7,310 research outputs found

    Active control of spacecraft charging on ATS-5 and ATS-6

    Get PDF
    Effects on spacecraft ground potential of active emission of charged particles are being investigated through experiments using the ATS-5 and ATS-6 spacecraft. Each spacecraft is equipped with ion engine neutralizers which emit low energy charged particles. Despite great differences in design between the two spacecraft, they attain similar potentials in similar environments. Therefore, effects on spacecraft potential of neutralizer operations can be used to compare the effects of operating the two different neutralizers (hot wire filament and plasma bridge). The neutralizers on both spacecraft were operated in eclipse. Results of these operations are presented and spacecraft responses compared

    Geostatistical methods for improved quantification of ice mass bed topography

    Get PDF
    Contribution to global mean sea level rise by ice sheets, ice caps and glaciers is accelerating. The total volume of water stored globally in terrestrial ice is estimated by a multitude of methods but principally by the interpolation of icethickness data. For the ice sheets and large Arctic ice caps, ice thickness is predominantly measured by airborne radio-echo sounding surveys which use radio waves to detect the bed of the surveyed ice mass. While such surveys are now extensive, large portions of ice masses are generally unsurveyed due to their size. In order to quantify ice thickness and subsequently ice volume over the entirety of an ice mass, interpolation of the input measurements is used. Throughout this whole process, uncertainties arise. Initially, from the radio-echo sounding (RES) survey and subsequently, in the interpolation. Compounding this is the absence of ground-truthing for measurements and interpolations due to the inaccessibility of ice mass beds. Hence, there is a requirement to find alternative means of quantifying uncertainty in ice thickness measurements and subsequently derived bed topography, and analyses made from these data to reduce the uncertainty in sea level change projections. This thesis develops and applies methods which aim to reduce uncertainty in ice thickness and bed topography datasets. Using high-resolution elevation data, this study exploits the likely similarity between currently ice-covered topography and formerly glaciated topography in the Arctic to generate datasets which provide alternative validation for ice mass bed topography. For the first time topographic error in RES surveying is quantified and corrections are formulated for treating future and historic ice thickness and bed topography data. Additionally, the propagation of these uncertainties through interpolations of bed topography is quantified and reduced, focussing on the Greenland Ice Sheet. Finally, the full suite of methods is applied to ice caps in the Canadian Arctic to generate, for the first time, ice cap wide topography for ice caps in the region that hold approximately a third of the freshwater outside of the continental ice sheets. By quantifying and reducing uncertainty in datasets of bed topography and ice thickness this thesis assesses the perceived stability of the continental ice sheets and large ice Arctic ice caps. From this, the implications of this for near and far term global mean sea-level rise are investigated

    Low-cost, aerial photographic inventory of tidal wetlands

    Get PDF
    There are no author-identified significant results in this report

    Learning with Biased Complementary Labels

    Full text link
    In this paper, we study the classification problem in which we have access to easily obtainable surrogate for true labels, namely complementary labels, which specify classes that observations do \textbf{not} belong to. Let YY and Yˉ\bar{Y} be the true and complementary labels, respectively. We first model the annotation of complementary labels via transition probabilities P(Yˉ=iY=j),ij{1,,c}P(\bar{Y}=i|Y=j), i\neq j\in\{1,\cdots,c\}, where cc is the number of classes. Previous methods implicitly assume that P(Yˉ=iY=j),ijP(\bar{Y}=i|Y=j), \forall i\neq j, are identical, which is not true in practice because humans are biased toward their own experience. For example, as shown in Figure 1, if an annotator is more familiar with monkeys than prairie dogs when providing complementary labels for meerkats, she is more likely to employ "monkey" as a complementary label. We therefore reason that the transition probabilities will be different. In this paper, we propose a framework that contributes three main innovations to learning with \textbf{biased} complementary labels: (1) It estimates transition probabilities with no bias. (2) It provides a general method to modify traditional loss functions and extends standard deep neural network classifiers to learn with biased complementary labels. (3) It theoretically ensures that the classifier learned with complementary labels converges to the optimal one learned with true labels. Comprehensive experiments on several benchmark datasets validate the superiority of our method to current state-of-the-art methods.Comment: ECCV 2018 Ora

    MACiE: a database of enzyme reaction mechanisms.

    Get PDF
    SUMMARY: MACiE (mechanism, annotation and classification in enzymes) is a publicly available web-based database, held in CMLReact (an XML application), that aims to help our understanding of the evolution of enzyme catalytic mechanisms and also to create a classification system which reflects the actual chemical mechanism (catalytic steps) of an enzyme reaction, not only the overall reaction. AVAILABILITY: http://www-mitchell.ch.cam.ac.uk/macie/.EPSRC (G.L.H. and J.B.O.M.), the BBSRC (G.J.B. and J.M.T.—CASE studentship in association with Roche Products Ltd; N.M.O.B. and J.B.O.M.—grant BB/C51320X/1), the Chilean Government’s Ministerio de Planificacio´n y Cooperacio´n and Cambridge Overseas Trust (D.E.A.) for funding and Unilever for supporting the Centre for Molecular Science Informatics.application note restricted to 2 printed pages web site: http://www-mitchell.ch.cam.ac.uk/macie

    Best Practices in Intercultural Health: Five Case Studies in Latin America

    Get PDF
    The practice of integrating western and traditional indigenous medicine is fast becoming anaccepted and more widely used approach in health care systems throughout the world. However,debates about intercultural health approaches have raised significant concerns. This paper reportsfindings of five case studies on intercultural health in Chile, Colombia, Ecuador, Guatemala, andSuriname. It presents summary information on each case study, comparatively analyzes theinitiatives following four main analytical themes, and examines the case studies against a series ofthe best practice criteria

    Application of asymptotic expansions of maximum likelihood estimators errors to gravitational waves from binary mergers: the single interferometer case

    Get PDF
    In this paper we describe a new methodology to calculate analytically the error for a maximum likelihood estimate (MLE) for physical parameters from Gravitational wave signals. All the existing litterature focuses on the usage of the Cramer Rao Lower bounds (CRLB) as a mean to approximate the errors for large signal to noise ratios. We show here how the variance and the bias of a MLE estimate can be expressed instead in inverse powers of the signal to noise ratios where the first order in the variance expansion is the CRLB. As an application we compute the second order of the variance and bias for MLE of physical parameters from the inspiral phase of binary mergers and for noises of gravitational wave interferometers . We also compare the improved error estimate with existing numerical estimates. The value of the second order of the variance expansions allows to get error predictions closer to what is observed in numerical simulations. It also predicts correctly the necessary SNR to approximate the error with the CRLB and provides new insight on the relationship between waveform properties SNR and estimation errors. For example the timing match filtering becomes optimal only if the SNR is larger than the kurtosis of the gravitational wave spectrum
    corecore