81 research outputs found

    Wrinkling of microcapsules in shear flow

    Full text link
    Elastic capsules can exhibit short wavelength wrinkling in external shear flow. We analyse this instability of the capsule shape and use the length scale separation between the capsule radius and the wrinkling wavelength to derive analytical results both for the threshold value of the shear rate and for the critical wave-length of the wrinkling. These results can be used to deduce elastic parameters from experiments.Comment: 4 pages, 2 figures, submitted to PR

    Stationary shapes of deformable particles moving at low Reynolds numbers

    Full text link
    Lecture Notes of the Summer School ``Microswimmers -- From Single Particle Motion to Collective Behaviour'', organised by the DFG Priority Programme SPP 1726 (Forschungszentrum J{\"{u}}lich, 2015).Comment: Pages C7.1-16 of G. Gompper et al. (ed.), Microswimmers - From Single Particle Motion to Collective Behaviour, Lecture Notes of the DFG SPP 1726 Summer School 2015, Forschungszentrum J\"ulich GmbH, Schriften des Forschungszentrums J\"ulich, Reihe Key Technologies, Vol 110, ISBN 978-3-95806-083-

    Motion of a spherical capsule in branched tube flow with finite inertia

    Get PDF
    We computationally study the transient motion of an initially spherical capsule flowing through a right-angled tube bifurcation, composed of tubes having the same diameter. The capsule motion and deformation is simulated using a three-dimensional immersed-boundary lattice Boltzmann method. The capsule is modelled as a liquid droplet enclosed by a hyperelastic membrane following the Skalak’s law (Skalak et al., Biophys. J., vol. 13(3), 1973, pp. 245–264). The fluids inside and outside the capsule are assumed to have identical viscosity and density. We mainly focus on path selection of the capsule at the bifurcation as a function of the parameters of the problem: the flow split ratio, the background flow Reynolds number Re , the capsule-to-tube size ratio a/R and the capillary number Ca , which compares the viscous fluid force acting on the capsule to the membrane elastic force. For fixed physical properties of the capsule and of the tube flow, the ratio Ca/Re is constant. Two size ratios are considered: a/R=0.2 and 0.4. At low Re , the capsule favours the branch which receives most flow. Inertia significantly affects the background flow in the branched tube. As a consequence, at equal flow split, a capsule tends to flow straight into the main branch as Re is increased. Under significant inertial effects, the capsule can flow into the downstream main tube even when it receives much less flow than the side branch. Increasing Ca promotes cross-stream migration of the capsule towards the side branch. The results are summarized in a phase diagram, showing the critical flow split ratio for which the capsule flows into the side branch as a function of size ratio, Re and Ca/Re . We also provide a simplified model of the path selection of a slightly deformed capsule and explore its limits of validity. We finally discuss the experimental feasibility of the flow system and its applicability to capsule sorting

    Методическая работа в дошкольной образовательной организации как условие развития профессионально-педагогической культуры педагогов

    Get PDF
    Тема работы актуальна. В ВКР представлена методическая работа с педагогами ДОУ, по формирования профессионально-педагогической культуры. Работа имеет практическую значимост

    Numerical simulations of complex fluid-fluid interface dynamics

    Get PDF
    Interfaces between two fluids are ubiquitous and of special importance for industrial applications, e.g., stabilisation of emulsions. The dynamics of fluid-fluid interfaces is difficult to study because these interfaces are usually deformable and their shapes are not known a priori. Since experiments do not provide access to all observables of interest, computer simulations pose attractive alternatives to gain insight into the physics of interfaces. In the present article, we restrict ourselves to systems with dimensions comparable to the lateral interface extensions. We provide a critical discussion of three numerical schemes coupled to the lattice Boltzmann method as a solver for the hydrodynamics of the problem: (a) the immersed boundary method for the simulation of vesicles and capsules, the Shan-Chen pseudopotential approach for multi-component fluids in combination with (b) an additional advection-diffusion component for surfactant modelling and (c) a molecular dynamics algorithm for the simulation of nanoparticles acting as emulsifiers.Comment: 24 pages, 12 figure

    Capsule motion and deformation in flow I and II.

    No full text

    Motion of a spherical microcapsule freely suspended in a linear shear flow

    No full text

    Entrance of a Bioartificial Capsule in a Pore

    No full text
    This paper deals with the numerical study of the flow of a bioartificial capsule in a long axisymmetric pore with a hyperbolic entrance. The capsule consists of an infinitely thin and hyperelastic membrane filled with a Newtonian liquid. The resolution of the problem is based on an integral formulation of Stokes equations along with a boundary element method. The model allows the study of the influence of various parameters such as the membrane rheology, the membrane elasticity, the viscosity ratio λ between the capsule fluid and the suspending fluid, the capsule shape and size. Owing to the important number of parameters involved in the problem, the effect of viscosity ratio λ and of the membrane rheology are investigated separately in the regime of large deformations. Special attention is given to the influence of the capsule initial shape. Specifically, we have considered ellipsoidal capsules with aspect ratio A/B=0.28 which thus have the same sphericity index as red blood cells. It is found that the entrance of the capsule in the pore is very sensitive to the capsule shape and volume. The influence of viscosity ratio λ is important in cases where quasi-plugging of the pore is reached. The effect of capsule rheology is significant when the deformations are very large
    corecore