma	
rs41356551	Non-coding	C456T				Thyroid tumor	
rs41402146	Non-coding	C462T				Thyroid tumor	
rs2853518	12S rRNA	A750G					
rs28358569	12S rRNA	A827G			DEAF; B4b'd marker		
rs2856982	12S rRNA	C1018T					
rs2000974	12S rRNA	C1048T					
rs2001030	12S rRNA	A1438G					
rs3928305	16S rRNA	G1719A					
rs193303006	16S rRNA	A1736G					
rs28358579	16S rRNA	T2352C			Possibly LVNC associated		
rs28445203	16S rRNA	A2483G					
rs2854128	16S rRNA	A2706T					
rs28358581	16S rRNA	G2789A					
rs3928306	16S rRNA	G3010A			Cyclic vomiting syndrome with migraine		

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Mutation Associated Phenotypes*	PolyPhen-2 Prediction
rs41423746	ND1	A3348G	Synonymous	L14L	7.030ciated i Heriotypes	7.050clatea i Hellotypes	1 ory men 2 i rediction
rs28358584	ND1	A3480G	Synonymous	K58K		Prostate tumor	
rs28358586	ND1	A3547G	Nonsynonymous	181V			Benign
rs2854134	ND1	A3593G	Nonsynonymous	V96A			Benign
rs28357968	ND1	G3666A	Synonymous	G120G			- 0
rs41355750	ND1	T3720C	Synonymous	Q138Q			
rs41524046	ND1	C3915T	Synonymous	G203G			
rs28357972	ND1	C3918T	Synonymous	E204E		Breast tumor	
rs879051705	ND1	C3992T	Nonsynonymous	T229M		Thyroid tumor	Benign
rs41504646	ND1	C4024T	Nonsynonymous	T240S		•	Benign
rs1117205	ND1	A4104G	Synonymous	L266L			· ·
rs3021086	ND2	A4769G	Synonymous	M100M			
rs28357977	ND2	C4820T	Synonymous	E117E			
					LHON; Insulin resistance;		
rs28357980	ND2	A4917G	Nonsynonymous	N150D	AMD; NRTI-PN; Haplogroup		Benign
					T marker		
					Longevity; Extraversion MI;		
rs28357984	ND2	C5178A	Nonsynonymous	L237M	AMS protection; Blood iron		Probably damaging
1320337304	NDZ	C3176A	Nonsynonymous	LZ3/IVI	metabolism; Haplogroup D		Frobably dailiaging
					marker		
rs41320049	ND2	G5263A	Nonsynonymous	A265V			Benign
rs41333444	ND2	A5390G	Synonymous	M307M			
rs3021088	ND2	G5460A	Nonsynonymous	A331T	AD; PD		Benign
rs7340122	CO1	A5951G	Synonymous	G16G			
rs28516468	CO1	C6455T	Synonymous	F184F			
rs41413745	CO1	C6734T	Synonymous	M277M			
rs41332953	CO1	T6752C	Synonymous	L283L			
rs1978002	CO1	A7055G	Synonymous	G384G		MNGIE fibroblasts	
rs41534044	CO2	A7768G	Synonymous	M61M			
rs28358883	CO2	G8206A	Synonymous	M207M			
rs41427749	ATP6	G8616T	Nonsynonymous	L30F			Probably damaging
rs2853822	ATP6	C8655T	Synonymous	1431			

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Mutation Associated Phenotypes*	PolyPhen-2 Prediction
rs41513156	ATP6	A9093G	Synonymous	T189T	Associated Phenotypes	Associated Phenotypes	PolyPhen-2 Prediction
rs28380140	CO3	A9093G A9377G	Synonymous	W57W			
rs2248727	CO3	T9540C	Synonymous	L112L		Tumor	
rs41482146	CO3	A9667G	Nonsynonymous	N154S		rumor	Benign
rs41347846	tRNA-Gly	T10034C	Nonsynonymous	111545			Demgn
rs41467651	ND3	G10310A	Synonymous	L84L			
rs2853826	ND3	A10398G	Nonsynonymous	T114A	PD protective factor; Longevity; Altered cell pH; Metabolic syndrome;	Thyroid tumor	Benign
					Breast cancer risk; Haplogroup IJK marker		
rs28358281	ND4L	G10586A	Synonymous	S39S			
rs2853487	ND4L	C10589T	Synonymous	L40L			
rs2853488	ND4L	G10688A	Synonymous	V73V			
rs2857284	ND4	T10873C	Synonymous	P38P			
rs193302938	ND4	C11377T	Synonymous	K206K			
rs28471078	ND4	A11722G	Synonymous	L321L			
rs2853496	ND4	C11914T	Synonymous	T385T			
rs28359169	ND4	C11969T	Nonsynonymous	A404T			Benign
rs2853499	ND5	C12372T	Synonymous	L12L	Altered brain pH; sCJD patients	Prostate tumor	
rs41445245	ND5	G12630A	Synonymous	W98W			
rs41369547	ND5	C12669T	Synonymous	D111D			
rs28705385	ND5	T12850C	Nonsynonymous	1172V			Possibly damaging
rs2854123	ND5	G13650A	Synonymous	P438P			
rs28357672	ND6	A14212G	Synonymous	V154V			
rs527236043	CYB	C15043T	Synonymous	G99G	MDD		
rs28357685	CYB	G15110A	Nonsynonymous	A122T			Benign
rs41518645	СҮВ	C15257T	Nonsynonymous	D171N	LHON; Haplogroup J2 marker		Benign
rs28357371	CYB	G15535A	Synonymous	N263N			
rs41504845	CYB	C15833T	Synonymous	L363L			

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Mutation Associated Phenotypes*	PolyPhen-2 Prediction
rs35788393	tRNA-Thr	G15904A					
rs527236198	tRNA-Thr	G15928A			MS; Idiopathic repeat miscarriage; AD protection		
rs41441949	tRNA-Thr	G15930A					
rs41534744	Non-coding	C16129T			Cyclic vomiting syndrome with migraine		
rs41419246	Non-coding	G16145A					
rs2854125	Non-coding	C16147T					
rs41479950	Non-coding	A16163G					
rs28671493	Non-coding	A16183C			Melanoma patients	Lung tumor back- mutation; Prostate tumor	
rs2857290	Non-coding	C16270T			Melanoma patients		
rs41458645	Non-coding	G16278A				Ovarian control tissue	
rs41355449	Non-coding	G16327A					
rs41378955	Non-coding	C16390T			POAG- potential for association	Breast & ovarian tumors	
rs869031877	Non-coding	C16391T					

ND = NADH dehydrogenase; CYB = Cytochrome b; CO = Cytochrome c oxidase; ATP = ATP synthase; POLG = Mitochondrial DNA polymerase γ; PEO = Progressive external ophthalmoplegia; MNGIE = Mitochondrial neurogastrointestinal encephalopathy; DEAF = Deafness; LVNC = Left ventricular non-compaction cardiomyopathy; LHON = Leber Hereditary optic neuropathy; AMD = Age-related macular degeneration; NRTI = Nucleoside reverse transcriptase inhibitor; MI = Myocardial infarction; AMS = ; AD = Alzheimer's disease; PD = Parkinson's disease; sCJD = Sporadic Creutzfeldt-Jaokob disease; MDD = Major depressive disorder; MS = Multiple sclerosis; POAG = Primary open angle glaucoma

Table \$25. Illumina CardioMetaboChip

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
mt921	12S rRNA	T921C	. ype or raname	7.0.0	Possibly LVNC-associated	7.0000.0000	
mt930	12S rRNA	G930A			,		
mt1018	12S rRNA	G1018A					
mt1243	12S rRNA	T1243C			Pancreatic cancer cell line		
mt1719	16S rRNA	G1719A					
mt1736	16S rRNA	A1736G					
mt1738	16S rRNA	T1738C				Colorectal tumor	
mt1811	16S rRNA	A1811G				Head & neck tumors	
mt1888	16S rRNA	G1888A					
mt2332	16S rRNA	C2332T					
mt2352	16S rRNA	T2352C			Possibly LVNC-associated		
mt2416	16S rRNA	T2416C			•		
mt2706	16S rRNA	A2706G					
mt2758	16S rRNA	G2758A					
mt2768	16S rRNA	A2768G					
mt2789	16S rRNA	C2789T					
mt2885	16S rRNA	T2885C					
mt3243	tRNA-Leu1	A3243G				Elderly brain and muscle; Colon tumor; Oncocytoma	
					MELAS; DEAF enhancer;	•	
mt3308	ND1	T3308C	Nonsynonymous	M1T	Hypertension; LVNC; Putative LHON	Colorectal tumor	Probably damaging
mt3348	ND1	A3348G	Synonymous	L14L			
			, ,		LHON; Diabetes; CPT	Acute leukemia platelets,	
mt3394	ND1	T3394C	Nonsynonymous	Y30H	deficiency; High altitude adaptation	leukocytes, & bone marrow	
mt3450	ND1	C3450T	Synonymous	P48P	•		
mt3480	ND1	A3480G	Synonymous	K58K		Prostate tumor	
mt3516	ND1	C3516A	Synonymous	L70L			
mt3594	ND1	C3594T	Synonymous	V96V		Thyroid tumor	

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
mt3666	ND1	G3666A	Synonymous	G120G			
mt3693	ND1	G3693A	Synonymous	L129L			
mt3796	ND1	A3796T	Nonsynonymous	T164S			Benign
mt3843	ND1	A3843G	Synonymous	W179W			
mt3915	ND1	G3915A	Synonymous	G203G			
mt3918	ND1	G3918A	Synonymous	E204E		Breast tumor	
mt4104	ND1	A4104G	Synonymous	L266L			
mt4312	tRNA-Ile	C4312T				Thyroid tumor	
mt4336	tRNA-Gln	T4336C				AD; PD; Hearing loss &	
11114330	thiva on	143300				migraine	
mt4580	ND2	G4580A	Synonymous	M37M		Pancreatic cancer cell	
						line	
mt4715	ND2	A4715G	Synonymous	G82G			
mt4928	ND2	T4928C	Synonymous	L153L			
mt4977	ND2	T4977C	Synonymous	L170L			
mt5237	ND2	G5237A	Synonymous	P256P			
mt5393	ND2	T5393C	Synonymous	S308S			
mt6719	CO1	T6719C	Synonymous	G272G			
mt7867	CO2	C7867T	Synonymous	S94S			
mt8206	CO2	G8206A	Synonymous	M207M			
mt8869	ATP6	A8869G	Nonsynonymous	M115V			Benign
mt9055	ATP6	G9055A	Nonsynonymous	A177T	PD-protective factor		Possibly damaging
mt9072	ATP6	A9072G	Synonymous	S182S			
mt9150	ATP6	A9150G	Synonymous	L208L			
mt9347	CO3	A9347G	Synonymous	L47L			
mt9540	CO3	T9540C	Synonymous	L112L			
mt9554	CO3	G9554A	Synonymous	W116W			
mt9698	CO3	T9698C	Synonymous	L164L			
mt9755	CO3	G9755A	Synonymous	E183E			
mt9818	CO3	C9818T	Synonymous	H204H			
mt9899	CO3	T9899C	Synonymous	H231H			
mt9950	CO3	T9950C	Synonymous	V248V			

15	Carre	N/	T (N/a da d	Amino	Base Substitution	Somatic Variant	Del Diese 2 December 1
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
mt10034	tRNA-Gly	T10034C					
mt10086	ND3	A10086G	Nonsynonymous	N10D	Hypertension end-stage renal disease		Probably damaging
mt10115	ND3	T10115C	Synonymous	1191			
mt10238	ND3	T10238C	Synonymous	1601			
mt10321	ND3	T10321C	Nonsynonymous	V88A	Bladder tumor		
mt10373	ND3	G10373A	Synonymous	E105E			
mt10400	ND3	C10400T	Synonymous	T114T			
mt10463	tRNA-Arg	T10463C				Endometrium tumor	
mt10550	ND4L	A10550G	Synonymous	M27M		Endometrium control tissue	
mt10664	ND4L	C10664T	Synonymous	V65V		ussue	
mt10819	ND4	A10819G	Synonymous	K20K			
mt10915	ND4	T10915C	Synonymous	C52C			
mt11177	ND4	C11177T	Nonsynonymous	P140S			Probably damaging
mt11299	ND4	T11299C	Synonymous	T180T			r robably damaging
mt11377	ND4	G11377A	Synonymous	K206K			
mt11485	ND4	T11485C	Synonymous	G242G			
mt11641	ND4 ND4	A11641G	Synonymous	M294M			
mt11674	ND4	C11674T				Pancreatic cancer cell	
11111074	ND4	C116/41	Synonymous	T305T		line; Prostate tumor	
mt11812	ND4	A11812G	Synonymous	L351L			
mt11899	ND4	T11899C	Synonymous	S380S			
mt11914	ND4	G11914A	Synonymous	T385T			
mt11969	ND4	G11969A	Nonsynonymous	A404T			Benign
mt12007	ND4	G12007A	Synonymous	W416W			
mt12236	tRNA-Ser	G12236A			DEAF	Thyroid tumor	
mt12308	tRNA-Leu2	A12308G			CPEO; Stroke; CM; Renal, breast, & prostate cancer risk; Altered brain pH; sCJD; Haplogroup K & U marker	Endometrium control tissue; Lung & prostate tumors	

15		., .	T 614 1 1	Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
mt12372	ND5	G12372A	Synonymous	L12L	Altered brain pH; sCJD patients	Prostate tumor	
mt12414	ND5	T12414C	Synonymous	P26P		Pancreatic cancer cell line; Prostate tumor	
mt12519	ND5	T12519C	Synonymous	V61V		Bladder tumor	
mt12612	ND5	A12612G	Synonymous	V92V			
mt12633	ND5	C12633A	Synonymous	S99S			
mt12693	ND5	A12693G	Synonymous	K119K			
mt12705	ND5	C12705T	Synonymous	11231		Prostate tumor	
mt12720	ND5	A12720G	Synonymous	M128M			
mt12810	ND5	A12810G	Synonymous	W158W			
mt13020	ND5	T13020C	Synonymous	G228G			
mt13105	ND5	A13105G	Nonsynonymous	1257V			Benign
mt13263	ND5	A13263G	Synonymous	Q309Q			o
mt13485	ND5	A13485G	Synonymous	M383M			
mt13590	ND5	G13590A	Synonymous	L418L			
mt13650	ND5	C13650T	Synonymous	P438P			
mt13708	ND5	G13708A	Nonsynonymous	A458T	LHON; Increased MS risk; Higher frequency in PD- ADS; Haplogroup J marker	Acute leukemia platelets, leukocytes, & bone marrow; Breast tumor	Benign
mt13789	ND5	T13789C	Nonsynonymous	Y485H			Probably damaging
mt13803	ND5	A13803G	Synonymous	T489T			
mt13880	ND5	C13880A	Nonsynonymous	S515Y			Possibly damaging
mt13886	ND5	T13886C	Nonsynonymous	L517P			Benign
mt13928	ND5	G13928C	Nonsynonymous	S531T			Possibly damaging
mt13934	ND5	C13934T	Nonsynonymous	T533M			Benign
mt13966	ND5	A13966G	Nonsynonymous	T544A			Benign
mt14000	ND5	T14000A	Nonsynonymous	L555Q			Probably damaging
mt14088	ND5	T14088C	Synonymous	15841			
mt14148	ND5	A14148G	Synonymous	Term604 Term			

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes*	Associated Phenotypes*	PolyPhen-2 Prediction
mt14152	ND6	A14152G	Synonymous	N174N			
mt14167	ND6	C14167T	Synonymous	E169E			
mt14284	ND6	C14284T	Synonymous	E130E			
mt14318	ND6	T14318C	Nonsynonymous	N119S			Benign
mt14766	CYB	C14766T	Nonsynonymous	T7I			Benign
mt14769	CYB	A14769G	Nonsynonymous	N8S			Probably damaging
mt14783	CYB	T14783C	Synonymous	L13L			
mt14905	CYB	G14905A	Synonymous	M53M			
mt14911	CYB	C14911T	Synonymous	Y55Y			
mt15043	CYB	G15043A	Synonymous	G99G	MDD-associated		
mt15110	CYB	G15110A	Nonsynonymous	A122T			Benign
mt15136	CYB	C15136T	Synonymous	G130G			
mt15204	CYB	T15204C	Nonsynonymous	I153T			Benign
mt15217	CYB	G15217A	Synonymous	G157G			
mt15244	CYB	A15244G	Synonymous	G166G			
mt15301	CYB	G15301A	Synonymous	L185L		Tumor	
mt15311	CYB	A15311G	Nonsynonymous	1189V			Benign
mt15431	CYB	G15431A	Nonsynonymous	A229T			Benign
mt15452	CYB	C15452A	Nonsynonymous	L2361			Benign
mt15535	CYB	C15535T	Synonymous	N263N		Breast tumor	
mt15607	CYB	A15607G	Synonymous	K287K		Breast tumor	
mt15670	CYB	T15670C	Synonymous	H308H		Breast tumor	
mt15824	CYB	A15824G	Nonsynonymous	T360A		Breast tumor	Benign
mt15833	CYB	C15833T	Synonymous	L363L			
mt15904	tRNA-Thr	C15904T					
mt15924	tRNA-Thr	A15924G			LIMM		
					MS; Idiopathic repeat		
mt15928	tRNA-Thr	G15928A			miscarriage; AD		
					protection		
mt15942	tRNA-Thr	T15942C			Possibly LVNC-associated		
mt16189	Non-coding	T16189C			Diabetes;	Prostate tumor; Normal	
111110103	Non-county	1101030			Cardiomyopathy;	buccal swab	

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
					Endometrial cancer risk;		
					mtDNA copy number;		
					Metabolic syndrome;		
					Melanoma patients		

ND = NADH dehydrogenase; CYB = Cytochrome b; CO = Cytochrome c oxidase; ATP = ATP synthase; LVNC = Left ventricular non-compaction cardiomyopathy; MELAS = Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes; DEAF = Deafness; LHON = Leber Hereditary optic neuropathy; CPT = Carnitine palmityltransferase deficiency; AD = Alzheimer's disease; PD = Parkinson's disease; PD-ADS = Acquired demyelinating syndromes; PEO = Progressive external ophthalmoplegia; CM = Cardiomyopathy; sCJD = Sporadic Creutzfeldt-Jaokob disease; MS = Multiple sclerosis; MDD = Major depressive disorder; LIMM = Lethal infantile mitochondrial myopathy

Table S26. Illumina Human 610 Quad v1

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes	Associated Phenotypes*	PolyPhen-2 Prediction
MitoT217C	Non-Coding	T217C					
MitoG228A	Non-Coding	G228A					
MitoG247A	Non-Coding	G247A					
MitoC295T	Non-Coding	C295T				POLG/MNGIE muscle; Glioblastoma	
MitoC458T	Non-Coding	C456T				Thyroid tumor	
MitoC464T	Non-Coding	C462T				Thyroid tumor	

16		Madad	T and SM days	Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes	Associated Phenotypes*	PolyPhen-2 Prediction
MitoT479C	Non-Coding	T477C				AD brains; Ovarian	
WIITOT 473C	Non Coung	14//6				tumor	
						Ovarian carcinoma;	
MitoT491C	Non-Coding	T489C				Prostate tumor	
MitoG752A	12S rRNA	A750G					
N4:+- A020C	12C DAIA	A 9.27.C			DEAE. Dable meanices		
MitoA829G	12S rRNA	A827G			DEAF; B4b'd marker		
MitoC1050T	12S rRNA	C1048T					
MitoT1191C	12S rRNA	T1189C					
MitoG1440A	12S rRNA	A1438G					
MitoG1721A	16S rRNA	G1719A					
MitoA1738G	16S rRNA	A1736G					
MitoT2160C	16S rRNA	T2158C					
MitoC2485T	16S rRNA	T2483C					
MitoG2708A	16S rRNA	A2706G					
MitoC2791T	16S rRNA	C2789T					
MitoT2887C	16S rRNA	T2885C					
					Cyclic vomiting		
MitoG3012A	16S rRNA	G3010A			syndrome with		
					migraine		
	400	-0.1			· ·		
MitoT3198C	16S rRNA	T3197C					
MitoA3349G	ND1	A3348G	Synonymous	L14L			

ID.	C	\	Town of Mariant	Amino	Base Substitution	Somatic Variant	DaluDhan 2 Doadistian
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes	Associated Phenotypes*	PolyPhen-2 Prediction
MitoT3395C	ND1	T3394C	Nonsynonymous	Ү30Н	LHON; Diabetes; CPT deficiency; High altitude adaptation	Acute leukemia platelets, leukocytes, & bone marrow	Benign
MitoA3481G	ND1	A3480G	Synonymous	K58K		Prostate tumor	
MitoC3595T	ND1	C3594T	Synonymous	V96V		Thyroid tumor	
MitoG3667A	ND1	G3666A	Synonymous	G120G			
MitoA3721G	ND1	A3720G	Synonymous	Q138Q			
MitoG3916A	ND1	G3915A	Synonymous	G203G			
MitoG3919A	ND1	G3918A	Synonymous	E204E		Breast tumor	
MitoC3971T	ND1	C3970T	Synonymous	L222L			
MitoC3993T	ND1	C3992T	Nonsynonymous	T229M		Thyroid tumor	Benign
MitoA4025G	ND1	A4024G	Nonsynonymous	T240A			Benign
MitoT4337C	tRNA-Gln	T4336C			AD; PD; Hearing loss & migraine		
MitoT4562C	ND2	T4561C	Nonsynonymous	V31A			Benign
MitoG4770A	ND2	A4769G	Synonymous	M100M			
MitoG4821A	ND2	G4820A	Synonymous	E117E			
MitoA4825G	ND2	A4824G	Nonsynonymous	T119A			Possibly damaging

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes	Associated Phenotypes*	PolyPhen-2 Prediction
MitoC4884T	ND2	C4883T	Synonymous	P138P	Glaucoma		
MitoA4918G	ND2	A4917G	Nonsynonymous	N150D	LHON; Insulin resistance; AMD; NRTI- PN; Haplogroup T marker		Benign
MitoT4978C	ND2	T4977C	Synonymous	L170L			
MitoT5005C	ND2	T5004C	Synonymous	L179L			
MitoG5047A	ND2	G5046A	Nonsynonymous	V193I			Benign
MitoC5264T	ND2	C5263T	Nonsynonymous	A265V			Benign
MitoA5391G	ND2	A5390G	Synonymous	M307M			
MitoT5443C	ND2	T5442C	Nonsynonymous	F325L			Benign
MitoG5461A	ND2	G5460A	Nonsynonymous	A331T	AD; PD		Benign
MitoT5496C	ND2	T5495C	Synonymous	F342F			
MitoA5657G	Non-Coding	A5656G					
MitoG5774A	tRNA-Cys	G5773A					
MitoA5952G	CO1	A5951G	Synonymous	G16G			
MitoC6046T	CO1	C6045T	Synonymous	L48L			
MitoG6027A	CO1	G6026A	Synonymous	L41L			
MitoT6153C	CO1	T6152C	Synonymous	V83V			
MitoT6222C	CO1	T6221C	Synonymous	P106P			
MitoG6261A	CO1	G6260A	Synonymous	E119E			
MitoT6681C	CO1	T6680C	Synonymous	T259T			
MitoG6735A	CO1	G6734A	Synonymous	M277M			
MitoA6753G	CO1	A6752G	Synonymous	L283L			

		.,	T ()/ () (Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes	Associated Phenotypes*	PolyPhen-2 Prediction
MitoT6777C	CO1	T6776C	Synonymous	H291H		Breast cystic masses	
MitoA7056G	CO1	A7055G	Synonymous	G384G		MNGIE fibroblasts	
MitoT7176C	CO1	T7175C	Synonymous	T424T			
			•				
MitoC7275T	CO1	C7274T	Synonymous	G457G			
MitoG7522A	tRNA-Asp	G7521A				Thyroid tumor	
MitoA7769G	CO2	A7768G	Synonymous	M61M			
WIILOA7703G	CO2	A7708G	Synonymous	Term228T			
MitoG8270A	CO2	G8269A	Synonymous	erm			
MitoT8278C	Non-Coding	T8277C		Cilii			
WIILU 18278C	Non-coung	102//C					
MitoG8617T	ATP6	G8616T	Nonsynonymous	L30F			Probably damaging
MITOGOOTA	AIFO	980101	Nonsynonymous	LSUF			Probably damaging
MitoC8656T	ATP6	C8655T	Synonymous	1431			
141110000001	Allo	C00331	Synonymous	1731			
MitoA8870G	ATP6	A8869G	Nonsynonymous	M115V			Benign
MitoA9073G	ATP6	A9072G	Synonymous	S182S			
MitoA9094G	ATP6	A9093G	Synonymous	T189T			
MitoG9378A	CO3	A9377G	Synonymous	W57W			
			•			Tumor	
MitoC9541T	CO3	T9540C	Synonymous	L112L		Turnor	
MitoA9668G	CO3	A9667G	Nonsynonymous	N154S			Benign
MitoT9699C	COX3	T9698C	Synanymaus	L164L			
			Synonymous				
MitoT9717C	COX3	T9716C	Synonymous	G170G			
MitoT9900C	COX3	T9899C	Synonymous	H231H			
MitoT9951C	COX3	T9950C	Synonymous	V248V			
MitoT10035C	tRNA-Gly	T10034C					
MitoA10045G	tRNA-Gly	A10044G				SIDS	

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes	Associated Phenotypes*	PolyPhen-2 Prediction
MitoT10239C	ND3	T10238C	Synonymous	1601			
MitoG10311A	ND3	G10310A	Synonymous	L84L			
MitoT10322C	ND3	T10321C	Nonsynonymous	V88A		Bladder tumor	Benign
MitoG10399A	ND3	A10398G	Nonsynonymous	T114A	PD protective factor; Longevity; Altered cell pH; Metabolic syndrome; Breast cancer risk; Haplogroup IJK marker	Thyroid tumor	Benign
MitoT10464C	tRNA-Arg	T10463C				Endometrial tumor	
MitoA10551G	ND4L	A10550G	Synonymous	M27M		Endometrial control tissue	
MitoG10587A	ND4L	G10586A	Synonymous	S39S			
MitoG10590A	ND4L	G10589A	Synonymous	L40L			
MitoG10689A	ND4L	G10688A	Synonymous	V73V			
MitoC10874T	ND4	T10873C	Synonymous	P38P			
MitoT10916C	ND4	T10915C	Synonymous	C52C			
MitoA11252G	ND4	A11251G	Synonymous	L164L			
MitoG11378A	ND4	G11377A	Synonymous	K206K			
MitoA11468G	ND4	A11467G	Synonymous	L236L	Altered brain pH; sCJD patients		
MitoT11486C	ND4	T11485C	Synonymous	G242G			

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes	Associated Phenotypes*	PolyPhen-2 Prediction
MitoT11900C	ND4	T11899C	Synonymous	S380S			
MitoG11915A	ND4	G11914A	Synonymous	T385T			
MitoA12309G	tRNA-Leu2	A12308G			CPEO; Stroke; CM; Breast, renal, & prostate cancer risk; Altered brain pH; sCJD; Haplogroup K & U marker	Endometrial control tissue; Lung & prostate tumors	
MitoG12373A	ND5	G12372A	Synonymous	L12L	Altered brain pH; sCJD patients	Prostate tumor	
MitoG12631A	ND5	G12630A	Synonymous	W98W			
MitoC12670T	ND5	C12669T	Synonymous	D111D			
MitoT12706C	ND5	C12705T	Synonymous	11231		Prostate tumor	
MitoG12851A	ND5	A12850G	Nonsynonymous	I172V			Possibly damaging
MitoA13106G	ND5	A13105G	Nonsynonymous	1257V			Benign
MitoA13264G	ND5	A13263G	Synonymous	Q309Q			
MitoC13651T	ND5	C13650T	Synonymous	P438P			
MitoA13781G	ND5	A13780G	Nonsynonymous	1482V			Benign
MitoT13790C	ND5	T13789C	Nonsynonymous	Y485H			Probably damaging

-				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes	Associated Phenotypes*	PolyPhen-2 Prediction
MitoT13966C	ND5	T13965C	Synonymous	L543L			
MitoT14179C	ND6	T14178C	Nonsynonymous	I166V			Benign
MitoA14234G	ND6	A14233G	Synonymous	D147D			
MitoA14583G	ND6	A14582G	Nonsynonymous	V31A			Benign
MitoT14799C	СҮВ	T14798C	Nonsynonymous	F18L		Glioblastoma	Benign
MitoG15044A	СҮВ	G15043A	Synonymous	G99G	MDD-associated		
MitoA15245G	СҮВ	A15244G	Synonymous	G166G			
MitoG15258A	СҮВ	G15257A	Nonsynonymous	D171N	LHON; Haplogroup J2 marker		Benign
MitoA15302G	CYB	G15301A	Synonymous	L185L		Tumor	
MitoC15536T	CYB	C15535T	Synonymous	N263N			
MitoT15671C	СҮВ	T15670C	Synonymous	Н308Н		Breast tumor	
MitoA15759G	СҮВ	A15758G	Nonsynonymous	I338V			Benign
MitoT15785C	СҮВ	T15784C	Synonymous	P346P	POAG- potential for association	Pancreatic cancer cell line; Breast tumor	
MitoC15834T	CYB	C15833T	Synonymous	L363L			
MitoC15905T MitoA15925G	tRNA-Thr tRNA-Thr	C15904T A15924G			LIMM		

				Amino	Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Acid	Associated Phenotypes	Associated Phenotypes*	PolyPhen-2 Prediction
	Gene	Variant	Type of Variant	, telu	7.550clated i Heriotypes	7.550clated FileHotypes	1 ory men 2 i realetion
					MS; Idiopathic repeat		
MitoG15929A	tRNA-Thr	G15928A			miscarriage; AD		
					protection		
					·		
MitoG15931A	tRNA-Thr	G15930A					
					Cyclic vomiting		
MitoG16130A	Non-Coding	G16129A			syndrome with		
					migraine		
MitoT16145C	Non-Coding	T16144C					
MitoG16146A	Non-Coding	G16145A					
MitoC16149T	Non-Coding	C16148T				Aging brains	
MitoA16163G	Non-Coding	A16162G					
MitoA16164G	Non-Coding	A16163G					
						Lung tumor back-	
MitoC16184A	Non-Coding	A16183C			Melanoma patients	mutation; Prostate	
						tumor	
MitoC16272T	Non Codina	C16270T			Malanama nationts		
WIILOC162721	Non-Coding	C102701			Melanoma patients		
MitoC16329T	Non-Coding	C16327T					
					POAG-potential for		
MitoG16392A	Non-Coding	G16390A			association	Breast & ovarian tumors	
					association		
MitoG16393A	Non-Coding	G16391A					

ND = NADH dehydrogenase; CYB = Cytochrome b; CO = Cytochrome c oxidase; ATP = ATP synthase; POLG = Mitochondrial DNA polymerase γ ; MNGIE = Mitochondrial neurogastrointestinal encephalopathy; AD = Alzheimer's disease; DEAF = Deafness; LHON = Leber Hereditary optic neuropathy; CPT = Carnitine palmityltransferase deficiency; PD = Parkinson's disease; AMD = Age-related macular degeneration; NRTI = Nucleoside reverse transcriptase inhibitor; SIDS = Sudden Infant Death Syndrome; sCJD = Sporadic Creutzfeldt-Jakob disease; CPEO = Chronic progressive external ophthalmoplegia; CM = Cardiomyopathy; MDD = Major depressive disorder; POAG = Primary open angle glaucoma; LIMM = Lethal infantile mitochondrial myopathy; MS = Multiple sclerosis;

Table S27. Affymetrix Axiom UKBiobank

					Base Substitution	Somatic Variant	
				Amino	Associated	Associated	PolyPhen-2
ID	Gene	Variant	Type of Variant	Acid	Phenotypes*	Phenotypes*	Prediction
7950464 4	Non-coding	A73G				Aging brains; POLG/PEO & control muscle; Buccal cell, thyroid, & prostate tumors	
8902567 2	Non-coding	G143A					
5232152 5	Non-coding	C150T			Longevity; Cervical carcinoma; HPV infection risk	Elderly fibroblasts & leukocytes; Lung, thyroid, & prostate tumors	
5232159 2	Non-coding	G228A					
3446193 9	Non-coding	A235G				Prostate Tumor	
3446195 7	Non-coding	A263G				POLG/MNGIE muscle	
9204786 9	Non-coding	C295T				POLG/MNGIE muscle; Glioblastoma	

				Amino	Base Substitution Associated	Somatic Variant Associated	PolyPhen-2
ID	Gene	Variant	Type of Variant	Acid	Phenotypes*	Phenotypes*	Prediction
8902575 6	Non-coding	C462T				Thyroid tumor	
7938165 5	Non-coding	T489C				Ovarian carcinoma; Prostate tumor	
8902567 4	Non-coding	C497T				Thyroid tumor	
8902572 5	Non-coding	A547T					
3446219 6	12S rRNA	G709A					
7938165 6	12S rRNA	A750G					
3446223 0	12S rRNA	G769A					
8902577 4	12S rRNA	A827G			DEAF; B4b'd marker		
9143959 7	12S rRNA	T961G			Possibly DEAF- associated		
8902576 7	12S rRNA	T961C			DEAF; Possibly LVNC- associated		
9143959 8	12S rRNA	T980C					
8902577 2	12S rRNA	G1018A					
3446168 4	12S rRNA	T1243C				Pancreatic cancer cell line	
8902573 6	12S rRNA	T1391C			Found in 1 HCM patient		
8902569 6	12S rRNA	T1406C				Pancreatic cancer cell line	

				Amino	Base Substitution Associated	Somatic Variant Associated	PolyPhen-2
ID	Gene	Variant	Type of Variant	Acid	Phenotypes*	Phenotypes*	Prediction
3446178 8	12S rRNA	A1438G			SZ-associated		
8902570 6	12S rRNA	A1555G			DEAF		
7938165 8	16S rRNA	G1719A					
7944340 9	16S rRNA	C1721T				Acute leukemia platelets, leukocytes, & bone marrow	
7938165 9	16S rRNA	A1736G					
3446192 7	16S rRNA	T2158C					
8902569 5	16S rRNA	C2218T					
3446194 2	16S rRNA	T2416C					
3446194 8	16S rRNA	T2483C					
3446195 9	16S rRNA	A2706G					
3446196 3	16S rRNA	G2758A					
9204784 3	16S rRNA	C2789T					
3446197 2	16S rRNA	T2885C					
3446197 6	16S rRNA	G3010A			Cyclic vomiting syndrome with migraine		

				Amino	Base Substitution Associated	Somatic Variant Associated	PolyPhen-2
ID	Gene	Variant	Type of Variant	Acid	Phenotypes*	Phenotypes*	Prediction
7944341 2	16S rRNA	T3027C			,.	,	
7938166 0	16S rRNA	T3197C					
8902575 9	tRNA-Leu1	A3243G			MELAS; LS; DMDF; MIDD; SNHL; CPEO; MM: FSGS; ASD; Cardiac & multi-organ dysfunction	Elderly brain & muscle; Colon tumor; Oncocytoma	
8902573 7	ND1	T3308G	Nonsynonymou s	M1Term	SIDS		
8902570 7	ND1	G3316A	Nonsynonymou s	A4T	Diabetes; LHON; PEO		Benign
3446199 4	ND1	A3348G	Synonymous	L14L			
3446199 6	ND1	T3394C	Nonsynonymou s	Y30H	LHON; Diabetes; CPT deficiency; High altitude adaptation	Acute leukemia platelets, leukocytes, & bone marrow	Benign
8902577 7	ND1	A3395G	Nonsynonymou s	Y30C	HCM with hearing loss		Benign
8902573 5	ND1	A3397G	Nonsynonymou s	M31V	AD; PD; Possibly LVNC- cardiomyopathy associated		Benign
8902568 8	ND1	T3398C	Nonsynonymou s	M31T	DMDF + HCM; GDM; Possibly LVNC- cardiomyopathy associated		Benign
8902567 6	ND1	T3423G	Synonymous	V39V			
8902572 2	ND1	G3460A	Nonsynonymou s	A52T	LHON		Probably damagin

				Amino	Base Substitution Associated	Somatic Variant Associated	PolyPhen-2
ID	Gene	Variant	Type of Variant	Acid	Phenotypes*	Phenotypes*	Prediction
7938166 1	ND1	A3480G	Synonymous	K58K		Prostate Tumor	
8902571 8	ND1	G3531A	Synonymous	P75P			
9204784 4	ND1	G3591A	Synonymous	L95L			
8902574 1	ND1	C3594T	Synonymous	V96V		Thyroid tumor	
7944341 9	ND1	T3645C	Synonymous	V113V			
7938166 2	ND1	G3666A	Synonymous	G120G			
8902571 0	ND1	G3697A	Nonsynonymou s	G131S	MELAS; LS; LDYT		Probably damaging
7938166 3	ND1	A3720G	Synonymous	Q138Q			
8902578 1	ND1	G3733A	Nonsynonymou s	E143K	LHON		Possibly damaging
8902576 2	ND1	G3736A	Nonsynonymou s	V144I	LHON		Benign
8902573 9	ND1	A3796G	Nonsynonymou s	T164A	Adult onset dystonia		Benign
9204784 5	ND1	G3834A	Synonymous	L176L			
8902568 2	ND1	T3866C	Nonsynonymou s	I187T	LHON & limb claudication		Benign
7938166 4	ND1	G3915A	Synonymous	G203G			
7938166 5	ND1	G3918A	Synonymous	E204E		Breast tumor	

	_			Amino	Base Substitution Associated	Somatic Variant Associated	PolyPhen-2
ID	Gene	Variant	Type of Variant	Acid	Phenotypes*	Phenotypes*	Prediction
9204784 6	ND1	C3936T	Synonymous	G210G			
8902573 8	ND1	G3946A	Nonsynonymou s	E214K	MELAS		Probably damaging
8902572 9	ND1	T3949C	Nonsynonymou s	Y215H	MELAS	Thyroid oncocytoma	Probably damaging
7938166 6	ND1	C3970T	Synonymous	L222L			
9204784 7	ND1	С3990Т	Synonymous	Y228Y			
7938166 7	ND1	C3992T	Nonsynonymou s	T229M		Thyroid tumor	Benign
3446203 0	ND1	A4024G	Nonsynonymou s	T240A			Benign
8902577 0	ND1	A4093G	Nonsynonymou s	T263A			Benign
8902572 3	ND1	A4104G	Synonymous	L266L			
8902575 5	ND1	T4160C	Nonsynonymou s	L285P	LHON		Probably damaging
8902566 8	ND1	C4171A	Nonsynonymou s	L289M	LHON		Probably damaging
8902568 4	ND1	T4216C	Nonsynonymou s	Y304H	LHON; Insulin resistance; Possible adaptive high altitude variant	Acute leukemia platelets, leukocytes, & bone marrow	Benign
8902571 4	tRNA-Ile	A4300G			MICM		
9204784 8	tRNA-Ile	A4310G					

		.,		Amino	Base Substitution Associated	Somatic Variant Associated	PolyPhen-2
ID	Gene	Variant	Type of Variant	Acid	Phenotypes*	Phenotypes*	Prediction
7938166 8	tRNA-Gln	T4336C			AD; PD; Hearing loss & migraine		
9204784 9	ND2	A4529T	Synonymous	T20T			
3446206 0	ND2	T4561C	Nonsynonymou s	V31A			Benign
3446206 2	ND2	G4580A	Synonymous	M37M		Pancreatic cancer cell line	
8902569 9	ND2	T4639C	Nonsynonymou s	157T			Benign
8902574 4	ND2	A4715G	Synonymous	G82G			
3446207 5	ND2	A4769G	Synonymous	M100M			
8902575 1	ND2	A4793G	Synonymous	M108M			
7938166 9	ND2	G4820A	Synonymous	E117E			
7938167 0	ND2	A4824G	Nonsynonymou s	T119A			Possibly damaging
3446208 3	ND2	C4883T	Synonymous	P138P	Glaucoma		
7938167 1	ND2	A4917G	Nonsynonymou s	N150D	LHON; Insulin resistance; AMD; NRTI- PN; Haplogroup T marker		Benign
3446208 8	ND2	T4977C	Synonymous	L170L			
7938167 2	ND2	T5004C	Synonymous	L179L			

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
3446209 4	ND2	G5046A	Nonsynonymou s	V193I			Benign
8902577 8	ND2	G5147A	Synonymous	T226T			
8902569 1	ND2	C5178A	Nonsynonymou s	L237M	Longevity; Extraversion MI; AMS protection; Blood iron metabolism; Haplogroup D marker		Probably damaging
8902574 8	ND2	G5231A	Synonymous	L254L		Endometrial control tissue	
3446210 5	ND2	C5263T	Nonsynonymou s	A265V			Benign
9204785 0	ND2	C5360T	Synonymous	12971			
7938167 3	ND2	A5390G	Synonymous	M307M			
7938167 4	ND2	T5442C	Nonsynonymou s	F325L			Benign
7938167 6	ND2	T5495C	Synonymous	F342F			
8902567 7	tRNA-Ala	C5633T				Thyroid tumor	
3446212 2	Non-coding	A5656G					
7938167 7	tRNA-Cys	G5773A					
8902568 0	COX1	G5913A	Nonsynonymou s	D4N	Prostate cancer; Hypertension		Benign
3446213 5	COX1	A5951G	Synonymous	G16G			

				Amino	Base Substitution Associated	Somatic Variant Associated	PolyPhen-2
ID	Gene	Variant	Type of Variant	Acid	Phenotypes*	Phenotypes*	Prediction
7944343 7	COX1	T5999C	Synonymous	A32A		Pancreatic cancer cell line; Glioblastoma	
7944343 8	COX1	A6047G	Synonymous	L48L		Pancreatic cancer cell line; Glioblastoma	
8902567 1	COX1	T6185C	Synonymous	F94F			
7938167 8	COX1	T6221C	Synonymous	P106P			
9204785 1	COX1	T6253C	Nonsynonymou s	M117T	Prostate cancer; Enriched in POAG cohort		Benign
8902574 2	COX1	C6371T	Synonymous	S156S			
9204787 0	COX1	C6386T	Synonymous	A161A			
8688735 8	COX1	C6455T	Synonymous	F184F			
8902570 8	COX1	C6528T	Synonymous	L209L			
8902572 4	COX1	T6671C	Synonymous	H256H			
3446217 9	COX1	G6734A	Synonymous	M277M			
3446218 0	COX1	A6752G	Synonymous	L283L			
3446218 2	COX1	T6776C	Synonymous	H291H		Breast cystic masses	
3446219 0	COX1	C7028T	Synonymous	A375A			
3446219 1	COX1	A7055G	Synonymous	G384G		MNGIE fibroblasts	

ID	Gene	Variant	Type of Verient	Amino Acid	Base Substitution Associated	Somatic Variant Associated	PolyPhen-2 Prediction
8902566		Variant	Type of Variant		Phenotypes*	Phenotypes*	Prediction
6	COX1	T7094C	Synonymous	F397F			
3446220 2	COX1	T7175C	Synonymous	T424T			
9204785 2	COX1	C7276T	Nonsynonymou s	S458L			Probably damaging
8902576 4	COX1	G7444A	Premature Stop Codon	Term514 K	LHON; SNHL; DEAF		
7944344 7	tRNA-Ser	C7476T				Thyroid hyperplasia	
9204787 1	COX2	T7645C	Synonymous	L20L			
8902577 5	COX2	T7657C	Synonymous	H24H			
7938167 9	COX2	A7768G	Synonymous	M61M			
8902569 2	COX2	C7864T	Synonymous	P93P			
8902576 6	COX2	G8269A	Synonymous	Term228Te	erm		
8902570 4	tRNA-Lys	A8344G			MERRF; Other-LD; Depressive mood disorder; Leukoencephalopathy; HiCM	Bone marrow; Elderly muscle	
9204785 9	ATP8	T8448C	Nonsynonymou s	M28T			Benign
7938168 0	ATP6	G8616T	Nonsynonymou s	L30F			Probably damaging
9204786 0	ATP6	C8655T	Synonymous	1431			

				Amino	Base Substitution Associated	Somatic Variant Associated	PolyPhen-2
ID	Gene	Variant	Type of Variant	Acid	Phenotypes*	Phenotypes*	Prediction
8902568 9	ATP6	C8684T	Nonsynonymou s	T53I			Benign
8902573 2	ATP6	G8697A	Synonymous	M57M		Thyroid tumor	
3446228 2	ATP6	A8869G	Nonsynonymou s	M115V			Benign
8902571 9	ATP6	T8993G	Nonsynonymou s	L156R	NARP; Leigh Disease; MILS		Probably damaging
8902574 9	ATP6	G8994A	Synonymous	L156L			
3446229 3	ATP6	C9042T	Synonymous	H172H			
8902575 7	ATP6	G9053A	Nonsynonymou s	S176N			Benign
8902568 5	ATP6	G9055A	Nonsynonymou s	A177T	PD protective factor		Possibly damaging
3446229 6	ATP6	A9072G	Synonymous	S182S			
8902576 9	ATP6	T9090C	Synonymous	S188S			
3446229 9	ATP6	A9093G	Synonymous	T189T			
9204786 4	ATP6	G9123A	Synonymous	L199L			
8902577 3	COX3	A9221G	Synonymous	S5S			
7938168 1	сох3	A9377G	Synonymous	W57W			
8902575 8	COX3	T9647C	Synonymous	A147A			

				Amino	Base Substitution Associated	Somatic Variant Associated	PolyPhen-2
ID	Gene	Variant	Type of Variant	Acid	Phenotypes*	Phenotypes*	Prediction
7938168 3	COX3	A9667G	Nonsynonymou s	N154S			Benign
7938168 4	COX3	T9698C	Synonymous	L164L			
3446233 8	COX3	T9716C	Synonymous	G170G			
7938168 5	COX3	T9899C	Synonymous	H231H			
7938168 6	COX3	T9950C	Synonymous	V248V			
3446156 9	tRNA-Gly	T10034C					
3446157 0	tRNA-Gly	A10044G			SIDS		
8902569 7	ND3	T10084C	Nonsynonymou s	19T			Benign
9204786 1	ND3	C10142T	Synonymous	N28N			
9204786 2	ND3	A10217G	Synonymous	M53M			
7938168 7	ND3	T10238C	Synonymous	1601			
7938168 8	ND3	G10310A	Synonymous	L84L			
7938168 9	ND3	T10321C	Nonsynonymou s	V88A		Bladder tumor	Benign
9204786 3	ND3	C10394T	Synonymous	D112D			
7938169 0	ND3	A10398G	Nonsynonymou s	T114A	PD protective factor; Longevity; Altered cell pH; Metabolic	Thyroid tumor	Benign

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
					syndrome; Breast cancer risk; Haplogroup IJK marker		
8902566 9	ND3	C10400T	Synonymous	T114T			
7938169 1	tRNA-Arg	T10463C				Endometrial tumor	
3446159 3	ND4L	A10550G	Synonymous	M27M		Endometrial control tissue	
3446159 5	ND4L	G10586A	Synonymous	S39S			
7938169 2	ND4L	G10589A	Synonymous	L40L			
3446160 0	ND4L	G10688A	Synonymous	V73V			
8688645 1	ND4	T10810C	Synonymous	L17L			
8902567 8	ND4	A10819G	Synonymous	K20K			
7938169 3	ND4	T10873C	Synonymous	P38P			
7938169 4	ND4	T10915C	Synonymous	C52C			
8902576 8	ND4	T11025C	Nonsynonymou s	L89P			Benign
3446162 3	ND4	A11251G	Synonymous	L164L			
8902575 3	ND4	T11299C	Synonymous	T180T			
9204787	ND4	C11332T	Synonymous	A191A		Thyroid tumor	

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated	Somatic Variant Associated	PolyPhen-2 Prediction
7938169			Type of Variant		Phenotypes*	Phenotypes*	Prediction
5	ND4	G11377A	Synonymous	K206K			
7938169 6	ND4	A11467G	Synonymous	L236L	Altered brain pH; sCJD patients		
8902571 5	ND4	C11674T	Synonymous	T305T		Pancreatic cancer cell line; Prostate tumor	
8902577 9	ND4	G11778A	Nonsynonymou s	R340H	LHON; Progressive dystonia		Probably damaging
3446164 8	ND4	A11812G	Synonymous	L351L			
7938169 7	ND4	T11899C	Synonymous	S380S			
3446165 3	ND4	G11914A	Synonymous	T385T			
9204785 5	ND4	A11947G	Synonymous	T396T		Prostate tumor	
3446168 0	ND5	G12372A	Synonymous	L12L	Altered brain pH; sCJD patients	Prostate tumor	
8902568 1	ND5	A12397G	Nonsynonymou s	T21A	Early onset PD		Unknown
8902568 6	ND5	G12406A	Nonsynonymou s	V24I			Benign
8688647 2	ND5	G12501A	Synonymous	M55M			
3446169 1	ND5	A12612G	Synonymous	V92V			
7938169 9	ND5	G12630A	Synonymous	W98W			
8902573 1	ND5	C12633A	Synonymous	S99S			

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
3446169		Vallatit	Type of Variant	Aciu	Prieriotypes	Phenotypes	Prediction
5	ND5	C12669T	Synonymous	D111D			
7938170 0	ND5	C12705T	Synonymous	11231		Prostate tumor	
8902576 0	ND5	A12810G	Synonymous	W158W			
7938170 1	ND5	A12850G	Nonsynonymou s	I172V			Possibly damaging
8902571 2	ND5	T12879C	Synonymous	G181G			
8902570 1	ND5	A12950G	Nonsynonymou s	N205S			Benign
9204785 6	ND5	T13020C	Synonymous	G228G			
9204785 7	ND5	A13101C	Synonymous	A255A			
5232147 5	ND5	A13104G	Synonymous	G256G			
3446171 5	ND5	A13105G	Nonsynonymou s	1257V			Benign
8902574 7	ND5	A13117G	Nonsynonymou s	I261V			Possibly damaging
7938170 2	ND5	A13263G	Synonymous	Q309Q			
8902572 8	ND5	T13500C	Synonymous	G388G		Pancreatic cancer cell line	
8902571 6	ND5	C13506T	Synonymous	Y390Y			
8902571 1	ND5	T13617C	Synonymous	14271			

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
7938170 3	ND5	C13650T	Synonymous	P438P			
3446174 5	ND5	G13708A	Nonsynonymou s	A458T	LHON; Increased MS risk; Higher frequency in PD-ADS; Haplogroup J marker	Acute leukemia platelets, leukocytes, & bone marrow; Breast tumor	Benign
7944349 9	ND5	G13759A	Nonsynonymou s	A475T			Benign
7938170 4	ND5	A13780G	Nonsynonymou s	1482V			Benign
3446175 0	ND5	T13789C	Nonsynonymou s	Y485H			Probably damaging
8902570 0	ND5	T13879C	Nonsynonymou s	S515P		MNGIE fibroblasts	Benign
7938170 5	ND5	T13965C	Synonymous	L543L			
3446176 3	ND5	A13966G	Nonsynonymou s	T544A			Benign
8902575 4	ND5	G14016A	Synonymous	K560K			
9204785 8	ND5	A14070G	Synonymous	S578S			
9204786 8	ND5	T14094C	Synonymous	L586L			
7944350 2	ND5	A14133G	Synonymous	L599L			
9204785 3	ND5	A14139G	Synonymous	L601L			
8902574 6	ND6	C14167T	Synonymous	E169E			

					Base Substitution	Somatic Variant	
				Amino	Associated	Associated	PolyPhen-2
ID	Gene	Variant	Type of Variant	Acid	Phenotypes*	Phenotypes*	Prediction
7938170 6	ND6	T14178C	Nonsynonymou s	I166V			Benign
8649674 3	ND6	T14318C	Nonsynonymou s	N119S			Benign
9204785 4	ND6	T14470A	Synonymous	G68G			
8902571 7	ND6	T14484C	Nonsynonymou s	M64V	LHON		Probably damaging
8902578 0	ND6	T14550C	Nonsynonymou s	142V			Benign
9204787 2	ND6	A14552G	Nonsynonymou s	V41A		Pancreatic cancer cell line	Benign
7938170 8	ND6	A14582G	Nonsynonymou s	V31A			Benign
9204786 5	ND6	C14620T	Synonymous	G18G		Glioblastoma	
8902567 5	tRNA-Glu	T14674C			Reversible COX deficiency myopathy		
3446180 3	СҮВ	T14798C	Nonsynonymou s	F18L		Glioblastoma	Benign
9204786 6	СҮВ	G14869A	Synonymous	L41L		Breast tumor	
7944351 1	СҮВ	C14872T	Synonymous	1421			
3446180 6	СҮВ	G14905A	Synonymous	M53M			
7938170 9	СҮВ	G15043A	Synonymous	G99G	MDD-associated		
9204786 7	СҮВ	G15148A	Synonymous	P134P			

ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Phenotypes*	PolyPhen-2 Prediction
8902574 5	СҮВ	A15218G	Nonsynonymou s	T158A	Тиспосурса	Тиспосурса	Possibly damaging
8902576 1	СҮВ	A15244G	Synonymous	G166G			
8902572 6	СҮВ	C15250T	Synonymous	Y168Y			
7938171 0	СҮВ	G15257A	Nonsynonymou s	D171N	LHON; Haplogroup J2 marker		Benign
7938171 1	СҮВ	G15301A	Synonymous	L185L		Tumor	
3446182 8	СҮВ	C15452A	Nonsynonymou s	L236I			Benign
9204787 4	СҮВ	T15454C	Synonymous	L236L			
3446183 2	СҮВ	C15535T	Synonymous	N263N			
7938171 2	СҮВ	T15670C	Synonymous	H308H		Breast tumor	
8902569 0	СҮВ	T15693C	Nonsynonymou s	M316T	Possibly LVNC cardiomyopathy- associated	Breast tumor	Benign
3446183 7	СҮВ	A15758G	Nonsynonymou s	1338V			Benign
7938171 3	СҮВ	T15784C	Synonymous	P346P	POAG- potential for association	Pancreatic cancer cell line; Breast tumor	
8902569 8	СҮВ	G15812A	Nonsynonymou s	V356M	LHON		Benign
7938171 4	СҮВ	C15833T	Synonymous	L363L			
8902566 7	СҮВ	G15884A	Nonsynonymou s	A380T			Benign

				Amino	Base Substitution Associated	Somatic Variant Associated	PolyPhen-2
ID	Gene	Variant	Type of Variant	Acid	Phenotypes*	Phenotypes*	Prediction
5232155 6	tRNA-Thr	C15904T					
7938171 5	tRNA-Thr	A15924G			LIMM		
7938171 6	tRNA-Thr	G15928A			MS; Idiopathic repeat miscarriage; AD protection		
7938171 7	tRNA-Thr	G15930A			·		
8902569 4	tRNA-Thr	C15946T					
9204787 5	Non-coding	A15954C					
8902570 5	Non-coding	A15954G					
7944351 9	Non-coding	A16051G					
8902575 0	Non-coding	A16126C					
7938171 9	Non-coding	T16144C					
7938172 0	Non-coding	G16145A					
7938172 1	Non-coding	C16148T				Aging brains	
3446186 2	Non-coding	G16153A					
9204787 6	Non-coding	A16183C			Melanoma patients	Lung tumor back- mutation; Prostate tumor	

				Amino	Base Substitution Associated	Somatic Variant Associated	PolyPhen-2
ID	Gene	Variant	Type of Variant	Acid	Phenotypes*	Phenotypes*	Prediction
8902570 3	Non-coding	C16193T	71		,,	Ovarian tumor	
8902572 0	Non-coding	T16243C					
7944352 4	Non-coding	C16261T					
7938172 4	Non-coding	C16270T			Melanoma patients		
8902577 6	Non-coding	T16311C				Prostate tumor	
9204784 2	Non-coding	C16377T					
7944353 1	Non-coding	T16356C				Glioblastoma	
7944353 2	Non-coding	T16362C					
7938172 6	Non-coding	G16391A					
8902572 7	Non-coding	G16526A					

ND = NADH dehydrogenase; CYB = Cytochrome b; CO = Cytochrome c oxidase; ATP = ATP synthase; POLG = Mitochondrial DNA polymerase γ; PEO = Progressive external ophthalmoplegia; HPV = Human papillomavirus; MNGIE = Mitochondrial neurogastrointestinal encephalopathy; DEAF = Deafness; HCM = Hypertrophic cardiomyopathy; SZ = Schizophrenia; MELAS = Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes; LS = Leigh syndrome; DMDF = Diabetes mellitus and deafness; MIDD = Maternally inherited diabetes and deafness; SNHL = Sensorineural hearing loss; CPEO = Chronic progressive external ophthalmoplegia; MM = Mitochondrial myopathy; FSGS = Focal segmental glomerulosclerosis; ASD = Autism spectrum disorder; SIDS = Sudden infant death syndrome; LHON = Leber Hereditary optic neuropathy; CPT = Carnitine palmityltransferase deficiency; AD = Alzheimer's disease; PD = Parkinson's disease; LVNC = Left ventricular non-compaction cardiomyopathy; GDM = Gestational diabetes mellitus;

LDYT = Leber hereditary optic neuropathy and dystonia; MICM = Maternally inherited cardiomyopathy; AMD = Agerelated macular degeneration; NRTI = Nucleoside reverse transcriptase inhibitor; MI = Myocardial infarction; POAG = Primary open angle glaucoma; MERRF = Myoclonic epilepsy with ragged red fibers; LD = Leigh disease; HiCM = Histiocytoid cardiomyopathy; NARP = Neuropathy, ataxia, and retinitis pigmentosa; MILS = Maternally inherited Leigh syndrome; sCJD = Sporadic Creutzfeldt-Jaokob disease; MS = Multiple sclerosis; MDD = Major depressive disorder; LIMM = Lethal infantile mitochondrial myopathy

Table S28. Illumina Human 1Mv1

					Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Amino Acid	Associated Phenotypes*	Associated Variants*	PolyPhen-2 Prediction
13273403	Non-coding	C182T				POLG/PEO muscle	
13273572	Non-coding	T217C					
13273477	Non-coding	G228A					
13273478	Non-coding	G247A					
13273574	Non-coding	T250C					
13273409	Non-coding	C295T				POLG/MNGIE muscle; Glioblastoma	
13273415	Non-coding	C456T				Thyroid tumor	
13273416	Non-coding	C462T				Thyroid tumor	
13273584	Non-coding	T477C				AD brains; Ovarian tumor	
13273585	Non-coding	T489C				Ovarian carcinoma; Prostate tumor	
13273499	12S rRNA	A750G					
13273350	12S rRNA	A827G			DEAF; B4b'd marker		
13273435	12S rRNA	G1018A					
13273359	12S rRNA	C1048T					
13273530	12S rRNA	T1189C					
13273457	12S rRNA	G1438A					
13273473	16S rRNA	G1719A					

Daca Cubetitution

Comptic Variant

					Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Amino Acid	Associated Phenotypes*	Associated Variants*	PolyPhen-2 Prediction
13273322	16S rRNA	A1736G					
13273571	16S rRNA	T2158C					
13273406	16S rRNA	T2352C			Possibly LVNC-associated		
13273407	16S rRNA	T2483C					
13273479	16S rRNA	A2706G					
13273408	16S rRNA	C2789T					
13273575	16S rRNA	T2885C					
13273481	16S rRNA	G3010A			Cyclic vomiting syndrome with migraine		
13273576	16S rRNA	T3197C					
13273328	ND1	A3348G	Synonymous	L14L			
					LHON; Diabetes; CPT	Acute leukemia platelets,	
13273577	ND1	T3394C	Nonsynonymous	Y30H	deficiency; High altitude adaptation	leukocytes, & bone marrow	Benign
13273329	ND1	A3480G	Synonymous	K58K	•	Prostate tumor	
13273331	ND1	A3547G	Nonsynonymous	181V			Benign
13273412	ND1	C3594T	Synonymous	V96V		Thyroid tumor	
13273482	ND1	G3666A	Synonymous	G120G			
13273332	ND1	A3720G	Synonymous	Q138Q			
13273483	ND1	G3915A	Synonymous	G203G			
13273484	ND1	G3918A	Synonymous	E204E		Breast tumor	
13273413	ND1	C3970T	Synonymous	L222L			
13273414	ND1	C3992T	Nonsynonymous	T229M		Thyroid tumor	Benign
13273333	ND1	A4024G	Nonsynonymous	T240A			Benign
13273334	ND1	A4104G	Synonymous	L266L			
13273581	tRNA-Gln	T4336C			AD; PD; Hearing loss & migraine		
13273582	ND2	T4561C	Nonsynonymous	V31A			Benign
13273583	ND2	T4639C	Nonsynonymous	157T			Benign
13273486	ND2	A4769G	Synonymous	M100M			

					Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Amino Acid	Associated Phenotypes*	Associated Variants*	PolyPhen-2 Prediction
13273487	ND2	G4820A	Synonymous	E117E			
13273339	ND2	A4824G	Nonsynonymous	T119A			Possibly damaging
13273417	ND2	C4883T	Synonymous	P138P	Glaucoma		
40070040	4400			114505	LHON; Insulin resistance;		
13273340	ND2	A4917G	Nonsynonymous	N150D	AMD; NRTI-PN; Haplogroup T marker		Benign
13273587	ND2	T4977C	Synonymous	L170L			
13273588	ND2	T5004C	Synonymous	L179L			
13273488	ND2	G5046A	Nonsynonymous	V193I			Benign
					Longevity; Extraversion MI;		
13273419	ND2	C5178A	Nonsynonymous	L237M	AMS protection; Blood iron		Probably damaging
			, ,		metabolism; Haplogroup D marker		, 00
13273420	ND2	C5263T	Nonsynonymous	A265V	marker		Benign
13273341	ND2	A5390G	Synonymous	M307M			O .
13273591	ND2	T5442C	Nonsynonymous	F325L			Benign
13273491	ND2	G5460A	Nonsynonymous	A331T	AD; PD		Benign
13273593	ND2	T5495C	Synonymous	F342F	,		Ü
13273342	Non-coding	A5656G	, ,				
13273492	tRNA-Cys	G5773A					
13273343	CO1	A5951G	Synonymous	G16G			
13273493	CO1	G6026A	Synonymous	L41L			
13273422	CO1	C6045T	Synonymous	L48L			
13273594	CO1	T6071C	Synonymous	V56V			
13273595	CO1	T6152C	Synonymous	V83V			
13273596	CO1	T6221C	Synonymous	P106P			
13273494	CO1	G6260A	Synonymous	E119E			
13273597	CO1	T6365C	Synonymous	G154G			
13273424	CO1	C6455T	Synonymous	F184F			
13273599	CO1	T6680C	Synonymous	T259T			

					Dana Culantinutian	Competin Maning	
ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Variants*	PolyPhen-2 Prediction
13273600	CO1	T6719C	Synonymous	G272G	Associated Pilellotypes	Associated variables	PolyPhen-2 Prediction
13273495	CO1	G6734A	Synonymous	M277M			
13273345	CO1	A6752G		L283L			
			Synonymous			Donast sustinues	
13273601	CO1	T6776C	Synonymous	H291H		Breast cystic masses	
13273346	CO1	A7055G	Synonymous	G384G		MNGIE fibroblasts	
13273604	CO1	T7175C	Synonymous	T424T			
13273427	CO1	C7256T	Synonymous	N451N			
13273428	CO1	C7274T	Synonymous	G457G			
13273498	tRNA-Asp	G7521A				Thyroid tumor	
13273348	CO2	A7768G	Synonymous	M61M			
13273502	CO2	G8206A	Synonymous	M207M			
13273504	CO2	G8269A	Synonymous	Term228Term			
13273607	Non-coding	T8277C					
13273507	ATP6	G8616T	Nonsynonymous	L30F			Probably damaging
13273432	ATP6	C8655T	Synonymous	1431			
13273351	ATP6	A8869G	Nonsynonymous	M115V			Benign
13273352	ATP6	A9072G	Synonymous	S182S			
13273353	ATP6	A9093G	Synonymous	T189T			
13273354	CO3	A9221G	Synonymous	S5S			
13273516	CO3	A9377G	Synonymous	W57W			
13273434	CO3	T9540C	Synonymous	L112L		Tumor	
13273357	CO3	A9667G	Nonsynonymous	N154S			Benign
13273611	CO3	T9698C	Synonymous	L164L			
13273612	CO3	T9716C	Synonymous	G170G			
13273613	CO3	T9899C	Synonymous	H231H			
13273614	CO3	T9950C	Synonymous	V248V			
13273520	tRNA-Gly	T10034C	•				
13273284	tRNA-Gly	A10044G			SIDS		
13273522	ND3	T10238C	Synonymous	1601			
			, ,				

	-	.,	T 634 : .		Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Amino Acid	Associated Phenotypes*	Associated Variants*	PolyPhen-2 Prediction
13273436	ND3	G10310A	Synonymous	L84L		Pladded as	D
13273523	ND3	T10321C	Nonsynonymous	V88A	PD protective factor;	Bladder tumor	Benign
					Longevity; Altered cellular		
13273437	ND3	A10398G	Nonsynonymous	T114A	pH; Metabolic syndrome;	Thyroid tumor	Benign
			, ,		Breast cancer risk; ADHD;	,	S
					Haplogroup IJK marker		
13273524	tRNA-Arg	T10463C				Endometrial tumor	
13273286	ND4L	A10550G	Synonymous	M27M		Endometrial control tissue	
13273438	ND4L	G10586A	Synonymous	S39S			
13273439	ND4L	G10589A	Synonymous	L40L			
13273440	ND4L	G10688A	Synonymous	V73V			
13273360	ND4	T10873C	Synonymous	P38P			
13273526	ND4	T10915C	Synonymous	C52C			
13273288	ND4	A11251G	Synonymous	L164L			
13273443	ND4	G11377A	Synonymous	K206K			
13273289	ND4	A11467G	Synonymous	L236L	Altered brain pH; sCJD patients		
13273528	ND4	T11485C	Synonymous	G242G			
13273364	ND4	T11722C	Synonymous	L321L			
13273292	ND4	A11812G	Synonymous	L351L			
13273529	ND4	T11899C	Synonymous	S380S			
13273444	ND4	G11914A	Synonymous	T385T			
13273445	ND4	G11969A	Nonsynonymous	A404T			Benign
13273294	tRNA- Leu(CUN)	A12308G			CPEO; Stroke; CM; Breast, renal, & prostate cancer risk; Altered brain pH; sCJD; Haplogroup K & U marker	Endometrial control tissue; Lung & prostate tumors	
13273447	ND5	G12372A	Synonymous	L12L	Altered brain pH; sCJD patients	Prostate tumor	

					Base C halft its	Carrella Maria al	
ID	Gene	Variant	Type of Variant	Amino Acid	Base Substitution Associated Phenotypes*	Somatic Variant Associated Variants*	PolyPhen-2 Prediction
U	Gene	Vallalit	Type of Variant	Amino Aciu	Associated Pileflotypes	Pancreatic cancer cell line;	PolyPhen-2 Prediction
13273532	ND5	T12414C	Synonymous	P26P		Prostate tumor	
13273450	ND5	G12630A	Synonymous	W98W		Trostate tamor	
13273366	ND5	C12669T	Synonymous	D111D			
13273534	ND5	C12705T	Synonymous	11231		Prostate tumor	
13273451	ND5	A12850G	Nonsynonymous	I172V			Possibly damaging
13273298	ND5	A13105G	Nonsynonymous	1257V			Benign
13273299	ND5	A13263G	Synonymous	Q309Q			
13273368	ND5	C13650T	Synonymous	P438P			
13273301	ND5	A13780G	Nonsynonymous	1482V			Benign
13273539	ND5	T13789C	Nonsynonymous	Y485H			Probably damaging
13273541	ND5	T13965C	Synonymous	L543L			
13273543	ND6	T14178C	Nonsynonymous	I166V			Benign
13273371	ND6	T14212C	Synonymous	V154V			
13273304	ND6	A14233G	Synonymous	D147D			
13273306	ND6	A14582G	Nonsynonymous	V31A			Benign
13273549	CYB	C14766T	Nonsynonymous	T7I			Benign
13273550	CYB	T14783C	Synonymous	L13L			
13273551	CYB	T14798C	Nonsynonymous	F18L		Glioblastoma	Benign
13273461	CYB	G15043A	Synonymous	G99G	MDD-associated		
13273462	CYB	G15110A	Nonsynonymous	A122T			Benign
13273311	CYB	A15218G	Nonsynonymous	T158A			Possibly damaging
13273312	CYB	A15244G	Synonymous	G166G			
13273463	СҮВ	G15257A	Nonsynonymous	D171N	LHON; Haplogroup J2 marker		Benign
13273313	CYB	G15301A	Synonymous	L185L		Tumor	
13273377	CYB	C15535T	Synonymous	N263N			
13273555	CYB	T15670C	Synonymous	H308H		Breast tumor	
13273316	CYB	A15758G	Nonsynonymous	1338V			Benign

					Base Substitution	Somatic Variant	
ID	Gene	Variant	Type of Variant	Amino Acid	Associated Phenotypes*	Associated Variants*	PolyPhen-2 Prediction
13273556	СҮВ	T15784C	Synonymous	P346P	POAG- potential for association	Pancreatic cancer cell line; Breast tumor	
13273378	CYB	C15833T	Synonymous	L363L			
13273379	tRNA-Thr	C15904T					
13273318	tRNA-Thr	A15924G			LIMM		
13273465	tRNA-Thr	G15928A			Multiple sclerosis; Idiopathic repeat miscarriage; AD protection		
13273466	tRNA-Thr	G15930A					
13273467	Non-coding	G16129A			Cyclic vomiting syndrome with migraine		
13273559	Non-coding	T16144C					
13273468	Non-coding	G16145A					
13273382	Non-coding	C16148T				Aging brains	
13273319	Non-coding	A16162G					
13273320	Non-coding	A16163G					
13273384	Non-coding	A16183C			Melanoma patients	Lung tumor back- mutation; Prostate tumor	
13273395	Non-coding	C16270T			Melanoma patients		
13273396	Non-coding	C16278T				Ovarian control tissue	
13273401	Non-coding	C16327T					
13273471	Non-coding	G16390A			POAG- potential for association	Breast & ovarian tumor	
13273472	Non-coding	G16391A					

*MITOMAP

ND = NADH dehydrogenase; CYB = Cytochrome b; CO = Cytochrome c oxidase; ATP = ATP synthase; POLG = Mitochondrial DNA polymerase γ ; MNGIE = Mitochondrial neurogastrointestinal encephalopathy; AD = Alzheimer's disease; DEAF = Deafness; LVNC = Left ventricular non-compaction cardiomyopathy; LHON = Leber Hereditary optic neuropathy; CPT = Carnitine palmityltransferase deficiency; PD = Parkinson's disease; AMD = Age-related macular degeneration; NRTI = Nucleoside reverse transcriptase inhibitor; MI = Myocardial infarction; SIDS = Sudden infant death

syndrome; ADHD = Attention deficit-hyperactivity disorder; sCJD = Sporadic Creutzfeldt-Jaokob disease; CPEO = Chronic progressive external ophthalmoplegia; CM = Cardiomyopathy; MDD = Major depressive disorder; POAG = Primary open angle glaucoma; LIMM = Lethal infantile mitochondrial myopathy

Table S29. MT-MeSH Terms Extracted from Literature Lab. The number of MT-nDNA candidate genes selected are based on upper (25th) quartile of Literature Lab's LPF statistics. Moreover, later we conditioned each gene to have at least 15 abstracts.

No	MeSH Term	Number of genes in upper quartile
1	Aldehyde dehydrogenase, mitochondrial	112
2	Aspartate aminotransferase, mitochondrial	17
3	Creatine kinase, mitochondrial form	26
4	DNA, mitochondrial	635
5	Electron transport in mitochondria	448
6	Genes, mitochondrial	139
7	Genome, mitochondrial	99
8	Membrane potential, mitochondrial	580
9	Mitochondria	1,990
10	Mitochondria apoptotic	974
11	Mitochondria, heart	306
12	Mitochondria, liver	352
13	Mitochondria, muscle	409
14	Mitochondrial ADP, ATP translocases	135
15	Mitochondrial carnitine palmitoyltransferase	396
16	Mitochondrial degradation	120
17	Mitochondrial diseases	422
18	Mitochondrial dynamics	221
19	Mitochondrial encephalomyopathies	103
20	Mitochondrial gene expression	102
21	Mitochondrial LC fatty-acid beta-oxidation	2
22	Mitochondrial membrane transport proteins	669
23	Mitochondrial membranes	422
24	Mitochondrial myopathies	167
25	Mitochondrial proteins	1,350
26	Mitochondrial proton- translocating ATPases	200
27	Mitochondrial ribosomes	43
28	Mitochondrial size	66
29	Mitochondrial swelling	157
30	Mitochondrial trifunctional protein	33
31	Mitochondrial trifunctional protein, alpha subunit	4
32	Mitochondrial trifunctional protein, beta subunit	7
33	Mitochondrial turnover	242
34	Mitochondrial uncoupling protein 2	62
35	Mitochondrial uncoupling protein 3	16
36	Mitochondrial uncoupling proteins	308

Table S30. Selected 2,283 Candidate Genes (MT-nDNA) that May Contribute to Mitochondria (**Separate Excel Worksheet**)

Table S31. Final list of genes (HUGO approved names) as mtDNA- and possible MT-genes candidates for contributing to mitochondria and corresponding MIM number and location.

(Separate Excel Worksheet)

Table S32. Predicted Functional Effects of mtDNA Non-Synonymous Mutations Present in Our Arrays. (**Separate DOCX Table**)

3. Supplementary Methods

1. Phenotype Preparation

Seven variables were studied: 1). BMI-body mass index (kg/m^2) ; 2). WHR- waist to hip ratio, a unit-less measure with the condition that both waist and hip were measured with the same unit; 3). Fasting glucose- Fasting at least 8 hours prior to measurement of serum glucose (mg/dL). If GLUC was measured in mmol/L, it was requested to convert it into mg/dL, by applying the following coefficient: $mmol/1 \times 18.0182 = mg/dL$, based on SBDR - SOCIETY FOR BIOMEDICAL DIABETES RESEARCH; 4). Fasting INS-insulin (μ IU/mL). For studies that had measured INS as pmol/L it was asked to convert it to (μ IU/mL), by dividing the measure by 6: INS (μ IU/mL)=INS (pmol/L) / 6. (See the following paper for why the constant 6 was applied by Heinemann L. 1); 5). HOMA-B- an indicator of beta-cell function calculated as HOMA-B=(360 x Fasting Insulin) / (Fasting Glucose -60) with fasting insulin expressed in μ IU/ml and fasting glucose in mg/dL; 6). HOMA-IR- an indicator of insulin resistance was calculated as HOMAIR=(Fasting Glucose x Fasting Insulin) / 405, with fasting insulin expressed in μ IU/mL and fasting glucose in mg/dL; and 7). HbA1c- representing the glycated hemoglobin measured as a percent. For GLUC and INS, cohorts were required to remove individuals that were type 2 diabetics.

All studies transformed variables to the same units, checked the distributions of selected variables and assured they were close to normal with a kurtosis less than 2, and if there were one or two outliers the studies were asked to ensure they were not distorting the distribution of a specific variable. An observation was considered to be an outlier, if it was 1 standard deviation (SD) away from the rest of the points in the trait distribution and beyond 4-6 SDs from the mean. If such a few values existed, then the study was instructed to either winsorize (assign to an outlier a value around 4 SDs) the outlier or set the outlier to a missing value for a specific trait when the study analyst discovered that this outlier value was a data mistake. For BMI, if the data were normal then no changes were to be made, but if the data were non-normal a BLOM transformation was used as the last resort.² All studies were instructed to transform INS, HOMA-B, HOMA-IR by natural log. GLUC for each study in its original measure could have been normally distributed. If not, GLUC was not normally distributed, then the studies were instructed to apply a Box-Cox power transformation when deemed appropriate. Only after each study cohort's data were assured to have a close to normal distribution, did the studies performed adjustments. The following covariates were considered for adjusting for any confounding: AGE, AGE², SEX (coded male=0, female=1), FC (field center for multi-center studies by creating n-1 dichotomous covariates where n= number of field centers), and PC1, PC2 etc: principal components (PCs) derived using genotyped SNPs: the first PC (and optionally more PCs, if appropriate for African Americans) were instructed to be included. Other additional cohortspecific covariates, if any, were going to be used for controlling additional confounding. The analyses were performed for each specific race separately. The final response variables (Y) were the standardized residuals after any transformation and covariate adjustments. WHR was adjusted in addition for BMI. The studies were requested to exclude individuals younger than 18 years old, without GWAS data, without data for any of the covariates and excluding T2D individuals ONLY from glycemic traits analyses. Participants with missing values for one trait were used for analysis of any other trait for which they had data. The Division of Statistical Genomics at the Washington University in Saint Louis volunteered to serve as a Data Coordinating Center (DCC) by maintaining an anonymous FTP site for studies to perform data

upload, a secured Web page for archiving all meetings, analyses plans, publicly available data-shared including the mitochondria 1000 Genomes reference used for MT imputations, minutes, programs and instructions, and a box.com site shared with specific analysts for downloading single cohorts QC-ed summary results for performing double meta-analyses and QC sharing. Each study cohort reported summary statistics for the phenotypes, which were checked at the DCC for their accuracy (Table S1).

2. Mitochondrial Single Nucleotide Variant Annotation

The mitochondrial genome sequence used for annotation of mitochondrial single nucleotide variant and whole genome sequencing studies is controversial³. Historically, the first complete sequence of the mitochondrial genome, the Cambridge Reference Sequence, has been used for mitochondrial genome annotation⁴. With improved sequencing, several errors were found in the original sequencing of the Cambridge Reference Sequence⁵. The errors were corrected in the revised Cambridge Reference Sequence (rCRS; GenBank #NC_012920) while maintaining the original nucleotide sequence numbering⁵. The rCRS is from an individual of European origin, mitochondrial haplotype H2a2, which is a much younger mitochondrial genome in the historical time scale. Most genomic studies utilize reference sequences that are the oldest based upon ancestral lineage, which in the case of the mitochondrial genome, is an African haplogroup. Consequently, some microarrays have utilized a Yoruban sequence (AF347015) or a Reconstructed Sapiens Root Sequence (RSRS), a phylogenetically created sequence representing the deepest root ^{6,7}. However, the Yoruban sequence is 16,571 bp in length and differs from the rCRS at over 40 positions resulting in inconsistencies in the literature and across arrays regarding the nucleotide position of some single nucleotide variants⁶. The RSRS contains three spacers in order to maintain the nucleotide position numbering of the rCRS, but also differs from the rCRS at over 51 sites.

Consequently, all mitochondrial DNA variants from each array (Table S14) were annotated to conform the nucleotide position numbering of the rCRS prior to analyses. The probes used for each microarray were obtained from the manufacturer or dbSNP and aligned to the rCRS using Geneious 8.1^8 . All probes were also submitted through the Standard Nucleotide Basic Local Alignment Search Tool (BLAST) to ensure the probes bound with high specificity (\geq 90% identity) to the mitochondrial genome. In order to limit any potential binding to nuclear mitochondrial DNA segments, probes that bound to nuclear chromosomes with \geq 80% were excluded from all analyses. (Tables S15-S28)

3. mtDNA Genotyping and Imputation QC

Each cohort assured that mtDNA variants kept for analyses were of high quality and matching only to mitochondrial DNA. mtDNA markers that were found not valid were dropped from the analyses. The remaining qualitative MT-variants were updated with latest MT Cambridge Revised Sequence (rCRS) of the Human mtDNA positions. The qualitative MT-variants were used as scaffold for haplotype prephasing and for mtDNA imputation. The MT imputation followed the same plan for all cohorts. Each study built genotype data into two files: a pedigree file and a map file known also as PED (pedigree_ID, subject_ID, father_ID, mother_ID, sex, dummy_affection, and Variants (in homozygote letters) in the same order as in the map) and MAP. If any marker was heterozygote, PLINK^{9,10} software turned them to missing by default for MT.

We turned files into binary for faster processing (input llfs26.csv; output ganon26):

plink --noweb --file llfs26.csv --out ganon26 --make-bed

We dropped any variants with missengness > 0.9 (input ganon26; output new26):

plink --noweb --bfile ganon26 --geno 0.1 --make-bed --out new26

For prephasing of MT-haplotypes we used SHAPEIT2^{11,12} using the following command line (input new26; output ganon26.phased)

shapeit --input-bed ./new26.bed ./new26.bim ./new26.fam --duohmm --rho 4.0E-12 -O ganon26.phased

-duohmm is an option in SHAPEIT program when a cohort contains family data and SHAPEIT will use nuclear family data information for imputation

-rho option was used to define some very tiny recombination rates between variants, because no genetic map was available.

All studies downloaded the following files from 1000 Genomes project, where the first file was to be used as MT-reference in each cohort MT-imputations

ALL.chrMT.phase3_callmom-v0_4.20130502.genotypes.vcf.gz

ALL.chrMT.phase3_callmom-v0_4.20130502.genotypes.vcf.gz.tbi

README_chrMT_phase3_callmom.md

For the needed MT genetic map we created the following file (mtgeneticmap.map):

position COMBINED_rate.cM.Mb. Genetic_Map.cM

The file from 1000G was transformed into OXFORD format file as follows using VCFTOOLS and a new version of PLINK written in $C++^{10}$.

vcftools --gzvcf ALL.chrMT.phase3_callmom-v0_4.20130502.genotypes.vcf.gz --max-alleles 2 --min-alleles 2 --max-missing 1 --remove-filtered-geno-all --recode --out chrMTfilter

vcftools --vcf chrMTfilter.recode.vcf --plink-tped --out ALL.chrMT.phase3

plink1_9 --tfile ALL.chrMT.phase3 --recode oxford --out oxg1000ref.gen

sed -i '2d' oxg1000ref.sample

cut - d'' - f2,3,4,5 < oxg1000ref.gen > oxg1000ref.legend

echo "rsID position a0 a1" > header1.txt

cat header1.txt oxg1000ref.legend > fin.oxg1000ref.legend

The following script was executed to run IMPUTE¹³ for imputation based on full MT sequence.

#/bin/bash! impute \ -merge_ref_panels -m ./mtgeneticmap.map -h ./g1000mtref/oxg1000ref.gen \ -l ./g1000mtref/fin.oxg1000ref.legend \ -known_haps_g ../ganon26.phased.haps \ -int 1 16579 \ -Ne 20000 \ -o ./c26 all

The command merge_ref_panels gives the opportunity to use more than one reference, but in our case we used only 1000G MT reference. As expected the IMPUTE software will produce a warning that we are using 1 reference only, as expected.

-int 1 16579 option defined the imputation window, which included the full length of MT-DNA, including all variants for each cohort as well as all markers of 1000G MT reference.

-known_haps_g refers to a cohort specific SHAPEIT prephased haplotypes

The imputed results were in OXFORD format with three probabilities (AA, AB and BB) per cell. Because we wished to use our own programs for MT-variants associations with 7 selected phenotypes, the three probability calls per cell as produced by IMPUTE software had to be transformed into dosage. We used FCGENE software (https://sourceforge.net/projects/fcgene/) for turning three probability calls per cell to dosage for each individual and for each marker imputed:

```
fcgene --gens ../c26_all \ --thresh 0.9 \ --info ../c26_all_info \ --info-thresh 0.3 \ --maf-thresh 0.00 \ --pedinfo ../ganon26.phased.sample \ --oformat r --transpose \ --force ref-allele=allele2 \ --out ./rtc26
```

The mtDNA single imputed variants were excluded prior to association tests analyses, when the imputation quality was < 0.30 or they were monomorphic SNVs. The R Package: EasyQC $(V10.0)^{14}$ (http://www.genepi-regensburg.de/easyqc/) was used at DCC to check for any duplicated results, removing the SNVs with miss-matched alleles against the MT 1000 Genomes reference (phase 3 version 5, 3892 MT-variants, ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502), and eliminating SNVs with allele frequency deviant from the MT 1000 Genomes cosmopolitan reference.

In addition, in house SAS programs (SAS 9.4, SAS Institute Inc., Cary, NC, USA) were used to check the coded alleles and non-coded alleles matching among all cohorts. Any discrepancies of coded alleles were corrected by studies.

The detailed information of the mtDNA genotyping array, the number of mtDNA variants genotyped, the number of mtDNA variants used for imputation, the number of MT variants imputed, imputation accuracy, and the number of mtDNA variants after fcGENE for each cohort are included in Tables S14 and S15-S28.

4. mtDNA Variants Association Tests (Single variant linear regression and gene based SKAT tests)

Additional quality control procedures were applied in statistical analysis. These procedures included: 1). removal of mtDNA variants if their imputation quality scores \leq 0.3; 2). setting mtDNA variants as missing if their dosage values=1; and 3). removal of mtDNA variants if their missing rates \geq 5%. Heteroplasmic alleles are rare in genotyping of mtDNA variants with genotyping arrays. Therefore, we set these rare heteroplasmic alleles as missing before and after imputation.

For each of the imputed mtDNA variants, the dosage values (0 or 2) were used as the independent variable in association analysis with prepared standardized phenotypes (standardized residuals from normally distributed variables and adjusted for covariates, see 1. Phenotype preparation) as the outcome. An additive genetic model was employed in association analysis using both a self-developed regression model (the linear or linear mixed models written in R programming) and a SKAT (the prepScores() function in seqMeta R package: seqMeta package: Meta-Analysis of Region-Based Tests of Rare DNA Variants; https://github.com/DavisBrian/seqMeta) approaches. Familial and maternal correlation structures were accounted for in the analysis of the family data.

For single mtDNA SNV association tests, the models were two:

 $Y = \beta SNV + \varepsilon$ (1) for unrelated individuals, where β is the estimated slope between SNV dosages regressed on residuals of each of 7 trait responses and ε is the remaining unexplained effects, and

 $Y = \beta SNV + \gamma + \delta + \varepsilon$ (2) for familial, where γ is the familial vector of relationships and δ is an indicator of maternal relationships.

For SKAT gene based mtDNA associations, the models were also two:

 $Y = GSNVs_i + \varepsilon$ (3) for unrelated individuals, where G is an $n \times q$ genotype matrix for i=1 to q rare SNVs of interest, and

 $Y = GSNVs_i + \gamma + \delta + \varepsilon$ (4) for familial designs, where γ and δ are the same as described above in model (2).

5. mtDNA Meta-analyses (single-variant and gene-based)

The single mtDNA variant meta-analyses were performed with METAL¹⁶ (Table 1, Figure 1 and Figures S1-S7). For the METAL meta-analysis the Genomic Control correction was set to off, because the MT-DNA it is a small molecule of 16.6KB. The analyses included all ancestries and Europeans only. Filters implemented were: imputation quality >0.3 (implemented at the run of association programs). The threshold used for Bonferroni corrections was considered to be $P \le 1$ E-3, which is based upon our working group internal permutation tests using the ARIC study MT data, in which 49 MT-DNA variants were considered independent MT-DNA markers. The METAL software used was the 2011-03-25 release.

The possibility that an aggregation of rare or low-frequency alleles in 37 mtDNA coding genes contribute to variation in metabolic phenotypes was tested by the standard burden and sequence

kernel test (SKAT). The standard burden test^{17,18} is sensitive in detecting association when all variants have effects on a phenotype in a concordant direction. The SKAT test is designed to detect the effects of alleles that collectively contribute to higher and lower blood pressure. The skatMeta() and burdenMeta() functions in the seqMeta¹⁹ package were used to evaluate aggregate effects at gene-level at minor allele frequency (MAF) \leq 0.01 (T1) or MAF \leq 0.05 (T5) levels. We used the relaxed threshold $P \leq$ 0.01 to demonstrate significance.

6. mtDNA Genomic Associations

Previous studies have reported a number of mitochondrial SNVs / genes with pleiotropic effects (a SNV or a gene, or different SNVs within the same gene associate simultaneously with different traits). For example, Hudson et al²⁰ evaluated the association of mtDNA variation in cases/diseases (38,638 individuals with 11 major diseases) and healthy controls (17,483). Among others, they reported association of the MT-3197 (rs2854131) in MT-RNR2, the mitochondrial 16S rRNA, with schizophrenia, ulcerative colitis, ankylosing spondylitis, multiple sclerosis, ischemic stroke and Parkinson's disease. The same MT-3197, in our study, was associated with BMI (P=2.95E-03, N=127,224, PA), but did not pass our study Bonferroni $P\leq 5E-04$ threshold. It is possible that mtDNA variants/genes associating with glucose metabolism and insulin signaling may have multiple effects in other disease manifestations beyond T2D. A study by Fetterman et al²¹ focused on measures of vascular function in Framingham Heart Study - EA in 7,247 individuals genotyped for 268 variants. After multiple corrections, only MT-13966 remained significant in association with PAT ratio (a measure of microvascular function). For the seven traits studied here, no significant associations were found with this variant. Mitchell et al²² focused on cardiovascular related traits and T2D in BioVU - AA 15,863 sample genotyped for 135 variants. The authors of this publication considered their study exploratory in nature and did not correct for multiple testing. They did not report any significant associations with BMI, and the remaining results, including those for T2D, were modest. Another paper was published by Liu et al^{15} . We summarized the results of three publications mentioned above using a threshold of P<5E-02 (Table S13). These comparisons in our findings do not pass our liberal P-value (P=1E-03) threshold.

7. MT-nDNA Candidate Genes

For identifying MT-nDNA candidate genes we used four sources of candidate genes: a) MitoCarta 2.0^{23,24}, b) Literature Lab (http://Acumenta.com), c) MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk/release-4.0/begin.do) and d) MT-defects associated with β-cell dysfunction²⁵. MitoCarta 2.0 is an inventory of human and mouse autosomal genes encoding proteins with strong support of mitochondrial localization. To identify mitochondria associated genes, MitoCarta performed mass spectrometry of mitochondria isolated from fourteen tissues. Protein localization was assessed using large-scale GFP tagging/microscopy, and integration of these results with six other genome-scale datasets of mitochondrial localization using a Bayesian approach. The two separate sets (human genes and mouse ortholog genes) from MitoCarta. The second source of autosomal candidate genes was established by us using Literature Lab (Acumenta Biotech, Westminster, MA), a software that mines more than 17.5 million PubMed abstract published since January 1, 1990, using MeSH search terms (MeSH terms are the US National Library of Medicine's controlled vocabulary thesaurus, consisting of sets of terms naming descriptors arranged in both alphabetic and in a hierarchical structure that permits

searching at various levels of specificity). For example, we searched via Literature Lab for MeSH mitochondria and identified 36 terms from which we selected only the 25^{th} upper quartile number of genes from a LPF scoring distribution (Table S29). The term LPF is a quantitative expression of association of number of genes with a term (one of the 36 terms, x/Term1) overlapping (x) with genes in pathway analysis (x/Term2), and expressed as LPF = $\log (x/T1 * x/T2)$ (Figure S15). In addition, we kept genes that were from human nomenclature as well as we accepted only genes that had more than 15 abstracts cited per selected gene. The Literature Lab searches identified additional unique genes predicted to have association with mitochondria terms.

We used the software MitoMiner $(4.0)^{26}$, which identified additional MT-nDNA candidate genes (filtered with an MT-MitoMiner index ≥ 0.70 , by selecting only terms: "Known mitochondrial" and "Predicted mitochondrial"). In MitoMiner selection, we kept only genes that were from human nomenclature. Finally, we identified a list of genes from a publication for gene expression in mouse, which proteins found in MT were down- or up- regulated in conditions of β -cell dysfunction. Of this list, only 3 were new to MT-candidate genes. The final list of MT-nDNA candidate genes reached 2,283.

We merged the final list of MT-nDNA candidate genes with online available summary metaresults. With the set of nDNA SNPs selected, we queried published GWAS summary results for BMI (Speliotes et al, 2010²⁷, Yang et al, 2012²⁸, Berndt et al, 2013²⁹, Randall et al, 2013³⁰, Monda et al, 2013³¹, Locke et al, 2015³², Shungin et al, 2015³³, NG et al, 2017³⁴, Justice et al, 2017³⁵); for WHR (Heid et al, 2010³⁶, Randall et al, 2013³⁰, Berndt et al, 2013²⁹, Shungin et al, 2015³³, Justice et al, 2017³⁵, NG et al, 2017³⁴, Graph et al, 2017³⁷). The summary results data were retrieved from

https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT consortium data files. For glucose metabolism we used the following summary results: GLUC (Saxena et al, 2010³⁸, Dupuis et al, 2010³⁹, Manning et al, 2010⁴⁰, Scott et al, 2012⁴¹); for INS (Dupuis et al, 2010³⁹, Manning et al, 2010⁴⁰, Scott et al, 2012⁴¹, Prokopenko et al, 2014⁴², Strawbridge *et al*, 2011⁴³, Walford *et al*, 2016⁴⁴); for HOMAB (Dupuis et al, 2010³⁹); for HOMAIR (Dupuis et al, 2010³⁹). The summary results data were retrieved from https://www.magicinvestigators.org/downloads/. For HbA1c we used the following resources (Soranzo et al, 2010⁴⁵, Wheeler et al, 2017⁴⁶).

Finally, from all these merges, we identified 109 MT-nDNA candidate genes comprising 588 sentinel significant SNPs (one unique per gene and trait combination out of 7 traits) (Table 4).

We have provided detailed analysis in the manuscript for MT-nDNA candidate gene functions. Here in the Supplement, we follow with some additional information. We found many interesting functions within the list of 109 genes: one gene is part of the urea-cycle; one has a role in iron–sulphur cluster biogenesis⁴⁷; four genes regulate intracellular calcium concentration⁴⁷; ten genes are associated with apoptosis⁴⁸; and four genes play a role in production and signaling of reactive oxygen species (ROS)⁴⁹ (Figure S11). In our study, two transcription factors *FOXO1* (13q14.11, may play a role in myogenic growth, rs1078892, *P*=5.11E-08) and *FOXO3* (6q21, a possible trigger for apoptosis, rs9400239, *P*=1.61E-08) were associated with BMI, while the deacetylase *SIRT3* (11p15.5, regulates epigenetic gene silencing, rs4758633, *P*=3.44E-10) was associated with HbA1c. They regulate metabolic homeostasis in response to oxidative stress. *SIRT3* deacetylates *FOXO3*⁵⁰. *FOXO1* negatively regulates adipogenesis by binding to the promoter sites of *PPARG* and preventing its transcription, while

insulin represses *FOXO1* action^{51,52}. Peserico *et al*⁵³ found that a low glucose nutrition regimen induced the formation of a complex consisting of *FOXO3*, *SIRT3* and MT-RNA polymerase binding to mtDNA regulatory regions and associated with increased MT-respiration.

8. Enrichment Analysis of MT-nDNA Candidate Genes

The 109 MT-nDNA selected genes are candidates for MT based on their protein localization in mitochondrion as well as from mining the published literature. We used Literature Lab and MetaCore software and the corresponding databases to explore the 109 genes. The enrichment analysis provided information of gene relations with terms, pathways, diseases, and gene ontology processes, and clustering to understand MT-nDNA genes' role. Using Literature Lab six gene clusters in association with terms were identified (Figure S10). Clusters, two and five included strong associations with mitochondria and obesity. In Cell-Type-MeSH, the term "Mitochondria" associated with the following genes (% of abstracts in relation with the term and permutation P-value): BCL2 (58), SIRT3 (8), OGDH (6), PPARG (6), HK1 (5), TOMM40 (4), TSPO (4), CPT1A (3), DNM1 (1), LRPPRC (1), and TNF (1) (P=9.8E-03); term "Mitochondria, Liver" associated with CYP27A1 (18), CPS1 (16), OGDH (15), CPT1A (10), SIRT3 (9), BCL2 (9), HADHA (4), HK1 (4), BCKDK (3), PPARG (2) and LRPPRC(1) (P=9.9E-03); and "Mitochondrial membranes" associated with TOMM40 (42), BCL2 (37), TSPO (10), HK1 (3), PHB2 (2), DNM1 (2), and CPT1A (1) (P=1.01E-02). A number of pathways showed significant associations with several of the 109 M-nDAN candidate genes. For example, "Biotransformation" (P=0E-04): (The chemical alteration of an exogenous substance by or in a biological system); and terms from Metabolism-MeSH domain such as "Glycolysis" (P=5.4E-03), "Citric Acid Cycle" (P=7.1E-03), "Carbohydrate metabolism" (P=7.7E-03), "Metabolome" (P=9.7E-03), and "Lipogenesis" (P=1.26E-02) (Table S5).

Using MetaCore, the set of MT-nDNA genes associated (*P*-FDR) with BMI showed enrichment in the pathway of "Protein folding and maturation_POMC processing" (*P*=3.5E-30); process network of "Signal transduction_Neuropeptide signaling pathways" (*P*=1.8E-17); by disease "Musculoskeletal and Neural Physiological Phenomena" (*P*=7.9E-37); "Hyperinsulinism" (*P*=6.8E-35); "Overweight" (*P*=4.2E-34); and "Adrenocortical Hyperfunction" (*P*=1.7E-33). For the set of MT-nDNA candidate genes associated with glycemic traits we found enrichment for disease "Nutritional and Metabolic Diseases" (*P*=2.8E-09) and "Diabetes Mellitus, Type 2" (*P*=1.1E-08). MetaCore produced also significant enrichment results when we submitted the full set of MT-nDNA 109 candidate genes in association with diseases: "Nutrition Disorders" (*P*=5.7E-40); "Depressive Disorder" (*P*=3.9E-37) and "Pituitary Diseases" (*P*=1.3E-36); and in GO Processes with "Chemical homeostasis" (*P*=9.2E-19).

9. Biological Functional Annotations

A number of databases such as NCBI gene and dbSNP, UCSC browser, Genecards, 1000 Genomes, GWAS Catalog, Haploreg, RegulomeDB, GTEx, GeneGO, Literature Lab were used for annotating our results. The following software were used for MT-nDNA SNV - gene expression regulation analysis, NCBI Entrez gene (ncbi.nlm.nih.gov/gene/), dbSNP (ncbi.nlm.nih.gov/snp/), HaploReg⁵⁴, RegulomeDB⁵⁵ and GTEx (gtextportal.org). We performed enrichment analyses via software: GeneGO (portal.genego.com) and Literature Lab (acumenta.com).

The annotation used for the biological inference work were sourced from NCBI dbSNP build 138 (HG19) during the analyses, and updated to dbSNP build 150 (HG38). The importance of the new candidate SNVs / gene lists identified in Tables 1-4 and Tables S6, S8-S9, were mined by means of four methods: enrichment analysis, protein- protein interactions (PPI), analytical gene expression cis-regulation, and analytical gene expression trans-regulation.

The GeneGO/MetaCore (http://thomsonreuters.com/products_services/science/systems-biology/), and Literature Lab of ACUMENTA (http://acumenta.com/) software, (accessed on 11.05. 2017) were used for enrichment analysis. We tested if MT-nDNA genes were significantly enriched among pre-specified gene sets defined in pathways, or by shared roles in particular diseases or biological processes from Gene Ontology. The GeneGO, enrichment analysis consists of matching unique gene symbols of possible targets for the "common", "similar" and "unique" sets with gene symbols in functional ontologies in MetaCore. The probability of a random intersection between a set of gene symbols the size of target list with ontology entities is estimated in p-value of hypergeometric intersection. The lower p-value means higher relevance of the entity to the dataset, which shows in higher rating for the entity.

Literature Lab is a data mining software that searches experimentally-derived gene lists with matches from the scientific literature in a curated vocabulary of 24,000 biological and biochemical terms. It employs statistical and clustering analysis on over 17.5 million PubMed abstracts (from 01/01/1990 to the present) to identify pathways (809 pathways), diseases, compounds, cell biology and other areas of biology and biochemistry. The analysis engine compares statistically the submitted gene set to 1,000 random gene sets generated in the analysis to identify term relationships that are associated with the gene set more than by chance alone.

Furthermore, MT-nDNA candidate SNVs were questioned if they reside in any of regulatory marks, analyzing information from ENCODE and ROADMAP initiatives as summarized by HaploReg (http://www.broadinstitute.org/mammals/haploreg/haploreg.php)⁵⁶ and RegulomeDB (http://regulome.stanford.edu/)⁵⁷.

HaploReg (v.4.1) queries were used to capture functional annotations including the chromatin state segmentation of Ernst et al.⁵⁶ and chromatin state segmentation on the Roadmap reference epigenomes, conserved regions by GERP and SiPhy, the narrow peaks called by the ENCODE project on DNAse hypersensitivity experiments, and the SPP narrow peaks called by the ENCODE project on ChIP-seq experiments. HaploReg team has used RefSeq genes from the UCSC Genome Browser and GENCODE for annotation. BEDTools were used to calculate the proximity of each variant to a gene by either annotation, as well as the orientation (3' or 5') relative to the nearest end of the gene, based on the strand of the gene. This software was accessed on 11.05.2017 (Table S9).

RegulomeDB was used to summarize the following data types, transcription factor binding sites, ChIP factors: 740 unique data sets including most recent ENCODE data release^{55,58}. RegulomeDB uses the Position-Weight Matrix for TF binding, and databases JASPAR CORE, TRANSFAC and UniPROBE⁵⁹. For the DNase sensitivity it uses 204 unique datasets including most recent ENCODE data release (ENCODE Project Consortium). For the Chromatin States, RegulomeDB extracts information from Roadmap Epigenome Consortium from 127 standard epigenomes. Further, RegulomeDB reports eQTLs from several tissue types and also reports DNase footprinting^{57,60}, differentially methylated regions⁶¹, manually curated regions and validated functional SNVs. RegulomeDB produces a ranking score in which smaller values are

better. RegulomeDB scoring has classes defined as 1b, 1d and 1f: likely to affect binding and linked to expression of a gene target as: 1b (eQTL + TF binding + any motif + DNase footprint + DNase peak); 1d (eQTL + TF binding + any motif + DNase peak); 1f (eQTL + TF binding/DNase peak), 2a and 2b: likely to affect binding, 3a: less likely to affect binding, 4, 5, and 6: minimal binding evidence, and 7: no data. This software was accessed on 11.05.2017 (Table S9).

We also gathered evidence for eQTLs based on GTExportal.org, GRASP software and special gene expression reported results (Westra ⁶², Lappalainen 2013 ⁶³) (Table S10). We used also GTEx and Protein Atlas (proteinatlas.org) for gene expression profiles of mtDNA genes (Figure S13).

GWAS3D (http://jjwanglab.org/gwas3d)⁶⁴ an online software was used to analyze genetic variants that could affect regulatory elements, by integrating annotations from cell type-specific chromatin states, epigenetic modifications, sequence motifs and cross-species conservation. The regulatory elements are inferred from the genome-wide chromosome interaction data, chromatin marks in 16 different cell types measured by high-throughput chromosome conformation capture technologies (5C, ChIA-PET and Hi-C) from the ENCODE project, Gene Expression Omnibus (GEO) database, published resources and 73 regulatory factor motifs from the Encyclopedia of DNA Element project (Figures S12.1-S12.3). This software was accessed on 01.10.2017.

The importance of novel MT candidate genes were evaluated via protein-protein interactions (PPI) of databases BIND (http://bind.ca), BioGrid (http://thebiogrid.org/), EcoCyc (http://www.ecocyc.org) and HPRD (http://www.hprd.org/) as summarized by NCBI http://ftp.ncbi.nih.gov/gene/GeneRIF/) (accessed on 02.11. 2018). The PPI is a topological summary of all known or predicted protein interactions, based on stable physical associations, transient binding, substrate chaining, information relay, sourced from curated experimental data of biochemical, biophysical and genetic techniques, and predicted computationally. The importance of candidate gene list based on PPI was evaluated using igraph package (http://igraph.org/<a href="http://igraph.o

Because in our study sample sizes per mtDNA marker, were variable and quite often small, we did not address the association of significant markers by gender, which future studies such as TopMed initiative of NHLBI with full sequencing of nDNA and mtDNA may deem it appropriate to contribute in the future.

4. References

- 1. Heinemann, L. Insulin assay standardization: leading to measures of insulin sensitivity and secretion for practical clinical care: response to Staten et al. *Diabetes Care* **33**, e83; author reply e84 (2010).
- 2. Beasley, T.M., Erickson, S. & Allison, D.B. Rank-based inverse normal transformations are increasingly used, but are they merited? *Behav Genet* **39**, 580-95 (2009).
- 3. Bandelt, H.J., Kloss-Brandstatter, A., Richards, M.B., Yao, Y.G. & Logan, I. The case for the continuing use of the revised Cambridge Reference Sequence (rCRS) and the standardization of notation in human mitochondrial DNA studies. *J Hum Genet* **59**, 66-77 (2014).
- 4. Anderson, S. *et al.* Sequence and organization of the human mitochondrial genome. *Nature* **290**, 457-65 (1981).
- 5. Andrews, R.M. *et al.* Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. *Nat Genet* **23**, 147 (1999).
- 6. Ingman, M., Kaessmann, H., Paabo, S. & Gyllensten, U. Mitochondrial genome variation and the origin of modern humans. *Nature* **408**, 708-13 (2000).
- 7. Behar, D.M. *et al.* A "Copernican" reassessment of the human mitochondrial DNA tree from its root. *Am J Hum Genet* **90**, 675-84 (2012).
- 8. Kearse, M. *et al.* Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* **28**, 1647-9 (2012).
- 9. Purcell, S. *et al.* PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet* **81**, 559-75 (2007).
- 10. Chang, C.C. *et al.* Second-generation PLINK: rising to the challenge of larger and richer datasets. *Gigascience* **4**, 7 (2015).
- 11. O'Connell, J. *et al.* A general approach for haplotype phasing across the full spectrum of relatedness. *PLoS Genet* **10**, e1004234 (2014).
- 12. Delaneau, O., Marchini, J., Genomes Project, C. & Genomes Project, C. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. *Nat Commun* **5**, 3934 (2014).
- 13. Howie, B., Marchini, J. & Stephens, M. Genotype imputation with thousands of genomes. *G3* (*Bethesda*) **1**, 457-70 (2011).
- 14. Winkler, T.W. *et al.* Quality control and conduct of genome-wide association meta-analyses. *Nat Protoc* **9**, 1192-212 (2014).
- 15. Liu, C., Dupuis, J., Larson, M.G. & Levy, D. Association testing of the mitochondrial genome using pedigree data. *Genet Epidemiol* **37**, 239-47 (2013).
- 16. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. *Bioinformatics* **26**, 2190-1 (2010).
- 17. Morgenthaler, S. & Thilly, W.G. A strategy to discover genes that carry multi-allelic or monoallelic risk for common diseases: a cohort allelic sums test (CAST). *Mutat Res* **615**, 28-56 (2007).
- 18. Li, B. & Leal, S.M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. *Am J Hum Genet* **83**, 311-21 (2008).
- 19. Wu, M.C. *et al.* Rare-variant association testing for sequencing data with the sequence kernel association test. *Am J Hum Genet* **89**, 82-93 (2011).
- 20. Hudson, G., Gomez-Duran, A., Wilson, I.J. & Chinnery, P.F. Recent mitochondrial DNA mutations increase the risk of developing common late-onset human diseases. *PLoS Genet* **10**, e1004369 (2014).
- 21. Fetterman, J.L. *et al.* Relations of mitochondrial genetic variants to measures of vascular function. *Mitochondrion* (2017).

- 22. Mitchell, S.L. *et al.* Investigating the relationship between mitochondrial genetic variation and cardiovascular-related traits to develop a framework for mitochondrial phenome-wide association studies. *BioData Min* **7**, 6 (2014).
- 23. Calvo, S.E., Clauser, K.R. & Mootha, V.K. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. *Nucleic Acids Res* **44**, D1251-7 (2016).
- 24. Pagliarini, D.J. *et al.* A mitochondrial protein compendium elucidates complex I disease biology. *Cell* **134**, 112-23 (2008).
- 25. Lu, H., Koshkin, V., Allister, E.M., Gyulkhandanyan, A.V. & Wheeler, M.B. Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes. *Diabetes* **59**, 448-59 (2010).
- 26. Smith, A.C. & Robinson, A.J. MitoMiner v3.1, an update on the mitochondrial proteomics database. *Nucleic Acids Res* **44**, D1258-61 (2016).
- 27. Speliotes, E.K. *et al.* Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. *Nat Genet* **42**, 937-48 (2010).
- 28. Yang, J. *et al.* FTO genotype is associated with phenotypic variability of body mass index. *Nature* **490**, 267-72 (2012).
- 29. Berndt, S.I. *et al.* Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. *Nat Genet* **45**, 501-12 (2013).
- 30. Randall, J.C. *et al.* Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. *PLoS Genet* **9**, e1003500 (2013).
- 31. Monda, K.L. *et al.* A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry. *Nat Genet* **45**, 690-6 (2013).
- 32. Locke, A.E. *et al.* Genetic studies of body mass index yield new insights for obesity biology. *Nature* **518**, 197-206 (2015).
- 33. Shungin, D. *et al.* New genetic loci link adipose and insulin biology to body fat distribution. *Nature* **518**, 187-196 (2015).
- 34. Ng, M.C.Y. *et al.* Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium. *PLoS Genet* **13**, e1006719 (2017).
- 35. Justice, A.E. *et al.* Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. *Nat Commun* **8**, 14977 (2017).
- 36. Heid, I.M. *et al.* Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. *Nat Genet* **42**, 949-60 (2010).
- 37. Graff, M. *et al.* Genome-wide physical activity interactions in adiposity A meta-analysis of 200,452 adults. *PLoS Genet* **13**, e1006528 (2017).
- 38. Saxena, R. *et al.* Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. *Nat Genet* **42**, 142-8 (2010).
- 39. Dupuis, J. *et al.* New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. *Nat Genet* **42**, 105-16 (2010).
- 40. Manning, A.K. *et al.* A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. *Nat Genet* **44**, 659-69 (2012).
- 41. Scott, R.A. *et al.* Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. *Nat Genet* **44**, 991-1005 (2012).
- 42. Prokopenko, I. *et al.* A central role for GRB10 in regulation of islet function in man. *PLoS Genet* **10**, e1004235 (2014).

- 43. Strawbridge, R.J. *et al.* Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. *Diabetes* **60**, 2624-34 (2011).
- 44. Walford, G.A. *et al.* Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci. *Diabetes* **65**, 3200-11 (2016).
- 45. Soranzo, N. *et al.* Common variants at 10 genomic loci influence hemoglobin A(1)(C) levels via glycemic and nonglycemic pathways. *Diabetes* **59**, 3229-39 (2010).
- 46. Wheeler, E. *et al.* Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. *PLoS Med* **14**, e1002383 (2017).
- 47. Tuppen, H.A., Blakely, E.L., Turnbull, D.M. & Taylor, R.W. Mitochondrial DNA mutations and human disease. *Biochim Biophys Acta* **1797**, 113-28 (2010).
- 48. Newmeyer, D.D. & Ferguson-Miller, S. Mitochondria: releasing power for life and unleashing the machineries of death. *Cell* **112**, 481-90 (2003).
- 49. Starkov, A.A. The role of mitochondria in reactive oxygen species metabolism and signaling. *Ann N Y Acad Sci* **1147**, 37-52 (2008).
- 50. Tseng, A.H., Wu, L.H., Shieh, S.S. & Wang, D.L. SIRT3 interactions with FOXO3 acetylation, phosphorylation and ubiquitinylation mediate endothelial cell responses to hypoxia. *Biochem J* **464**, 157-68 (2014).
- 51. Farmer, S.R. The forkhead transcription factor Foxo1: a possible link between obesity and insulin resistance. *Mol Cell* **11**, 6-8 (2003).
- 52. Armoni, M. *et al.* FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity. *J Biol Chem* **281**, 19881-91 (2006).
- 53. Peserico, A. *et al.* A novel AMPK-dependent FoxO3A-SIRT3 intramitochondrial complex sensing glucose levels. *Cell Mol Life Sci* **70**, 2015-29 (2013).
- 54. Ward, L.D. & Kellis, M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. *Nucleic Acids Res* **40**, D930-4 (2012).
- 55. Xie, D. et al. Dynamic trans-acting factor colocalization in human cells. Cell 155, 713-24 (2013).
- 56. Ernst, J. *et al.* Mapping and analysis of chromatin state dynamics in nine human cell types. *Nature* **473**, 43-9 (2011).
- 57. Boyle, A.P. *et al.* Annotation of functional variation in personal genomes using RegulomeDB. *Genome Res* **22**, 1790-7 (2012).
- 58. Boyle, A.P. *et al.* Comparative analysis of regulatory information and circuits across distant species. *Nature* **512**, 453-6 (2014).
- 59. Jolma, A. et al. DNA-binding specificities of human transcription factors. Cell 152, 327-39 (2013).
- 60. Degner, J.F. *et al.* DNase I sensitivity QTLs are a major determinant of human expression variation. *Nature* **482**, 390-4 (2012).
- 61. Kuleshov, V. *et al.* Whole-genome haplotyping using long reads and statistical methods. *Nat Biotechnol* **32**, 261-6 (2014).
- 62. Westra, H.J. *et al.* Systematic identification of trans eQTLs as putative drivers of known disease associations. *Nat Genet* **45**, 1238-43 (2013).
- 63. Lappalainen, T. *et al.* Transcriptome and genome sequencing uncovers functional variation in humans. *Nature* **501**, 506-11 (2013).

- 64. Li, M.J., Wang, L.Y., Xia, Z., Sham, P.C. & Wang, J. GWAS3D: Detecting human regulatory variants by integrative analysis of genome-wide associations, chromosome interactions and histone modifications. *Nucleic Acids Res* **41**, W150-8 (2013).
- 65. Csardi, G. & Nepusz, T. The igraph software package for complex network research, InterJournal, Complex Systems 1695. (2006).
- 66. Networks, Crowds, and Markets. Reasoning about a Highly Connected World. David Easley and Jon Kleinberg. Cambridge University Press. 351-383 (2010).

5. CHARGEmtDNA+ Study Acknowledgments

Study	Acknowledgment
AIRWAVE	We thank all participants in the Airwave Health Monitoring Study. The Study is funded by the Home Office (grant number
	780-TETRA) with additional support from the National Institute for Health Research (NIHR), Imperial College Healthcare
	NHS Trust (ICHNT) and Imperial College Biomedical Research Centre (BRC). P.E. acknowledges support from the ICHNT and
	Imperial College BRC, the MRC-PHE Centre for Environment and Health (MR/L01341X/1), and the NIHR Health Protection
	Research Unit on Health Impact of Environmental Hazards (HPRU-2012-10141). This work used the computing resources of
	the UK MEDical BIOinformatics partnership programme (UK MED-BIO) (MR/L01632X/1). This work was supported by the
	UK Dementia Research Institute which receives its funding from UK DRI Ltd funded by the UK Medical Research Council,
410040/71	Alzheimer's Society and Alzheimer's Research UK.
ALSPAC (The Avon	We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and
Longitudinal Study of	the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research
Parents and Children)	scientists, volunteers, managers, receptionists and nurses. The UK Medical Research Council and the Wellcome Trust (Grant ref: 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. GWAS data was generated by
	Sample Logistics and Genotyping Facilities at the Wellcome Trust Sanger Institute and LabCorp (Laboratory Corporation of
	America) using support from 23andMe.
ARIC (The Atherosclerosis	The ARIC study is a population-based cohort study designed to study new and established risk factors for atherosclerosis
Risk in Communities Study)	and community trends in coronary heart disease. In 1987-89, baseline data was collected on 15,792 adults, aged 45–64 y,
Misk in Communices Study)	living in four U.S. communities (Forsyth County, NC; Jackson, MS; northwest Minneapolis suburbs, MN; Washington
	County, MD). The baseline exam was conducted in 1987-89 and information was collected on African Americans,
	Caucasians, and a few adults of other ethnicities, aged 45–64 y. After providing informed consent, 15,792 adults were
	enrolled (8,710 women and 7,082 men). Up to 8,591, Caucasian adults with available DNA, valid dietary information, and
	consent to share genetic data were eligible for the current analysis. The Atherosclerosis Risk In Communities (ARIC) Study is
	carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts
	(HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C,
	HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01HL087641, R01HL59367 and R01HL086694;
	National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract
	HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions.
	Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and
	NIH Roadmap for Medical Research. Dr. Nettleton is supported by a K01 from the National Institutes of Health, National
	Institute of Diabetes and Digestive and Kidney Diseases (5K01DK082729-04).
Danish: The 1936 Birth	The collection of the cohort was financially supported by The Danish Heart Foundation and The Danish Medical Research
Cohort / 60 Years	Council. The authors are grateful to the staff at the Centre of Preventive Medicine, and to MD, general practitioner,
	Professor Hanne Hollnagel Dr Med. Sci., who initiated the study of the 1936 cohort.

Danish: Addition-Pro	The ADDITION-PRO study was funded by an unrestricted grant from the European Foundation for the Study of Diabetes/Pfizer for Research into Cardiovascular Disease Risk Reduction in Patients with Diabetes (74550801), the Danish Council for Strategic Research, internal research and equipment funds from Steno Diabetes Center and supported by research grants from the Novo Nordisk Foundation. The ADDITION-PRO study is managed by the ADDITION-DK steering committee (Torsten Lauritzen, Knut Borch-Johnsen, Annelli Sandbæk, Marit E. Jørgensen, and Daniel Witte).
Danish: Cogen	The Copenhagen Cardiovascular Genetic study (COGEN) is a biobank that has collected superfluous whole blood from patients admitted to six cardiology departments in the greater region of Copenhagen from 2010-2017. COGEN currently contains samples from ~80,000 individuals. Due to a Danish permanent identification number (given to all permanent residents), these data can be linked with various clinical databases at an individual level. The present study population is comprised of individuals who have had at least one coronary angiogram performed between 2010-2014. Data on the angiograms were collected from the Eastern Danish Heart Registry, which is a clinical database, where information on demographics (e.g. age, sex), risk factors and comorbidities (e.g., smoking status, diabetes) has been routinely entered on all patients in the Eastern region of Denmark. All data were de-identified prior to analyses. The ethics committee of Region North Jutland (N-20140048) approved the project and COGEN has permission from the Data Protection Agency (00916 GEH-2010-001).
Danish: Goya	The GOYA study was conducted as part of the activities of the Danish Obesity Research Centre (DanORC, www.danorc.dk) and the MRC centre for Causal Analyses in Translational Epidemiology (MRC CAITE), and genotyping was funded by the Wellcome Trust (WT 084762MA). GOYA is a nested study within The Danish National Birth Cohort which was established with major funding from the Danish National Research Foundation. Additional support for this cohort has been obtained from the Pharmacy Foundation, the Egmont Foundation, The March of Dimes Birth Defects Foundation, the Augustinus Foundation, and the Health Foundation.
Danish: Health2006	The Health2006 study was financially supported by grants from the Velux Foundation; the Danish Medical Research Council, Danish Agency for Science, Technology and Innovation; the Aase and Ejner Danielsens Foundation; ALK-Abelló A/S (Hørsholm, Denmark), Timber Merchant Vilhelm Bangs Foundation, MEKOS Laboratories (Denmark) and Research Centre for Prevention and Health, the Capital Region of Denmark.
Danish: Inter99	The Inter99 study is funded by The Danish Medical Research Council, The Danish Centre for Evaluation and Health Technology Assessment, Novo Nordisk, Copenhagen County, The Danish Heart Foundation, The Danish Pharmaceutical Association, Augustinus foundation, Ib Henriksen foundation and Becket foundation. The staff from Research Centre for Prevention and Health, The capital region, Glostrup, Denmark is acknowledged their effort in making the Inter99 study possible. The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (www.metabol.ku.dk).
Danish: Vejle Biobank	The project was funded by the Danish Council for Independent Research/Medical Sciences, the Research Council of Vejle Hospital, the Department of Internal Medicine, Vejle Hospital, Vejle County, the Danish Research Fund, the Lions Club International Denmark, and anonymous donations. The authors would like to thank the laboratory technologists engagement and dedicated work.
EPIC-InterAct	We thank all EPIC participants and staff for their contribution to the EPIC-InterAct study. Funding for the EPICInterAct project was provided by the EU FP6 programme (LSHM_CT_2006_037197).

EPIC-Norfolk	EPIC-Norfolk is supported by programme grants from the Medical Research Council UK (G1000143) and Cancer Research UK (C864/A14136) and with additional support from the European Union, Stroke Association, British Heart Foundation, Research into Ageing, Department of Health, The Wellcome Trust and the Food Standards Agency. NJW and CL also acknowledge support from the Medical Research Council, UK (MC_UU_12015/1; MC_PC_13048). We thank all EPIC participants and staff for their contribution to the study, and the laboratory teams at the MRC Epidemiology Unit for sample management.
FAMHS (Family Heart Study)	This research was conducted using data and resources form the NHLBI Family Heart Study and Washington University School of Medicine. This work was partially supported by the NIDDK R01DK089256 and NHLBI R01HL117078. We would also like to thank the families that participated in the Family Heart Study.
Fenland Study	The Fenland Study is funded by the Wellcome Trust and the Medical Research Council (MC_U106179471). We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for assistance with recruitment. We thank the Fenland Study Investigators, Fenland Study Co-ordination team and the Epidemiology Field, Data and Laboratory teams. We further acknowledge support from the Medical research council (MC_UU_12015/1).
FHS (Framingham Heart Study)	The Framingham Heart Study is funded by National Institutes of Health contract N01-HC-25195. This work is also supported by National Institute for Diabetes and Digestive and Kidney Diseases (NIDDK) U01 DK078616 and NIDDK K24 DK080140. In addition, analysis of FHS data and meta-analysis of the consortium's data supported by NHLBI intramural research funding. The NHLBI grant R01 HL105756 contributed in the CHARGE infrastructure making possible the Working Group collaborations.
GeneSTAR (Genetic Study of Atherosclerosis Risk)	GeneSTAR was supported by grants from the National Institutes of Health/National Heart, Lung, and Blood Institute (U01 HL72518, HL087698, HL49762, HL59684, HL58625, HL071025, and HL092165), National Institutes of Health/National Institute of Nursing Research (NR0224103 and NR008153), National Institutes of Health/National Institute of Neurological Disorders and Stroke (NS062059), and by a grant from the National Institutes of Health/National Center for Research Resources (M01-RR000052) to the Johns Hopkins General Clinical Research Center.
GENOA (Genetic Epidemiology Network of Arteriopathy)	Funding: This work was supported by United States Public Health Service Grants from the National Institutes of Health (K23 DK78229, R01 DK73537 and R01 HL 87660).
GOLDN (Genetics of Lipid Lowering Drugs and Diet Network Study)	GOLDN authors wish to thank all of the families who contributed to the study and all investigators who participated in this effort. GOLDN participants were recruited and phenotyped under NIH National Heart, Lung and Blood Institute (NHLBI) grant U01HL072524. Genome-wide common variant data were collected under NHLBI grant R01091357. Genome-wide methylation data were collected under NHLBI grant R01104135.

HCHS-SOL (The Hispanic Community Health Study/Study of Latinos)	The Hispanic Community Health Study/Study of Latinos is a collaborative study supported by contracts from the National Heart, Lung, and Blood Institute (NHLBI) to the University of North Carolina (HHSN2682013000011 / N01-HC-65233), University of Miami (HHSN2682013000041 / N01-HC-65234), Albert Einstein College of Medicine (HHSN2682013000021 / N01-HC-65235), University of Illinois at Chicago – HHSN2682013000031 / N01-HC-65236 Northwestern University), and San Diego State University (HHSN2682013000051 / N01-HC-65237). The following Institutes/Centers/Offices have contributed to the HCHS/SOL through a transfer of funds to the NHLBI: National Institute on Minority Health and Health Disparities, National Institute on Deafness and Other Communication Disorders, National Institute of Dental and Craniofacial Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Neurological Disorders and Stroke, NIH Institution-Office of Dietary Supplements. The Genetic Analysis Center at the University of Washington was supported by NHLBI and NIDCR contracts (HHSN268201300005C AM03 and MOD03). Additional analysis support was provided by NIDDK grant 1R01DK101855-01, NHLBI grant N01HC65233, and AHA grant 13GRNT16490017. Genotyping efforts were supported by the NIH Department of Health and Human Services (HSN26220/20054C), National Center for Advancing Translational Science Clinical Translational Science Institute (UL1TR001881), and NIDDK Diabetes Research Center (DK063491). This manuscript has been reviewed by the HCHS/SOL publications Committee for scientific content and consistency of data interpretation with previous HCHS/SOL publications.
HYPERGEN (Hypertension Genetic Epidemiology Network)	We thank all individuals who participated in the Hypertension Genetic Epidemiology Network study. The HyperGEN study is funded by cooperative agreements (U10) with NHLBI: HL54471, HL54472, HL54473, HL54495, HL54496, HL54497, HL54509, HL54515, and 2 R01 HL55673-12. The study involves: University of Utah: (Network Coordinating Center, Field Center, and Molecular Genetics Lab); Univ. of Alabama at Birmingham: (Field Center and Echo Coordinating and Analysis Center); Medical College of Wisconsin: (Echo Genotyping Lab); Boston University: (Field Center); University of Minnesota: (Field Center and Biochemistry Lab); University of North Carolina: (Field Center); Washington University: (Data Coordinating Center); Weil Cornell Medical College: (Echo Reading Center); National Heart, Lung, & Blood Institute. For a complete list of HyperGEN Investigators: http://www.biostat.wustl.edu/hypergen/Acknowledge.html
LBC1921 and LBC1936 (Lothian Birth Cohort 1921 Lothian Birth Cohort 1936)	Phenotype collection in the Lothian Birth Cohort 1921 was supported by the UK's Biotechnology and Biological Sciences Research Council (BBSRC), The Royal Society and The Chief Scientist Office of the Scottish Government. Phenotype collection in the Lothian Birth Cohort 1936 was supported by Age UK (The Disconnected Mind project). Genotyping was supported by Centre for Cognitive Ageing and Cognitive Epidemiology (Pilot Fund award), Age UK, and the Royal Society of Edinburgh. The work was undertaken by The University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1). Funding from the BBSRC and Medical Research Council (MRC) is gratefully acknowledged. WDH is supported by a grant from Age UK (Disconnected Mind Project).
LLFS (Long Life Family Study)	We would like to thank the staff and participants of the Long Life Family Study for making this work possible. LLFS was supported by the National Institute on Aging (U01-AG023712, U01-AG23744, U01-AG023746, U01-AG023749, and U01-AG023755).
MESA (Multi-Ethnic Study of Atherosclerosis)	This research, including GWAS and Cardiometabochip genotyping, was supported part by the Multi-Ethnic Study of Atherosclerosis (MESA) contracts HHSN268201500003I, N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, and UL1-TR-001420. Funding for MESA Family was provided by grants R01HL071051, R01HL071205, R01HL071250, R01HL071251, R01HL071258, R01HL071259, P50 ES015915, and by the

	National Center for Research Resources, and Grant UL1RR033176. Funding for MESA Share genotyping was provided by NHLBI Contract N02-HL-6-4278. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research (CRC) grant DK063491. Although the research described in this presentation has been funded in part by the United States Environmental Protection Agency through RD831697 to the University of Washington, it has not been subjected to the Agency's required peer and policy review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred.
NEO (The Netherlands	The authors of the NEO study thank all individuals who participated in the Netherlands Epidemiology in Obesity study, all
Epidemiology of Obesity	participating general practitioners for inviting eligible participants and all research nurses for collection of the data. We
study)	thank the NEO study group, Pat van Beelen, Petra Noordijk and Ingeborg de Jonge for the coordination, lab and data management of the NEO study. The genotyping in the NEO study was supported by the Centre National de Génotypage (Paris, France), headed by Jean-Francois Deleuze. The NEO study is supported by the participating Departments, the Division and the Board of Directors of the Leiden University Medical Center, and by the Leiden University, Research Profile Area Vascular and Regenerative Medicine. Diana van Heemst is supported by the European Commission funded project HUMAN (Health-2013-INNOVATION-1-602757). Dennis Mook-Kanamori is supported by Dutch Science Organization (ZonMW-VENI Grant 916.14.023).
OOA (The Old Order Amish	The authors thank Dr. Braxton D. Mitchell and Dr. Alan R. Shuldiner for their contribution in Amish study and the Amish
Study)	Research Clinic Staff for their great efforts in study subject recruitment and characterization as well as all the volunteers in the Amish community for their participation in these studies. The Amish portion of this study was supported by NIH grants R01 HL121007, U01 HL072515, R01 AG18728, P30 DK072488, and AHA17GRNT33440151.
PELOTAS (1982 Pelotas (Brazil) Birth Cohort Study)	The 1982 Pelotas Birth Cohort Study is conducted by the Postgraduate Program in Epidemiology at Universidade Federal de Pelotas with the collaboration of the Brazilian Public Health Association (ABRASCO). From 2004 to 2013, the Wellcome Trust supported the study. The International Development Research Center, World Health Organization, Overseas Development Administration, European Union, National Support Program for Centers of Excellence (PRONEX), the Brazilian National Research Council (CNPq), and the Brazilian Ministry of Health supported previous phases of the study. Genotyping of 1982 Pelotas Birth Cohort Study participants was supported by the Department of Science and Technology (DECIT, Ministry of Health) and National Fund for Scientific and Technological Development (FNDCT, Ministry of Science and Technology), Funding of Studies and Projects (FINEP, Ministry of Science and Technology, Brazil), Coordination of Improvement of Higher Education Personnel (CAPES, Ministry of Education, Brazil).
RS (ROTTERDAM STUDY II &	The RS is supported by the Erasmus MC University Medical Center and Erasmus University Rotterdam; The Netherlands
III)	Organization for Scientific Research (NWO); The Netherlands Organization for Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly (RIDE); The Netherlands Genomics Initiative (NGI); the Ministry of Education, Culture and Science; the Ministry of Health, Welfare and Sports; the European Commission (DG XII); and the Municipality of Rotterdam. The contribution of inhabitants, general practitioners and pharmacists of the Ommoord district to the Rotterdam Study is gratefully acknowledged.

SHIP (Study of Health In Pomerania)	We thank all staff members as well as the genotyping staff involved in the generation of the SNP data. SHIP (Study of Health in Pomerania) and SHIP-TREND both represent population-based studies. SHIP is supported by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung (BMBF); grants 01ZZ9603, 01ZZ0103, and 01ZZ0403) and the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG); grant GR 1912/5-1). SHIP and SHIP-TREND are part of the Community Medicine Research net (CMR) of the Ernst-Moritz-Arndt University Greifswald (EMAU) which is funded by the BMBF as well as the Ministry for Education, Science and Culture and the Ministry of Labor, Equal Opportunities, and Social Affairs of the Federal State of Mecklenburg-West Pomerania. The CMR encompasses several research projects that share data from SHIP. The University of Greifswald is a member of the Caché Campus program of the InterSystems GmbH. SNP typing of SHIP and SHIP-TREND using the Illumina Infinium HumanExome BeadChip (version v1.0) was supported by the BMBF (grant 03Z1CN22).
TUDR (Taiwan-US Diabetic Retinopathy Study)	This study was supported by the National Eye Institute of the National Institutes of Health (EY014684 to J.I.R. and YD.I.C.) and ARRA Supplement (EY014684-03S1, -04S1), the National Institute of Diabetes and Digestive and Kidney Disease grant DK063491 to the Southern California Diabetes Endocrinology Research Center, the Eye Birth Defects Foundation Inc., the National Science Council, Taiwan (NSC 98-2314-B-075A-002-MY3 to W.H.S.) and the Taichung Veterans General Hospital, Taichung, Taiwan (TCVGH-1003001C to W.H.S.). DNA handling and genotyping were supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR001881 and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center.
WGHS (Women's Genome Health Study)	The WGHS is supported by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with collaborative scientific support and funding for genotyping provided by Amgen.
WHI (The Women's Health Initiative)	Funding support for the "Epidemiology of putative genetic variants: The Women's Health Initiative" study is provided through the NHGRI grants HG006292 and HL129132. The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, and HHSC271201100004C. The authors thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be found at http://www.whiscience.org/publications/WHI_investigators_shortlist.pdf.
WUHHD (Washington University Hypertensive Heart Disease)	We thank all individuals who participated in the Washington University Hypertensive Heart Disease Study and to Alan D. Waggoner for his contributions to this study. The WU-HHD study was supported by National Institutes of Health (NIH) Grants R01HL091028, R01HL071782, T32HL083822, R21HL094668, UL1RR024992 and KL2RR024994 (Washington University), and an American Heart Association grant #0855626G. Additional support provided by NIH grant S10RR024532, a grant from the Barnes-Jewish Hospital Foundation, and a Lucille P. Markey Fellowship.

6. CHARGEmtDNA+ Working Group Study Descriptions

AIRWAVE (The Airwave Study)

The Airwave Health Monitoring Study is a cohort of UK police officers and staff across Great Britain. The study design and rationale have previously been described¹. Briefly, participants from each force who agreed to participate were enrolled from 2004 either with an enrolment questionnaire or a comprehensive health screening performed locally. At the health screen, the participant also filled out an extensive questionnaire on a touchscreen computer. Both questionnaires include demographic, health and lifestyle questions, and information on TETRA radio usage. The time between the enrolment questionnaire and the health screening was determined by logistic constraints and varied between 6 months and one or more years. As of 31 December 2012, the Airwave Health Monitoring Study had enrolled 42,112 participants. For participating forces, on average, 50% of their employees were recruited once enrolment was complete. Participants signed a consent form permitting use of their data and samples for future research. The study had ethical approval through the National Health Service multi-site research ethics committee (MREC/13/NW/0588).

The individuals were genotyped using Illumina Infinium HumanCoreExome-12 v1.1 BeadChip Array. We extracted 278 mitochondrial markers and updated with latest Cambridge Revised Sequence (rCRS) of the Human MT-DNA positions and were used for haplotype prephasing and imputation. PLINK was used to prepare the data in binary format and 20 variants were excluded due to missing call rates > 0.01. We used SHAPEIT2 for prephasing haplotype scaffold. Imputation was done in one window in the length of the full mitochondrial genome using IMPUTE2 based on the Cosmopolitan 1000 Genomes Phase 3 mitochondrial DNA of 2505 individuals from 26 populations conforming with the rCRS of the Human MT-DNA positions known also as v.5 phase 3 of 1000 Human Genomes HG19, GRCh37 cosmopolitan mitochondrial reference panel (ftp.1000genomes.ebi.ac.uk/vol1/ftp/) released in 2016. The final imputed dosage file (after fcGENE converting and filtering) contained 3399 mitochondrial variants for 14,688 subjects. Based on the IMPUTE2 imputation accuracy assessment, the imputation concordance rate between original mitochondrial genotypes and the same imputed ones for Airwave was %98.9. A few heterozygotes in the original data were considered as possible genotyping errors and turned to missing via PLINK.

ALSPAC (The Avon Longitudinal Study of Parents and Children)

ALSPAC is a population-based cohort study investigating genetic and environmental factors that affect the health and development of children. The study methods are described in detail elsewhere ^{2,3} (http://www.bristol.ac.uk/alspac). Briefly, 14,541 pregnant women residents in the former region of Avon, UK, with an expected delivery date between 1st April 1991 and 31st December 1992, were eligible to take part in ALSPAC. Detailed information and biosamples have been collected on these women and their offspring at regular intervals, which are available through a searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/).

Written informed consent was obtained for all study participants. Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees.

Genotyping and Imputation: Genotype data was generated using the Illumina HumanHap550 quad genome-wide SNP genotyping platform (Illumina Inc, San Diego, USA) by the Wellcome Trust Sanger Institute (WTSI, Cambridge, UK) and the Laboratory Corporation of America (LCA, Burlington, NC, USA). Samples were excluded based on incorrect sex assignment; abnormal heterozygosity (<0.320 or >0.345 for WTSI data; <0.310 or >0.330 for LCA data); high missingness (>3%); cryptic relatedness (>10% identity by descent) and non-European ancestry (detected by multidimensional scaling analysis).

After QC, 500,527 SNP loci were available for the directly genotype dataset on 8,365 unrelated individuals. Imputation was undertaken using MACH 1.0.16 Markov Chain haplotyping software 4 , using CEPH individuals from phase 2 of the HapMap project (hg18) as a reference set (release 22). All variants were filtered to have Hardy-Weinberg equilibrium $P > 5 \times 10^{-7}$ and an imputation quality score ≥ 0.8 or higher. The positions of the remaining 33 MT markers were updated using the latest MT Cambridge Revised Sequence (rCRS) for Human MT-DNA in preparation for the CHARGEmtDNA+ working group imputation protocol.

Phenotypes: Phenotype data were obtained from various time points in the ALSPAC cohort as some traits were only measured at certain ages in the offspring. At the age 17 clinic (mean age: 17.8, standard deviation: 0.4), height was measured to the nearest 0.1cm using a Harpenden stadiometer (Holtain Crosswell, Dyfed, UK) and weight was measured to the nearest 0.1kg using Tanita electronic scales. Body Mass Index (BMI) was calculated as (weight (kg))/(height (m))². At the age 11 clinic (mean age: 11.7, standard deviation: 0.2), waist and hip circumference were measured to the nearest 0.1 centemeter (cm) and used to calculate waist-hip ratio (WHR).

At the age 15 clinic (mean age: 15.5, standard deviation: 0.3), blood samples were obtained from participants who were either asked to fast overnight (for those attending in the morning) or for a minimum of 6 hours for those attending after lunch. Blood samples were immediately spun and frozen at -80°C and assayed in batches shortly after (3-12 months). Insulin was measured by automated microparticle enzyme immunoassay that does not cross-react with proinsulin and plasma glucose was measured by automated enzymatic. Glucose measurements were obtained by the staff of the Routine Lipids Section of the Biochemistry Department of Glasgow Royal Infirmary using a Hitachi Modular p analyser, (with enzymatic colorimetic assay) and kit supplied by Roche Diagnostics. HbA_{1C} was measured at approximately age 10 (mean age: 10.1, standard deviation: 0.4) from non-fasting venous whole blood and stored in HPLC haemolysant at -70°C for up to 1 year prior to assay. Measurements were obtained using an ion-exchange HPLC assay using the HA-8140 Hi-Auto HbA_{1c} analyser (Menarini Diagnostics), maintained in alignment with the Diabetes Control and Complications Trial (DCCT) method.

ARIC (The Atherosclerosis Risk in Communities Study)

The ARIC study ⁵, sponsored by the National Heart, Lung and Blood Institute (NHLBI), is a prospective epidemiologic study conducted in four U.S. communities: Minneapolis, MN, Washington County, MD, Forsyth County, NC, and Jackson, MS. ARIC is designed to investigate the etiology and natural history of atherosclerosis, the etiology of clinical atherosclerotic diseases, and variation in cardiovascular risk factors, medical care and disease by

race, gender, location, and date. The ARIC Cohort Component began in 1987, and each ARIC field center randomly selected and recruited a cohort sample of approximately 4,000 individuals aged 45-64 from a defined population in their community. A total of 15,792 participants (~27% African American; ~55% women) received an extensive examination, including medical, social, and demographic data. These participants were reexamined every three years with the first screen (baseline) occurring in 1987-89, the second in 1990-92, the third in 1993-95, and the fourth in 1996-98, and the fifth in 2011-2013. ARIC is an ongoing study, and contemporary interests include aspects of heart failure and healthy aging. Phenotypes for the current study were taken from the baseline visit (visit 1) during 1987-1989. After exclusions for those missing phenotype and genotype data, a maximum of 9481 European and 2860 African ancestry individuals were included in analyses.

Genotyping process

DNA samples were genotyped using the Affymetrix 6.0 SNP array and the Birdseed calling algorithm at the Broad Institute Center for Genotyping and Analysis (CGA). Genotypic data that passed initial quality control at the Broad Center for Genotyping and Analysis (CGA) were released to the GENEVA Coordinating Center (CC), the NCBI dbGaP team and the ARIC project team. For European ancestry samples, a total of 9743 individuals were genotyped. Of these 402 individuals were dropped for first degree relatedness, unexpected duplicates, PC outliers, and sex discrepancies. A total of 9345 European ancestry samples were further used for imputation and other analyses. For African ancestry samples, a total of 3207 individuals were genotyped. Of these 333 individuals were dropped for first degree relatedness, lack of consistency with prior genotypes, and PC outliers. A total of 2874 African ancestry samples were further used for imputation and other analyses. A total of sixty variants on the mitochondria were available for imputation for European and African ancestry individuals. The positions of these markers was updated using the latest MT Cambridge Revised Sequence (rCRS) for Human MT-DNA in preparation for the CHARGEmtDNA+ working group imputation protocol. We used PLINK software to prepare data in binary format, SHAPEIT2 for pre-phasing mtDNA haplotypes and IMPUTE2 combined with the latest 1000 Human Genomes Reference (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/), April 2016 release, for performing imputation of the full mitochondrial genome. In AA, the imputation quality was 99.3%, yielding 3622 mtDNA variants. In EA, imputation quality was 99.4%, yielding 3622 mtDNA variants. After applying fcGENE to convert probabilities per cell to dosage, 450 mtDNA variants in AA and 205 mtDNA variants in EA remained polymorphic.

The 1936 Birth Cohort / 60 Years

The cohort consists of 656 mostly non-diabetic individuals born in 1936, who, on 2 April 1976, were resident in one of four municipalities nearby Glostrup Hospital, Denmark. The cohort was collected to assess the age-specific prevalence of diabetes mellitus and impaired glucose tolerance in 60-year-old individuals in 1996/97 ⁶.

Addition-Pro

ADDITION-PRO is a longitudinal cohort study of individuals at low to high risk of type 2 diabetes, nested within the population-based ADDITION-Denmark trial of screen-detected diabetes. The ADDITION-PRO cohort comprises 2082 adults (>45 years) collected to have IGT, IFG, or NGT either with high or low risk of developing type 2 diabetes (based on

information about age, sex, gestational diabetes, family history of diabetes, hypertension, BMI, and level of physical activity). 1548 genotyped individuals was included in the present study. The samples were collected in 2009–2011 from four Danish research centers (Steno Diabetes Center, Aarhus University Hospital, Holstebro Hospital, and Hospital of South West Jutland, Esbjerg). The study was approved by the Ethics Committee of the Central Denmark Region (journal no. 20080229) and was conducted in accordance with the Helsinki Declaration. All participants provided written informed consent.

Cogen

The Copenhagen Cardiovascular Genetic study (COGEN) is a biobank that has collected superfluous whole blood from patients admitted to six cardiology departments in the greater region of Copenhagen from 2010-2017. COGEN currently contains samples from ~80,000 individuals. Due to a Danish permanent identification number (given to all permanent residents), these data can be linked with various clinical databases at an individual level. The present study population is comprised of individuals who have had at least one coronary angiogram performed between 2010-2014. From the Eastern Danish Heart Registry, which is a clinical database, we gathered information on demographics (e.g. age, sex, and BMI) and comorbidities (e.g. diabetes) which has been routinely entered on all patients in the Eastern region of Denmark. Information on e.g. glucose and HbA1c was gathered from routine blood samples.

Goya

Goya is a case-cohort study ⁷ where cases and equal numbers of population-based controls (n=2,740) were drawn from two large Danish cohorts. The two different cohorts used, were the Danish National Birth Cohort for women and a draft board examination cohort for men, respectively. Both were constituted by young Danish adults and the cases identified as those with most extreme BMI scores, whereas controls were randomly sampled. The male control group were identified from the records of 362,200 Caucasian men examined at the mean age of 20 years at the draft boards in Copenhagen and its surroundings during 1943–77. The female cases and control group were selected from 91,387 pregnant women recruited to the Danish National Birth Cohort during 1996–2002. In the present study, a total of 5373 genotyped individuals were included. Cases and controls were analyzed separately. The study was conducted as part of the activities of the Danish Obesity Research Center (DanORC, www.danorc.dk) and the MRC center for Causal Analyses in Translational Epidemiology (MRC CAiTE).

Health2006

The Health2006 cohort (KA20060011), is a population-based epidemiological study with the aim to assess the population prevalence of risk factors for different chronic diseases including, e.g., diabetes mellitus, and cardiovascular disease. It is composed as a random sample of the population aged 18 to 74 years and living in the south-western part of the greater Copenhagen area. A total of 3471 patients entered the study and participated in a health examination between June 2006 and June 2008 of which a subset was genotyped. In total, 2415 fully genotyped individuals were included in the present study. Written informed consent was obtained from all participants, and the study was approved by the Scientific Ethics Committee of the Capital Region of Denmark (KA-20060011) and was in accordance with the principles of the Declaration of Helsinki II. https://clinicaltrials.gov/ct2/show/record/NCT00316667.

Inter99

Inter99 is a population based intervention cohort ⁸, comprised of individuals from the Copenhagen area. Altogether 6161 individuals participated in the baseline examination, were genotyped and included in the present study. The Inter99 study is funded by The Danish Medical Research Council, The Danish Center for Evaluation and Health Technology Assessment, Novo Nordisk, Copenhagen County, The Danish Heart Foundation, The Danish Pharmaceutical Association, Augustinus foundation, Ib Henriksen foundation and Becket foundation.

Vejle Biobank

Vejle Biobank was established as a regional biobank between 2007 and 2010 9 . The population, aged 25-75 years contains diabetes patients age- and gender -matched to a control population recruited from the Danish civil registry. Included patients were diagnosed if they had at least one glycated hemoglobin (HbA1c) value \geq 6.6% (\geq 48.6 mmol/mol). 2,415 individuals were genotyped and included in this study.

EPIC-InterAct Study

The prospective InterAct type 2 diabetes case-cohort study ¹⁰ is coordinated by the MRC Epidemiology Unit in Cambridge and nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). EPIC was initiated in the late 1980s and involves collaboration between 23 research institutions across Europe in 10 countries (Denmark, France, Germany, Greece, Italy, the Netherlands, Norway, Spain, Sweden and the United Kingdom). The majority of EPIC cohorts were recruited from the general population, with some exceptions. EPIC-InterAct included participants from 8 European countries, as data from Norway and Greece were not available. The case-cohort sample included 12,403 cases of type 2 diabetes and 16,154 subcohort members. Samples in EPIC Cambridge centre were excluded from this analysis because they overlap with EPIC-Norfolk study (see description below).

EPIC-InterAct samples were genotyped on Illumina 660w quad chip and Human Core-Exome-12v1-0_Bchip. Quality control was performed and failed samples were removed from further analysis. Data used in this analysis includes 8364 and 6745 participants genotyped on Illumina 660w quad chip and Human Core-Exome-12v1-0_Bchip, respectively. Analysis was done by chip.

EPIC-Norfolk

The EPIC-Norfolk study ¹¹ is a prospective population-based cohort study which recruited 25,639 men and women aged 40-79 years at baseline between 1993 and 1997 from 35 participating general practices in Norfolk, United Kingdom. Individuals attended for a baseline health check including the provision of blood samples for concurrent and future analysis. They provided consent to future linkage to medical record information and a wide range of follow-up studies for different disease endpoints (including incident T2DM) have subsequently been undertaken, and further health check visits have been conducted since the baseline visit (see www.srl.cam.ac.uk/epic).

DNA has been extracted from all EPIC participants and stored blood has been analysed for an extensive range of classical and novel biomarkers. Sample quality control was performed including gender check, relatedness check, and ancestry check. Samples that failed quality control were removed from further analysis. Data used in this analysis includes 19,225 participants and their measures at the baseline health check.

Family Heart Study

The NHLBI FamHS study ¹² design, collection of phenotypes and covariates as well as clinical examination have been previously described ¹. In brief, the FamHS recruited 1,200 families (approximately 6,000 individuals), half randomly sampled, and half selected for family history of coronary heart disease (CHD) or risk factor abnormalities as compared with age- and sexspecific population rates. The participants were sampled from four population-based parent studies: the Framingham Heart Study, the Utah Family Tree Study, and two centers for the Atherosclerosis Risk in Communities study (ARIC: Minneapolis, MN, and Forsyth County, NC). These individuals attended a clinic exam (1994-1996) where a broad range of phenotypes were assessed in the general domains of CHD, atherosclerosis, cardiac and vascular function, inflammation and hemostasis, lipids and lipoproteins, blood pressure, diabetes and insulin resistance, pulmonary function, diet, education, socioeconomic status, habitual behavior, physical activity, anthropometry, medical history and medication use. Approximately 8 years later, study participants belonging to the largest pedigrees were invited for a second clinical exam (2002-04). The most important CHD risk factors were measured again, including lipids, parameters of glucose metabolism, blood pressure, anthropometry, and several biochemical and hematologic markers. In addition, a computed tomography examination provided measures of coronary and aortic calcification, and abdominal and liver fat burden. Medical history and medication use was updated. A total of 2,756 European ancestry subjects in 510 extended random and high CHD risk families were studied. Also, 633 African ancestry subjects were recruited at ARIC field center at the University of Alabama in Birmingham. Informed consent was obtained from all participants.

From FamHS, 2,098 subjects were genotyped on Illumina Human Exome 12v1.0 BeadChip. Quality controls including Mendelian errors were assessed with LOKI, and pedigree relationship was checked using the pairwise correlation among exomechip autosome and GWAS autosome data. Originally 172 mitochondrial markers were genotyped. Based on CHARGEmtDNA+ WG probe blast, all these MT markers were valid and had the same position as in the Revised Cambridge Reference Sequence (rCRS) of the Human Mitochondrial DNA. There were 11 heterozygous mitochondrial haploid genotypes, which were set to missing before imputation via PLINK. We were able to impute 3631 MT markers with IMPUTE2 and the latest 1000 Human Genomes Reference (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) released for MT in April, 2016. Based on the imputation accuracy assessment implemented within IMPUTE2, the concordance rate between original MT marker genotypes and the same ones imputed was 99.9%. After fcGENE software converted probabilities per cell to dosage and filtering, 390 markers remained as polymorphic and used for single variant association (Regression) and SKAT gene based association testing (seqMeta R package).

Fenland Study

The Fenland study ¹³ is a population-based cohort study that uses objective measures of disease exposure, such as accurate methods of body composition and energy expenditure, to study the

interactions between genetic and lifestyle factors that cause obesity and diabetes. 12,435 people were recruited from general practice lists in and around Cambridgeshire (Cambridge, Ely, and Wisbech) in the United Kingdom from birth cohorts from 1950–1975 during 2005-2015 in the first phase of the Fenland Study. 8,994 baseline samples were genotyped on Affymetrix Axiom UKBiobank chip, of which 8,453 samples passed quality control and were included in this analysis.

Framingham Heart Study

The <u>Framingham Heart Study</u> (FHS) 14,15 is a population-based, prospective study, which aims to examine the natural history, risk factors, and prognosis of cardiovascular, lung, and other diseases. The study began in 1948 with the recruitment of an original cohort of 5,209 men and women from the town of Framingham, Massachusetts. In 1971, the study recruited its offspring cohort, including 5,124 offspring and spouses of offspring of the FHS Original cohort. The Third Generation cohort started recruiting the adult children (n=4,095) of the offspring cohort participants in 2002. Participants underwent examinations every two years (the original cohort) or every four to eight years (the offspring and the third generation) to collect demographic and clinical measures and medical history .

A total of 199 unique mitochondrial DNA (mtDNA) variants in 8191 FHS individuals from two platforms were used for imputation. One platform was a customized array including 40 mtDNA variants genotyped by Illumina. The second platform was the human exome chip genotyping array by Illumina. All markers were aligned to correct positions according to the revised Cambridge Reference Sequence (rCRS). Prior to imputation, all markers were examined for incompatibilities in maternal lineages. Inconsistent alleles in pedigree members were set to missing. Any heteroplasmic alleles were also set to missing.

Mitochondrial DNA imputation was based on the Cosmopolitan 1000 Genomes Phase 3 mtDNA of 2505 individuals from 26 populations conforming with the rCRS of the Human mtDNA positions known also as v.5 phase 3 of 1000 Human Genomes HG19, GRCh37 cosmopolitan mitochondrial reference panel (ftp/) released for mitochondrial DNA in 2016. The imputation of mtDNA variants followed the CHARGEmtDNA+ working group (WG) protocol, using PLINK software for preparing FHS data in binary format, SHAPEIT2 for pre-phasing FHS mtDNA haplotype scaffold and IMPUTE2 for performing imputation of the full MT genome. The imputation quality was 99.9%, yielding 2636 mtDNA variants. After filtering in fcGENE, 639 markers remained for subsequent analyses.

This study includes individuals from the Offspring cohort and the Third Generation cohort. The proportion of female =53.6%.

BMI was measured at exam 7 for Offspring and exam 1 for Generation 3. Fasting glucose and insulin, HOMA-b and HOMA-IR were measured at exam 5 for Offspring and exam 1 for Generation 3. Hba1c was measured at exam 8 for Offspring. WHR was measured at exam 8 for Offspring and exam 2 for Generation 3 were at similar time periods.

GeneSTAR (Genetic Study of Atherosclerosis Risk)

GeneSTAR began in 1982 as the Johns Hopkins Sibling and Family Heart Study, a prospective longitudinal family-based study conducted originally in healthy adult siblings of people with

documented early onset coronary disease under 60 years of age who were hospitalized in one of ten Baltimore, Maryland hospitals. Siblings who were free of known coronary disease, autoimmune disease, and any life-threatening disease, and not pregnant, using chronic glucocorticosteroid therapy, or reporting history of chest radiation exposure were recruited. Between 1983 and 2007, 1656 European- and African-American siblings completed a baseline examination including demographics, medical history, medication use, physical examination by a cardiologist, exercise treadmill test using a modified Bruce protocol, family history, diet, anthropometrics, blood pressure measurement, smoking status, physical activity and fasting blood measures including lipids, glucose, insulin, fibrinogen, Lp(a), and inflammatory markers ¹⁶⁻¹⁸, Siblings are followed regularly via questionnaire or repeat screening for incident cardiovascular disease, stroke, peripheral arterial disease, diabetes, cancer, and related comorbidities, from 10 to 35 years after study entry ^{19,20}. Commencing in 2003, the siblings, their offspring, and the coparent of the offspring (total N=3003) participated in a 2 week trial of aspirin 81 mg/day with pre and post ex vivo platelet function assessed using multiple agonists in whole blood and platelet rich plasma along with assessment of anthropometrics, blood pressure measurement, smoking status, physical activity and fasting blood measures including lipids, glucose, fibrinogen, and inflammatory markers ^{21,22}. The offspring are also followed regularly using the same protocol and outcomes as the siblings. The GeneSTAR study was approved by the Johns Hopkins Medicine Institutional Review Board, and all participants gave written informed consent prior to screening.

Genotyping was performed with the Illumina 1M_v1C chip in 3,232 GeneSTAR participants at deCODE Genetics in Reykjavik, Iceland. Standard quality control measures were employed, including duplicates and controls on each plate, gender checks, and Mendelian consistency checks. All samples with gender discrepancies, >10% missing data, >5% Mendelian inconsistencies, or outliers from EIGENSTRAT principal component analysis were removed prior to analysis or imputation. There were 162 mitochondrial markers genotyped. Positions were remapped using the Revised Cambridge Reference Sequence of the Human Mitochondrial DNA per the CHARGE mtDNA working group. No heterozygous haploid genotypes or SNPs with 10% missing were identified. We were able to impute 3642 MT markers in both European Americans and African Americans separately using IMPUTE2 and the latest 1000 Human Genomes Reference (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) released for MT in April, 2016. Based on the imputation accuracy assessment implemented within IMPUTE2, the concordance rate between original MT marker genotypes and the same ones imputed was 99.8% for both European Americans and African Americans. After fcGENE software converted probabilities per cell to dosage and filtering, 492 markers for European Americans and 714 markers for African Americans remained as polymorphic and were used for single variant association (regression) and SKAT gene based association testing (seqMeta R package).

GENOA (Genetic Epidemiology Network of Arteriopathy)

The GENOA cohorts recruited non-Hispanic African American (AA) and white participants (EA) from two centers between 1996 and 2000 ²³. As described previously, in Jackson, MS, USA, residents with essential hypertension were identified through the Atherosclerosis Risk in Communities cohort, a general population sample of 45- to 64-year-old non-Hispanic African American residents. The non-Hispanic white subjects in the present study were members of sibships initially enrolled in Rochester, MN, USA between July 1997 and August 1999 in the

GENOA of the Family Blood Pressure Program (FBPP) ²⁴. The FBPP, sponsored by the National Heart, Lung, and Blood Institute, was designed to identify and characterize genetic determinants of hypertension and its associated cardiac and renal complications. For the GENOA–Rochester cohort, the Mayo Clinic diagnostic index and medical record linkage system of the Rochester Epidemiology Project ²⁵ were used to identify non-Hispanic white residents of Olmsted County with a diagnosis of essential hypertension made before age 60. Probands with evident secondary hypertension or advanced chronic kidney disease (serum creatinine >2.0 mg/dl) were not recruited at either site. The hypertensive proband and all siblings were invited to participate if at least one other sibling had essential hypertension. Between 2000 and 2004, 2721 (79%) of the 3434 original GENOA participants (1482 African Americans and 1239 whites) returned for a second clinic visit. All subjects provided consent and all protocols were approved by the Mayo Clinic and University of Mississippi Medical Center Institutional Review Boards.

In the African American cohort, subjects were genotyped primarily on the Affymetrix SNP Array 6.0. Samples that failed on the Affymetrix SNP Array 6.0 were run again on the Illumina 1M-Duo platform. Then, the genotype data for the African American cohort were merged. In the non-Hispanic white cohort, subjects were genotyped primarily on the Affymetrix SNP Array 6.0. Samples that failed on the Affymetrix SNP Array 6.0 were run again on the Illumina 660W and Illumina 1M-Duo platforms. Then, the genotype data for the non-Hispanic white cohort were merged.

Prior to mitochondrial (MT) marker imputation, 90 MT markers were available in the AA cohort genotype data and 56 in the EA cohort, respectively. Further, based on CHARGEmtDNA+ WG probe blast, 63 MT markers in the AA and 45 markers in the EA subjects were found valid and were updated with the latest Revised Cambridge Reference Sequence (rCRS) positions of the Human Mitochondrial DNA. The sets of 63 and 45 MT markers were used separately as scaffold for haplotype prephasing and for MT imputation.

Mitochondrial imputation used the latest 1000 Human Genomes Reference (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) released for MT in April 2016. The procedure of MT imputation followed the CHARGEmtDNA+ working group (WG) protocol, using PLINK software for preparing the data in binary format, SHAPEIT2 for prephasing MT haplotype and IMPUTE2 for performing imputation of the full MT genome, separately for AA and EA cohorts.

The GENOA imputed dosage file (after fcGENE converting and filtering) contained 3,617 good quality MT markers for 1,263 AA subjects and 3,615 good quality MT markers for 1,386 EA subjects, respectively. Based on the IMPUTE2 imputation accuracy assessment, the imputation concordance rate between original MT genotypes and the same imputed ones was 99.5% for AA cohort and 99.3% for EA cohort, respectively. Among the good quality imputed MT markers, only 334 MT markers had R²>=0.3 and were polymorphic in AA cohort and 134 MT markers in EA cohort, respectively. A few heterozygotes in the imputed data were considered as possible genotyping/imputation errors and turned to missing prior to association analysis.

GOLDN (Genetics of Lipid Lowering Drugs and Diet Network Study)

GOLDN participants were recruited from 3-generation families previously screened in the NHLBI Family Heart Study (FHS) Minnesota or Utah centers ¹². Because FHS was conducted mostly in participants of Caucasian descent, the GOLDN population is predominantly white. Excluded were people with fasting TGs ≥1500 mg/d; recent history of myocardial infarction or coronary revascularization; a history of liver, kidney, pancreas, or gall bladder disease; a history of nutrient malabsorption; current use of insulin; abnormal liver or kidney function; or currently pregnant or nursing. Individuals who currently used prescription or dietary supplements that influenced lipids were required to discontinue them for 4 weeks prior to study. The GOLDN sample consisted of 1048 individuals in 184 pedigrees (average family size 6.2); mean age at intervention was 49±16, 48% male, 51% from MN, and 8% were current smokers. This geneenvironment interaction study employed two interventions, one to raise lipids and one to lower lipids. In the post-prandial lipemia (PPL) intervention, participants fasted for ≥12 hr and abstained from alcohol intake for ≥ 24 . The PPL intervention followed the protocol of Patsch et al. (1992) ²⁶. The whipping cream (83% fat) meal had 700 Calories/m² body surface area; 3% of calories were derived from protein, and 14% from carbohydrate. Blood samples were drawn immediately before (fasting) and at 3.5 and 6 hours after consuming the high-fat meal. During the 6-hour study period, participants consumed only water and abstained from physical activity. The lipid-lowering intervention was a 3-wk, open-label trial of fenofibrate (FFB, 160 mg qd). A detailed description of the GOLDN study design can be found in Lai, et al. (2007) ²⁷.

Out of 1048 individuals in the study, only 862 subjects were genotyped on Affy6.0. Originally, 110 mitochondrial markers were genotyped in Affy6.0. Based on CHARGEmtDNA+ WG probe blast, all these MT markers were valid and had the same position as in the Revised Cambridge Reference Sequence (rCRS) of the Human Mitochondrial DNA. We were able to impute 3603 MT markers with IMPUTE2 and the latest 1000 Human Genomes Reference (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/) released for MT in April 2016. Based on the imputation accuracy assessment implemented within IMPUTE2, the concordance rate between original MT marker genotypes and the same ones imputed was 100%. After R² > 0.3 filtering, 3129 markers remained and were used for single variant association (Regression) and SKAT gene based association testing (seqMeta R package).

The Hispanic Community Health Study/Study of Latinos (HCHS/SOL)

The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) is a community-based cohort study of self-identified Hispanic/Latino individuals from four US metropolitan areas ²⁸. As described previously, the HCHS/SOL sample survey design consisted of a two-stage probability sample of households at each of four recruitment centers: Chicago, Miami, the Bronx, and San Diego ²⁹. Census block groups were selected in defined communities near each center, and households were sampled within block groups. Households with Hispanic/Latino surnames and individuals were oversampled as a means of increasing representation of the Hispanic/Latino target population; likewise, households with residents over 45 years of age were oversampled so a more uniform age distribution could be achieved. Sampling weights were calculated for each individual to reflect the probability of sampling. Baseline examination methods were described by Sorlie *et al* ²⁸. The HCHS/SOL study was approved by institutional review boards at participating institutions, and written informed consent was obtained from all participants.

DNA extracted from blood was genotyped on an Illumina custom array, SOL HCHS Custom 15041502 B3, consisting of the Illumina Omni 2.5M array (HumanOmni2.5-8v1-1) and ~150,000 custom SNPs selected to include ancestry-informative markers, variants characteristic of Amerindian populations, previously identified GWAS hits, and other candidate-gene polymorphisms. Samples were checked for annotated sex or genetically determined sex, gross chromosomal anomalies ³⁰, unexpected duplicates, missing call rates, contamination, and batch effects ³¹. Portions of the genome with large chromosomal anomalies were filtered out in 71 samples. A total of 12,803 samples passed quality control with a missing call rate < 1%. Quality metrics used to filter SNPs for the imputation basis and association testing included missing call rate (>2%), Mendelian errors (>3 in 1,343 trios or duos), duplicate-sample discordance (>2 in 291 sample pairs), and deviation from Hardy-Weinberg equilibrium (p $< 10^{-5}$ in a meta-analysis of nine groups within which individuals had both parents from the same country of origin). SNPs were regarded as "informative" if they had no positional duplicate on the array and were polymorphic in the sample. A total of 2,232,944 SNPs passed quality metrics and were informative. Genotype imputation was performed with the 1000 Genomes Project phase 1 reference panel ³². The 12,803 samples were imputed together with genotyped SNPs that passed quality filters and represented unique positions on the autosomes and non-pseudo-autosomal parts of the X chromosome. For the current project, we updated the list of individuals providing consent, as of 2016, which included 12,434 individuals. After eliminating SNPs that failed quality metrics, 321 high quality mtDNA variants were available for inclusion in these analyses. Among these 321 variants, 209 had a minor allele frequency (MAF) of at least 1%-2%. The imputation of mtDNA variants followed the CHARGEmtDNA+ working group (WG) protocol. We used PLINK software to prepare data in binary format, SHAPEIT2 for pre-phasing mtDNA haplotypes and IMPUTE2 combined with the latest 1000 Human Genomes Reference (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/), April 2016 release, for performing imputation of the full mitochondrial genome. The imputation quality in 99.3%, yielding 3667 mtDNA variants. After applying fcGENE to convert probabilities per cell to dosage, 757 mtDNA variants remained polymorphic.

HyperGEN

HyperGEN is a family-based study that looks at the genetic causes of hypertension and related conditions in EA and AA subjects. HyperGEN recruited hypertensive sibships, along with their normotensive adult offspring, and an age-matched random sample. Families were drawn from population-based cohorts or the community-at-large if sibships had ≥2 siblings who had been diagnosed with hypertension before age 60. The study was later extended to include siblings and offspring of the original sibpairs. Hypertension was defined as current antihypertensive medication use or having an average systolic blood pressure ≥140 mm Hg and/or diastolic blood pressure ≥90 mm Hg measured at two clinic visits. In total, HyperGEN has collected data on 2,471 Caucasian-American subjects (2,029 in 455 extended families) and 2,300 African-American subjects (1,886 from 584 families), from five field centers in Alabama, Massachusetts, Minnesota, North Carolina, and Utah. The HyperGEN study design and methods have been previously described ^{33,34}. In the present report, we used genetic marker data from 1,695 CA and

1,258 AA subjects genotyped using Illumina Cardio-MetaboChip and Affymetrix SNP Array 6.0, respectively.

In the HyperGEN AA cohort, after applying established QC procedures we retained data of 1,258 subjects genotyped primarily on the Affymetrix SNP Array 6.0. A total of 44 mitochondrial markers from the Affymetrix SNP Array 6.0 data remained in the AA cohort after initial QC. Similarly in the HyperGEN CA cohort, after QC we included data of 1,695 subjects genotyped on the Illumina Cardio-MetaboChip. The ChargeMT DNA working group protocol was applied to further process the MT genotype data. Based on CHARGEmtDNA+ WG probe blast, 44 markers in the AA cohort and 52 in the CA cohort were valid and had the same position as in the Revised Cambridge Reference Sequence (rCRS) of the Human Mitochondrial DNA. These markers were further used for imputation and association analysis. The imputation of mtDNA variants followed the CHARGEmtDNA+ working group (WG) protocol, using PLINK software for preparing data in binary format, SHAPEIT2 for pre-phasing mtDNA haplotype scaffold and IMPUTE2 combined with the latest 1000 Human Genomes Reference (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/), April 2016 release, for performing imputation of the full MT genome. The imputation quality in AA was 86.2%, yielding 3616 mtDNA variants; whereas in CA the imputation quality was 98.4%, yielding 3618 mtDNA variants. After applying fcGENE to convert probabilities per cell to dosage, 118 and 119 MT markers remained polymorphic, in AA and CA cohorts, respectively, and were used in a regression based single-variant association analysis. The R package seqMeta was used to derive gene-based statistics for association testing.

Long Life Family Study (LLFS)

LLFS is a family-based cohort study, including four clinical centers: Boston University Medical Center in Boston, MA, USA, Columbia University Medical School, New York, NY, USA, University of Pittsburgh in Pittsburgh PA, USA, and University of Southern Denmark, Denmark. The study characteristics, recruitment, eligibility and enrollment have been previously described ³⁵⁻³⁷. In brief, the LLFS was designed to determine genetic, behavioral, and environmental factors related to families of exceptionally healthy, elderly individuals. Phase 1 was conducted between 2006 and 2009 recruiting 4,953 individuals from 539 families. The probands were at least 79 years old in the USA centers, and 90 years old or older in Denmark. The families were selected to participate in the study based on The Family Longevity Selection Score (FLoSS) ³⁶, a score generated according to birth-year cohort survival probabilities of the proband and their siblings. Probands and their families with FLoSS score of 7 or higher, at least one living sibling, and at least one living offspring (minimum family size of 3), who were able to give informed consent and willing to participate were recruited. The individuals were genotyped using ~2.5 million SNPs from the Illumina Omni chip. The LLFS is currently gathering data during a second in-home visit, averaging about 7-8 years after the first visit.

Prior to mitochondrial (MT) marker imputation, 253 MT markers were examined for typing incompatibilities in pedigrees, and 32 discrepant genotypes in 30 pedigrees were identified. The corresponding non-conform genotypes were zeroed out for a whole matrilineage group for an erroneous marker. Further, based on work of CHARGEmtDNA+ WG collaboration, blast probe

matches of LLFS MT markers of Illumina Omni chip, 110 MT markers were found not valid and dropped from the analysis. The remaining 143 MT markers were updated with latest MT Cambridge Revised Sequence (rCRS) of the Human MT-DNA positions, and used as scaffold for haplotype prephasing and for MT imputation.

Mitochondrial imputation were based on the Cosmopolitan 1000 Genomes Phase 3 MT DNA of 2505 individuals from 26 populations conforming with the rCRS of the Human MT-DNA positions known also as v.5 phase 3 of 1000 Human Genomes HG19, GRCh37 cosmopolitan mitochondrial reference panel (ftp/) released for MT in 2016. The procedure of MT imputation followed the CHARGEmtDNA+ working group (WG) protocol, using PLINK software for preparing LLFS data in binary format, SHAPEIT2 for prephasing LLFS MT haplotype scaffold and IMPUTE2 for performing LLFS imputation in one window in the length of the full MT genome.

The final LLFS imputed dosage file (after fcGENE converting and filtering) contained 451 polymorphic MT markers for 4,710 subjects. Based on the IMPUTE2 imputation accuracy assessment, the imputation concordance rate between original MT genotypes and the same imputed ones for LLFS was 99.7%. A few heterozygotes in the original data were considered as possible genotyping errors and turned to missing via PLINK.

Lothian Birth Cohort of 1921 (LBC1921)

The LBC1921³⁸⁻⁴⁰ consists of 550 participants (316 female) who were born in 1921 and at age 11 took part in the Scottish Mental survey of 1932. Individuals who took part in the Scottish Mental Survey were identified through examining the records of those registered with a general practitioner in the area. At age 79 these individuals were followed up and those living in Edinburgh and the surrounding regions were recruited into the LBC1921 cohort. They are healthy older age individuals living independently within the community. Both BMI and Hba1c were measured at age 79. Venous whole blood was extracted following informed consent and ethical approval was given from The Lothian Research Ethics Committee.

Lothian Birth Cohort 1936 (LBC1936)

The LBC1936⁴¹ has a total of 1091 participants (543 female) who took part in the Scottish Mental Survey of 1947. These individuals were recruited in a similar fashion to the participants of the LBC1921 cohort. At age 70 these individuals were recruited into the LBC1936 where both BMI and Hba1c were measured. These participants were healthy individuals who were able to live independently within the community. Venous whole blood was extracted following informed consent and ethical approval was granted by Scotland's Multi-Center Research Ethics Committee and the Lothian Research Ethics Committee.

MESA (Multi-Ethnic Study of Atherosclerosis)

The Multi-Ethnic Study of Atherosclerosis (MESA) is a study of the characteristics of subclinical cardiovascular disease and the risk factors that predict progression to clinically overt cardiovascular disease or progression of the subclinical disease. MESA consisted of a diverse, population-based sample of an initial 6,814 asymptomatic men and women aged 45-84. 38 percent of the recruited participants were white, 28 percent African American, 22 percent Hispanic, and 12 percent Asian, predominantly of Chinese descent. Participants were recruited from six field centers across the United States: Wake Forest University, Columbia University, Johns Hopkins University, University of Minnesota, Northwestern

University and University of California - Los Angeles. This study was approved by the IRB of each study site, and written informed consent was obtained from all participants. Each participant received an extensive physical exam and determination of coronary calcification, ventricular mass and function, flow-mediated endothelial vasodilation, carotid intimal-medial wall thickness and presence of echogenic lucencies in the carotid artery, lower extremity vascular insufficiency, arterial wave forms, electrocardiographic (ECG) measures, standard coronary risk factors, sociodemographic factors, lifestyle factors, and psychosocial factors. Selected repetition of subclinical disease measures and risk factors at follow-up visits allowed study of the progression of disease. Participants are being followed for identification and characterization of cardiovascular disease events, including acute myocardial infarction and other forms of coronary heart disease (CHD), stroke, and congestive heart failure; for cardiovascular disease interventions; and for mortality. The first examination took place over two years, from July 2000 - July 2002. It was followed by four examination periods that were 17-20 months in length. Participants have been contacted every 9 to 12 months throughout the study to assess clinical morbidity and mortality.

NEO (The Netherlands Epidemiology of Obesity study)

The NEO was designed for extensive phenotyping to investigate pathways that lead to obesity-related diseases. The NEO study is a population-based, prospective cohort study that includes 6,671 individuals aged 45–65 years, with an oversampling of individuals with overweight or obesity. At baseline, information on demography, lifestyle, and medical history have been collected by questionnaires. In addition, samples of 24-h urine, fasting and postprandial blood plasma and serum, and DNA were collected. Genotyping was performed using the Illumina HumanCoreExome chip, which was subsequently imputed to the 1000 genome reference panel. Participants underwent an extensive physical examination, including anthropometry, electrocardiography, spirometry, and measurement of the carotid artery intima-media thickness by ultrasonography. In random subsamples of participants, magnetic resonance imaging of abdominal fat, pulse wave velocity of the aorta, heart, and brain, magnetic resonance spectroscopy of the liver, indirect calorimetry, dual energy X-ray absorptiometry, or accelerometry measurements were performed. The collection of data started in September 2008 and completed at the end of September 2012. Participants are currently being followed for the incidence of obesity-related diseases and mortality.

OOA (The Old Order Amish Study)

The Old Order Amish of Lancaster County, PA are a genetically homogeneous population whose ancestors emigrated to the Lancaster area in the 1700's from north central Europe. The current day population of ~35,000 Older Amish in this community are nearly all descendants of the initial immigrants. Since 1993, investigators at the University of Maryland have worked closely with the Amish community to study the genetics of a number of complex diseases and traits. These studies generally employ community-based recruitment of relatively healthy individuals and their family members ⁴²⁻⁴⁶. All studies were approved by the Institutional Review Board of the University of Maryland, and all subjects provided written informed consent.

This report is based on 2,312 Amish study participants who were genotyped on the Infinium HumanCoreExome-24 BeadChip. Mitochondrial DNA imputation was based on the Cosmopolitan 1000 Genomes Phase 3 mtDNA of 2505 individuals from 26 populations conforming with the rCRS of the Human mtDNA positions known also as v.5 phase 3 of 1000 Human Genomes HG19,

GRCh37 cosmopolitan mitochondrial reference panel (ftp/) released for mitochondrial DNA in 2016. The imputation of mtDNA variants followed the CHARGEmtDNA+ working group (WG) protocol, using PLINK software for preparing LLFS data in binary format, SHAPEIT2 for pre-phasing FHS mtDNA haplotype scaffold and IMPUTE2 for performing imputation of the full MT genome. The imputation quality was 98.9%, yielding 3623 mtDNA variants. After filtering in fcGENE, 3623 markers remained for subsequent analyses.

The community has maintained detailed and accurate genealogical records of all members, and through these records, we are able to establish how each individual in the community is related to every other individual. To account for these relationships, association analysis of these phenotypes was performed under a variance component model that assesses the effect of genotype, as an additive effect, on the quantitative trait, while simultaneously estimating the effects of age, age², sex, and a polygenic component to account for phenotypic correlation due to relatedness. The polygenic component was modelled using the relationship matrix derived from the pedigree structure to account for the relatedness of all subjects in the study. Genome-wide analysis using the a smaller version of the pedigree was carried out using the R software package.

1982 Pelotas (Brazil) Birth Cohort Study

The maternity hospitals in Pelotas, a southern Brazilian city (current population ~330,000), were visited daily in the year of 1982. The 5,914 liveborns whose families lived in the urban area were examined and their mothers interviewed. Information was obtained for more than 99% of the livebirths. These subjects have been followed-up at the following mean ages: 11.3 months (all children born from January to April 1982; n=1457), 19.4 months (entire cohort; n=4934), 43.1 months (entire cohort; n=4742), 13.1 years (random subsample; n=715), 14.7 years (systematic subsample; n=1076); 18.2 (male cohorts attending to compulsory Army recruitment examination; n=2250), 18.9 (systematic subsample; n=1031), 22.8 years (entire cohort; n=4297) and 30.2 years (entire cohort; n=3701). Details about follow-up visits and available data can be found in the two Cohort Profile papers (PMID: 16373375 and 25733577). DNA samples (collected at the mean age of 22.8 years) were genotyped for ~2.5 million of SNPs using the Illumina HumanOmni2.5-8v1 array (which includes autosomal, X and Y chromosomes, and mitochondrial variants). After quality control, the data were prephased using SHAPEIT and imputed using IMPUTE2 based on 1000 Genomes haplotypes.

ROTTERDAM STUDY (II and III)

Rotterdam Study (RS) is a population-based cohort study in Rotterdam, the Netherlands. The design of the RS has been previously described in detail elsewhere ⁴⁷. In brief, the RS includes three sub-cohorts. In 1990, all residents of Ommoord, a district in Rotterdam, aged 45 years and older were invited to participate (RS-I). In 2000, the cohort was extended with 3,011 participants who reached the age 55 years or who were 55 years and over and had moved into the research area (RS-II). In 2006, a third cohort of 3,934 participant aged 45 years and older was initiated (RS-III). Demographic and clinical variables were collected via standardized questionnaires at each visit and peripheral blood was collected for later analysis. The study was approved by the medical ethics committee at Erasmus University Rotterdam, Rotterdam, the Netherlands, and all

examined participants gave written informed consent. The RS participants were genotyped using the Illumina Infinium HumanHap550K v.3 (RS-I and RS-II) and HapMap 610 (RS-III) in the Genetic Laboratory of Erasmus MC Department of Internal Medicine, the Netherlands, following manufacturers' protocols and quality control standards.

A total of 199 unique mitochondrial DNA (mtDNA) variants from two platforms were used for imputation. One platform was a 550K v.3 including 40 mtDNA variants genotyped by Illumina. The second platform was 610 by Illumina. Further, based on work of CHARGEmtDNA+ WG collaboration, blast probe matches of RS MT markers of Illumina Omni chip, 100 MT markers were found not valid and dropped from the analysis. The remaining 143 MT markers were updated with latest MT Cambridge Revised Sequence (rCRS) of the Human MT-DNA positions, and used as scaffold for haplotype prephasing and for MT imputation.

Mitochondrial imputation were based on the Cosmopolitan 1000 Genomes Phase 3 MT DNA of 2504 individuals from 26 populations conforming with the rCRS of the Human MT-DNA positions known also as v.5 phase 3 of 1000 Human Genomes HG19, GRCh37 cosmopolitan mitochondrial reference panel (ftp/) released for MT in 2016. The procedure of MT imputation followed the CHARGEmtDNA+ working group (WG) protocol, using PLINK software for preparing RS data in binary format, SHAPEIT2 for prephasing LLFS MT haplotype scaffold and IMPUTE2 for performing RS imputation in one window in the length of the full MT genome.

The final RS imputed dosage file (after fcGENE converting and filtering) contained 451 polymorphic MT markers. Based on the IMPUTE2 imputation accuracy assessment, the imputation concordance rate between original MT genotypes and the same imputed ones for RS was 99.7%. A few heterozygotes in the original data were considered as possible genotyping errors and turned to missing via PLINK.

SHIP (Study of Health In Pomerania)

The Study of Health In Pomerania ⁴⁸ is a prospective longitudinal population-based cohort study in Western Pomerania assessing the prevalence and incidence of common diseases and their risk factors. SHIP encompasses the two independent cohorts SHIP and SHIP-TREND. Participants aged 20 to 79 with German citizenship and principal residency in the study area were recruited from a random sample of residents living in the three local cities, 12 towns as well as 17 randomly selected smaller towns. Individuals were randomly selected stratified by age and sex in proportion to population size of the city, town or small towns, respectively. A total of 4,308 participants were recruited between 1997 and 2001 in the SHIP cohort. Between 2008 and 2012 a total of 4,420 participants were recruited in the SHIP-TREND cohort. Individuals were invited to the SHIP study center for a computer-assisted personal interviews and extensive physical examinations. Blood samples were taken between 07:00 AM and 04:00 PM, and serum aliquots were prepared for immediate analysis and for storage at -80 °C in the Integrated Research Biobank (Liconic, Liechtenstein). Study participants were genotyped using the Illumina Infinium Human Exome BeadChip v1.0.

TUDR (Taiwan-US Diabetic Retinopathy Study)

Taiwan-US Diabetic Retinopathy Study (TUDR) 2009 to present, is a cohort that enrolled subjects with Type 2 diabetes receiving care at Taichung Veteran General Hospital (Taichung VGH), and a small number of subjects from Taipei Tri-Service General Hospital. All TUDR subjects underwent a complete ophthalmic and fundus examination to carefully document the presence and extent of retinopathy.

WHI (The Women's Health Initiative)

WHI is a long-term, prospective, multi-center cohort study investigating post-menopausal women's health in the US. WHI was funded by the National Institutes of Health and the National Heart, Lung, and Blood Institute to study strategies to prevent heart disease, breast cancer, colon cancer, and osteoporotic fractures in women 50-79 years of age. WHI involves 161,808 women recruited between 1993 and 1998 at 40 centers across the US. The study consists of two parts: the WHI Clinical Trial which was a randomized clinical trial of hormone therapy, dietary modification, and calcium/Vitamin D supplementation, and the WHI Observational Study, which focused on many of the inequities in women's health research and provided practical information about incidence, risk factors, and interventions related to heart disease, cancer, and osteoporotic fractures. For this project, we used women who self-identified as African or Hispanic and were part of the WHI SHARe (SNP Health Association Resource) study sample https://www.nhlbi.nih.gov/whi . The dataset includes extensive phenotypic and genotypic data on 12008 African-American and Hispanic women. After exclusions for those missing phenotype and genotype data, a maximum of 8116 African and 3463 Hispanic ancestry women were included in analyses.

Genotyping was done on the Affymetrix 6.0 platform. DNA was extracted from blood specimens collected at time of WHI enrollment. All samples, plus 2% blinded duplicates, were genotyped at Affymetrix on the Genome-wide Human SNP Array 6.0 (909,622 SNPs). Approximately 1% of samples failed genotyping; samples with call rate less than 95%, unexpected duplicates, and samples with genotype calls on the Y chromosome were further excluded. A total of 8421 African-American and 3587 Hispanic women were genotyped. A total of 119 variants on the mitochondria were available for imputation for Hispanic and African ancestry individuals. The positions of these markers was updated using the latest MT Cambridge Revised Sequence (rCRS) for Human MT-DNA in preparation for the CHARGEmtDNA+ working group imputation protocol. We used PLINK software to prepare data in binary format, SHAPEIT2 for pre-phasing mtDNA haplotypes and IMPUTE2 combined with the latest 1000 Human Genomes Reference (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/), April 2016 release, for performing imputation of the full mitochondrial genome. In AA, the imputation quality was 91.7%, yielding 3678 mtDNA variants. In HA, imputation quality was 91.0%, yielding 3678 mtDNA variants. After applying fcGENE to convert probabilities per cell to dosage, 525 mtDNA variants in AA and 426 mtDNA variants in HA remained polymorphic.

Women's Genome Health Study (WGHS)

The Women's Genome Health Study (WGHS) is a prospective cohort of initially healthy, female North American health care professionals at least 45 years old at baseline representing participants in the Women's Health Study (WHS) who provided a blood sample at baseline and

consent for blood-based analyses. The WHS was a 2x2 trial beginning in 1992-1994 of vitamin E and low dose aspirin in prevention of cancer and cardiovascular disease with about 10 years of follow-up. Since the end of the trial, follow-up has continued in observational mode. Additional information related to health and lifestyle were collected by questionnaire throughout the WHS trial and continuing observational follow-up ⁴⁹.

Genotype information for mitochondria derives from the Illumina HumanExome Beadchip v.1.1 among 22,618 WGHS participants with self-reported European ancestry that was verified by genetic analysis. Genotyped samples were initially retained with >98% successful genotyping of the SNP content. Samples and SNPs were then filtered according to the best practices protocol developed by the CHARGE consortium as reported in Grove et al. 50 within GenomeStudio v. 2011.1 software. This processing incorporated data-driven definitions of SNP clusters. The results of genotype calling in GenomeStudio were output in the report format that included scaled XY experimental intensity values as well as genotype calls for input into zCall (3, version. May 8, 2012). zCall ⁵¹ was run to identify exclusively heterozygous genotypes deemed to have acceptable quality but excluded by cluster definitions in GenomeStudio among SNPs that were retained by the best practices protocol. Homozygotes called by zCall were not used to replace missing genotypes from GenomeStudio; and no non-missing genotypes from GenomeStudio were replaced by genotypes identified by zCall. Subsequently, an additional 1,429 SNPs were excluded with a manually-validated statistical model that used the following parameters: cluster separation in GenomeStudio, the GenomeStudio R value for the major homozygote genotypes, the minor allele frequency from GenomeStudio, and the number of missing genotypes that remained not called by zCall. The final WGHS exome chip data include the total of 22,618 WGHS participants with verified European ancestry and successful genotype for 235,667 SNPs, of which 177,812 had minor allele frequency > 0. Imputation of genotype information that was not measured directly with the Exome chip was performed as described for the CHARGE mtDNA consortium.

WU-HHD (Washington University Hypertensive Heart Disease Study)

The Washington University Hypertensive Heart Disease (**WU-HHD**) study enrolled non-Hispanic Caucasian subjects (50% with Hypertension) to study the genetic determinants of hypertensive heart disease (HHD). Hypertensive and normotensive subjects representing a wide-spectrum of health traits were enrolled from 2002 to 2011. Along with demographic and anthropomorphic data, HHD and related phenotypes have been collected including ventricular and atrial structure, cardiovascular and metabolic health. The study design and methods have been previously described ⁵². The Washington University IRB approved this study and all subjects provided written informed consent.

For the present report, we included 877 subjects enrolled and genotyped in the WU-HHD study. Genotyping was obtained by the Washington University Genome Technology Access Center (GTAC) using Affymetrix SNP Array 6.0. After genotype data QC using established procedures, we excluded related samples and poor quality arrays and retained 711 unrelated subjects for analysis. A total of 167 mitochondrial markers were initially collected from the Affymetrix SNP Array 6.0 data. The ChargeMT DNA working group protocol was applied to further process the

MT genotype data. Based on CHARGEmtDNA+ WG probe blast, 95 of the 167 markers were valid and had the same position as in the Revised Cambridge Reference Sequence (rCRS) of the Human Mitochondrial DNA. These markers were further used for imputation and association analysis. Following protocols developed by the CHARGEmtDNA+ working group, we first used PLINK to prepare the genotype data in binary format, and then applied shapeit2 to prophase and IMPUTE2 to finally impute the full MT genomes. A total of 3642 MT markers were imputed by IMPUTE2 using the latest 1000 Human Genomes Reference

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/), April 2016 release. The imputation concordance rate between original MT genotypes and the same imputed ones was 95.4%. After applying fcGENE to convert probabilities per cell to dosage, 190 markers remained polymorphic and were used in a regression based single-variant association analysis. The R package seqMeta was used to derive gene-based statistics for association testing.

References

- 1. Elliott, P. *et al.* The Airwave Health Monitoring Study of police officers and staff in Great Britain: rationale, design and methods. *Environ Res* **134**, 280-5 (2014).
- 2. Boyd, A. *et al.* Cohort Profile: the 'children of the 90s'--the index offspring of the Avon Longitudinal Study of Parents and Children. *Int J Epidemiol* **42**, 111-27 (2013).
- 3. Fraser, A. *et al.* Cohort Profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. *Int J Epidemiol* **42**, 97-110 (2013).
- 4. Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. *Genet Epidemiol* **34**, 816-34 (2010).
- 5. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. *Am J Epidemiol* **129**, 687-702 (1989).
- 6. Drivsholm, T., Ibsen, H., Schroll, M., Davidsen, M. & Borch-Johnsen, K. Increasing prevalence of diabetes mellitus and impaired glucose tolerance among 60-year-old Danes. *Diabet Med* **18**, 126-32 (2001).
- 7. Paternoster, L. *et al.* Genome-wide population-based association study of extremely overweight young adults--the GOYA study. *PLoS One* **6**, e24303 (2011).
- 8. Jorgensen, T. *et al.* A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99. *Eur J Cardiovasc Prev Rehabil* **10**, 377-86 (2003).
- 9. Petersen, E.R. *et al.* Vejle Diabetes Biobank a resource for studies of the etiologies of diabetes and its comorbidities. *Clin Epidemiol* **8**, 393-413 (2016).
- 10. InterAct, C. *et al.* Design and cohort description of the InterAct Project: an examination of the interaction of genetic and lifestyle factors on the incidence of type 2 diabetes in the EPIC Study. *Diabetologia* **54**, 2272-82 (2011).
- 11. Day, N. *et al.* EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. *Br J Cancer* **80 Suppl 1**, 95-103 (1999).
- 12. Higgins, M. *et al.* NHLBI Family Heart Study: objectives and design. *Am J Epidemiol* **143**, 1219-28 (1996).
- 13. Rolfe Ede, L. *et al.* Association between birth weight and visceral fat in adults. *Am J Clin Nutr* **92**, 347-52 (2010).

- 14. Feinleib, M., Kannel, W.B., Garrison, R.J., McNamara, P.M. & Castelli, W.P. The Framingham Offspring Study. Design and preliminary data. *Prev Med* **4**, 518-25 (1975).
- 15. Splansky, G.L. *et al.* The Third Generation Cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. *Am J Epidemiol* **165**, 1328-35 (2007).
- 16. Becker, D.M. & Levine, D.M. Risk perception, knowledge, and lifestyles in siblings of people with premature coronary disease. *Am J Prev Med* **3**, 45-50 (1987).
- 17. Becker, L.C. *et al.* Screening of asymptomatic siblings of patients with premature coronary artery disease. *Circulation* **75**, II14-7 (1987).
- 18. Becker, D.M. *et al.* Risk factors in siblings of people with premature coronary heart disease. *J Am Coll Cardiol* **12**, 1273-80 (1988).
- 19. Blumenthal, R.S. *et al.* Exercise thallium tomography predicts future clinically manifest coronary heart disease in a high-risk asymptomatic population. *Circulation* **93**, 915-23 (1996).
- 20. Vaidya, D. *et al.* Incidence of coronary artery disease in siblings of patients with premature coronary artery disease: 10 years of follow-up. *Am J Cardiol* **100**, 1410-5 (2007).
- 21. Becker, D.M. *et al.* Sex differences in platelet reactivity and response to low-dose aspirin therapy. *JAMA* **295**, 1420-7 (2006).
- 22. Mathias, R.A. *et al.* A combined genome-wide linkage and association approach to find susceptibility loci for platelet function phenotypes in European American and African American families with coronary artery disease. *BMC Med Genomics* **3**, 22 (2010).
- 23. Daniels, P.R. *et al.* Familial aggregation of hypertension treatment and control in the Genetic Epidemiology Network of Arteriopathy (GENOA) study. *Am J Med* **116**, 676-81 (2004).
- 24. Morrison, A.C. *et al.* Genome scan for hypertension in nonobese African Americans: the National Heart, Lung, and Blood Institute Family Blood Pressure Program. *Am J Hypertens* **17**, 834-8 (2004).
- 25. Melton, L.J., 3rd. History of the Rochester Epidemiology Project. *Mayo Clin Proc* **71**, 266-74 (1996).
- 26. Patsch, J.R. *et al.* Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. *Arterioscler Thromb* **12**, 1336-45 (1992).
- 27. Lai, C.Q. *et al.* Fenofibrate effect on triglyceride and postprandial response of apolipoprotein A5 variants: the GOLDN study. *Arterioscler Thromb Vasc Biol* **27**, 1417-25 (2007).
- 28. Sorlie, P.D. *et al.* Design and implementation of the Hispanic Community Health Study/Study of Latinos. *Ann Epidemiol* **20**, 629-41 (2010).
- 29. Lavange, L.M. *et al.* Sample design and cohort selection in the Hispanic Community Health Study/Study of Latinos. *Ann Epidemiol* **20**, 642-9 (2010).
- 30. Laurie, C.C. *et al.* Detectable clonal mosaicism from birth to old age and its relationship to cancer. *Nat Genet* **44**, 642-50 (2012).
- 31. Laurie, C.C. *et al.* Quality control and quality assurance in genotypic data for genome-wide association studies. *Genet Epidemiol* **34**, 591-602 (2010).
- 32. Genomes Project, C. *et al.* An integrated map of genetic variation from 1,092 human genomes. *Nature* **491**, 56-65 (2012).
- 33. Williams, R.R. *et al.* NHLBI family blood pressure program: methodology and recruitment in the HyperGEN network. Hypertension genetic epidemiology network. *Ann Epidemiol* **10**, 389-400 (2000).
- 34. Freedman, B.I. *et al.* Genome-wide scans for heritability of fasting serum insulin and glucose concentrations in hypertensive families. *Diabetologia* **48**, 661-8 (2005).
- 35. Pedersen, C.B., Gotzsche, H., Moller, J.O. & Mortensen, P.B. The Danish Civil Registration System. A cohort of eight million persons. *Dan Med Bull* **53**, 441-9 (2006).

- 36. Sebastiani, P. *et al.* A family longevity selection score: ranking sibships by their longevity, size, and availability for study. *Am J Epidemiol* **170**, 1555-62 (2009).
- 37. Newman, A.B. *et al.* Health and function of participants in the Long Life Family Study: A comparison with other cohorts. *Aging (Albany NY)* **3**, 63-76 (2011).
- 38. Scottish Council for Research in Education. *The intelligence of Scottish children: A national survey of an age-group*, (University of London Press, London, 1933).
- 39. Deary, I.J., Whiteman, M.C., Starr, J.M., Whalley, L.J. & Fox, H.C. The impact of childhood intelligence on later life: Following up the Scottish Mental Surveys of 1932 and 1947. *J. Pers. Soc. Psychol.* **86**, 130-147 (2004).
- 40. Deary, I.J., Whalley, L.J. & Starr, J.M. *A Lifetime of Intelligence, Follow-up Studies of the Scottish Mental Surveys of 1932 and 1947*, (American Psychological Association, Washington, DC, 2009).
- 41. Deary, I.J. *et al.* The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond. *BMC Geriatr.* **7**, 28 (2007).
- 42. Hsueh, W.C. *et al.* Diabetes in the Old Order Amish: characterization and heritability analysis of the Amish Family Diabetes Study. *Diabetes Care* **23**, 595-601 (2000).
- 43. Streeten, E.A. *et al.* Reduced incidence of hip fracture in the Old Order Amish. *J Bone Miner Res* **19**, 308-13 (2004).
- 44. Sorkin, J. *et al.* Exploring the genetics of longevity in the Old Order Amish. *Mech Ageing Dev* **126**, 347-50 (2005).
- 45. Mitchell, B.D. *et al.* The genetic response to short-term interventions affecting cardiovascular function: rationale and design of the Heredity and Phenotype Intervention (HAPI) Heart Study. *Am Heart J* **155**, 823-8 (2008).
- 46. Shuldiner, A.R. *et al.* Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. *JAMA* **302**, 849-57 (2009).
- 47. Hofman, A. *et al.* The Rotterdam Study: 2016 objectives and design update. *European journal of epidemiology* **30**, 661-708 (2015).
- 48. Völzke et al. Cohort profile: the study of health in Pomerania. Int J Epidemiol. Apr;40(2):294-307 (2011).
- 49. Ridker, P.M. *et al.* Rationale, design, and methodology of the Women's Genome Health Study: a genome-wide association study of more than 25,000 initially healthy american women. *Clin Chem* **54**, 249-55 (2008).
- 50. Grove, M.L. *et al.* Best practices and joint calling of the HumanExome BeadChip: the CHARGE Consortium. *PLoS One* **8**, e68095 (2013).
- 51. Goldstein, J.I. *et al.* zCall: a rare variant caller for array-based genotyping: genetics and population analysis. *Bioinformatics* **28**, 2543-5 (2012).
- 52. Barve, R.A. *et al.* Genetic association of left ventricular mass assessed by M-mode and two-dimensional echocardiography. *J Hypertens* **34**, 88-96 (2016).