830 research outputs found

    Conformal covariance of massless free nets

    Get PDF
    In the present paper we review in a fibre bundle context the covariant and massless canonical representations of the Poincare' group as well as certain unitary representations of the conformal group (in 4 dimensions). We give a simplified proof of the well-known fact that massless canonical representations with discrete helicity extend to unitary and irreducible representations of the conformal group mentioned before. Further we give a simple new proof that massless free nets for any helicity value are covariant under the conformal group. Free nets are the result of a direct (i.e. independent of any explicit use of quantum fields) and natural way of constructing nets of abstract C*-algebras indexed by open and bounded regions in Minkowski space that satisfy standard axioms of local quantum physics. We also give a group theoretical interpretation of the embedding {\got I} that completely characterizes the free net: it reduces the (algebraically) reducible covariant representation in terms of the unitary canonical ones. Finally, as a consequence of the conformal covariance we also mention for these models some of the expected algebraic properties that are a direct consequence of the conformal covariance (essential duality, PCT--symmetry etc.).Comment: 31 pages, Latex2

    Helicity supersymmetry of dyons

    Full text link
    The 'dyon' system of D'Hoker and Vinet consisting of a spin 1/2 particle with anomalous gyromagnetic ratio 4 in the combined field of a Dirac monopole plus a Coulomb plus a suitable 1/r21/r^2 potential (which arises in the long-range limit of a self-dual monopole) is studied following Biedenharn's approach to the Dirac-Coulomb problem: the explicit solution is obtained using the `Biedenharn-Temple operator', Γ\Gamma, and the extra two-fold degeneracy is explained by the subtle supersymmetry generated by the 'Dyon Helicity' or generalized `Biedenharn-Johnson-Lippmann' operator R{\cal R}. The new SUSY anticommutes with the chiral SUSY discussed previously.Comment: 14 pages, 2 figure

    Superluminal X-shaped beams propagating without distortion along a coaxial guide

    Get PDF
    In a previous paper [Phys. Rev. E64 (2001) 066603; e-print physics/0001039], we showed that localized Superluminal solutions to the Maxwell equations exist, which propagate down (non-evanescence) regions of a metallic cylindrical waveguide. In this paper we construct analogous non-dispersive waves propagating along coaxial cables. Such new solutions, in general, consist in trains of (undistorted) Superluminal "X-shaped" pulses. Particular attention is paid to the construction of finite total energy solutions. Any results of this kind may find application in the other fields in which an essential role is played by a wave-equation (like acoustics, geophysics, etc.). [PACS nos.: 03.50.De; 41.20;Jb; 83.50.Vr; 62.30.+d; 43.60.+d; 91.30.Fn; 04.30.Nk; 42.25.Bs; 46.40.Cd; 52.35.Lv. Keywords: Wave equations; Wave propagation; Localized beams; Superluminal waves; Coaxial cables; Bidirectional decomposition; Bessel beams; X-shaped waves; Maxwell equations; Microwaves; Optics; Special relativity; Coaxial metallic waveguides; Acoustics; Seismology; Mechanical waves; Elastic waves; Guided gravitational waves.]Comment: plain LaTeX file (22 pages), plus 15 figures; in press in Phys. Rev.

    Extended MacMahon-Schwinger's Master Theorem and Conformal Wavelets in Complex Minkowski Space

    Full text link
    We construct the Continuous Wavelet Transform (CWT) on the homogeneous space (Cartan domain) D_4=SO(4,2)/(SO(4)\times SO(2)) of the conformal group SO(4,2) (locally isomorphic to SU(2,2)) in 1+3 dimensions. The manifold D_4 can be mapped one-to-one onto the future tube domain C^4_+ of the complex Minkowski space through a Cayley transformation, where other kind of (electromagnetic) wavelets have already been proposed in the literature. We study the unitary irreducible representations of the conformal group on the Hilbert spaces L^2_h(D_4,d\nu_\lambda) and L^2_h(C^4_+,d\tilde\nu_\lambda) of square integrable holomorphic functions with scale dimension \lambda and continuous mass spectrum, prove the isomorphism (equivariance) between both Hilbert spaces, admissibility and tight-frame conditions, provide reconstruction formulas and orthonormal basis of homogeneous polynomials and discuss symmetry properties and the Euclidean limit of the proposed conformal wavelets. For that purpose, we firstly state and prove a \lambda-extension of Schwinger's Master Theorem (SMT), which turns out to be a useful mathematical tool for us, particularly as a generating function for the unitary-representation functions of the conformal group and for the derivation of the reproducing (Bergman) kernel of L^2_h(D_4,d\nu_\lambda). SMT is related to MacMahon's Master Theorem (MMT) and an extension of both in terms of Louck's SU(N) solid harmonics is also provided for completeness. Convergence conditions are also studied.Comment: LaTeX, 40 pages, three new Sections and six new references added. To appear in ACH

    Detecting Neutrino Magnetic Moments with Conducting Loops

    Full text link
    It is well established that neutrinos have mass, yet it is very difficult to measure those masses directly. Within the standard model of particle physics, neutrinos will have an intrinsic magnetic moment proportional to their mass. We examine the possibility of detecting the magnetic moment using a conducting loop. According to Faraday's Law of Induction, a magnetic dipole passing through a conducting loop induces an electromotive force, or EMF, in the loop. We compute this EMF for neutrinos in several cases, based on a fully covariant formulation of the problem. We discuss prospects for a real experiment, as well as the possibility to test the relativistic formulation of intrinsic magnetic moments.Comment: 6 pages, 4 b/w figures, uses RevTe

    Klauder's coherent states for the radial Coulomb problem in a uniformly curved space and their flat-space limits

    Full text link
    First a set of coherent states a la Klauder is formally constructed for the Coulomb problem in a curved space of constant curvature. Then the flat-space limit is taken to reduce the set for the radial Coulomb problem to a set of hydrogen atom coherent states corresponding to both the discrete and the continuous portions of the spectrum for a fixed \ell sector.Comment: 10 pages, no figure

    Operator Transformations Between Exactly Solvable Potentials and Their Lie Group Generators

    Full text link
    One may obtain, using operator transformations, algebraic relations between the Fourier transforms of the causal propagators of different exactly solvable potentials. These relations are derived for the shape invariant potentials. Also, potentials related by real transformation functions are shown to have the same spectrum generating algebra with Hermitian generators related by this operator transformation.Comment: 13 pages with one Postscript figure, uses LaTeX2e with revte

    From the Mendeleev periodic table to particle physics and back to the periodic table

    Get PDF
    We briefly describe in this paper the passage from Mendeleev's chemistry (1869) to atomic physics (in the 1900's), nuclear physics (in the 1932's) and particle physics (from 1953 to 2006). We show how the consideration of symmetries, largely used in physics since the end of the 1920's, gave rise to a new format of the periodic table in the 1970's. More specifically, this paper is concerned with the application of the group SO(4,2)xSU(2) to the periodic table of chemical elements. It is shown how the Madelung rule of the atomic shell model can be used for setting up a periodic table that can be further rationalized via the group SO(4,2)xSU(2) and some of its subgroups. Qualitative results are obtained from this nonstandard table.Comment: 15 pages; accepted for publication in Foundations of Chemistry (special issue to commemorate the one hundredth anniversary of the death of Mendeleev who died in 1907); version 2: 16 pages; some sentences added; acknowledgment and references added; misprints correcte

    Unified description of 0+ states in a large class of nuclear collective models

    Full text link
    A remarkably simple regularity in the energies of 0+ states in a broad class of collective models is discussed. A single formula for all 0+ states in flat-bottomed infinite potentials that depends only on the number of dimensions and a simpler expression applicable to all three IBA symmetries in the large boson number limit are presented. Finally, a connection between the energy expression for 0+ states given by the X(5) model and the predictions of the IBA near the critical point is explored.Comment: 4 pages, 3 postscript figures, uses revTe

    Conformally related massless fields in dS, AdS and Minkowski spaces

    Full text link
    In this paper we write down the equation for a scalar conformally coupled field simultaneously for de Sitter (dS), anti-de Sitter (AdS) and Minkowski spacetime in d-dimensions. The curvature dependence appears in a very simple way through a conformal factor. As a consequence the process of curvature free limit, including wave functions limit and two-points functions, turns to be a straightforward issue. We determine a set of modes, that we call de Sitter plane waves, which become ordinary plane waves when the curvature vanishes.Comment: 7 pages, 1 figur
    • …
    corecore