237 research outputs found
The Challenging Pathway of Treatment for Neurogenesis Impairment in Down Syndrome: Achievements and Perspectives
Down syndrome (DS), also known as trisomy 21, is a genetic disorder caused by triplication of Chromosome 21. Gene triplication may compromise different body functions but invariably impairs intellectual abilities starting from infancy. Moreover, after the fourth decade of life people with DS are likely to develop Alzheimer's disease. Neurogenesis impairment during fetal life stages and dendritic pathology emerging in early infancy are thought to be key determinants of alterations in brain functioning in DS. Although the progressive improvement in medical care has led to a notable increase in life expectancy for people with DS, there are currently no treatments for intellectual disability. Increasing evidence in mouse models of DS reveals that pharmacological interventions in the embryonic and neonatal periods may greatly benefit brain development and cognitive performance. The most striking results have been obtained with pharmacotherapies during embryonic life stages, indicating that it is possible to pharmacologically rescue the severe neurodevelopmental defects linked to the trisomic condition. These findings provide hope that similar benefits may be possible for people with DS. This review summarizes current knowledge regarding (i) the scope and timeline of neurogenesis (and dendritic) alterations in DS, in order to delineate suitable windows for treatment; (ii) the role of triplicated genes that are most likely to be the key determinants of these alterations, in order to highlight possible therapeutic targets; and (iii) prenatal and neonatal treatments that have proved to be effective in mouse models, in order to rationalize the choice of treatment for human application. Based on this body of evidence we will discuss prospects and challenges for fetal therapy in individuals with DS as a potential means of drastically counteracting the deleterious effects of gene triplication
Nitric Oxide Protects Neuroblastoma Cells from Apoptosis Induced by Serum Deprivation through cAMP-response Element-binding Protein (CREB) Activation
The transcription factor cAMP-response element-binding protein (CREB) mediates survival in many cells, including neurons. Recently, death of cerebellar granule neurons due to nitric oxide (NO) deprivation was shown to be accompanied by down-regulation of CREB activity (1). We now provide evidence that overproduction of endogenous NO or supplementation with exogenous NO renders SK-N-BE human neuroblastoma cells more resistant to apoptosis induced by serum deprivation. Parental cells underwent apoptosis after 24 h of serum deprivation, an outcome largely absent in clones overexpressing human neuronal nitric oxide synthase (nNOS). This protective effect was reversed by the inhibition of NOS itself or soluble guanylyl cyclase, pointing at cGMP as an intermediate effector of NO-mediated rescue. A slow-releasing NO donor protected parental cells to a significant extent, thus confirming the survival effect of NO. The impaired viability of serum-deprived parental cells was accompanied by a strong decrease of CREB phosphorylation and transcriptional activity, effects significantly attenuated in nNOS-overexpressing clones. To confirm the role of CREB in survival, the ectopic expression of CREB and/or protein kinase A largely counteracted serum deprivation-induced cell death of SK-N-BE cells, whereas transfection with a CREB negative mutant was ineffective. These experiments indicate that CREB activity is an important step for NO-mediated survival in neuronal cells
New Perspectives for the Rescue of Cognitive Disability in Down Syndrome
Down syndrome (DS) is a relatively common genetic condition caused by the triplication of human chromosome 21. No therapies currently exist for the rescue of neurocognitive impairment in DS. This review presents exciting findings showing that it is possible to restore brain development and cognitive performance in mouse models of DS with therapies that can also apply to humans. This knowledge provides a potential breakthrough for the prevention of intellectual disability in DS
Prenatal, but not Postnatal, Curcumin Administration Rescues Neuromorphological and Cognitive Alterations in Ts65Dn Down Syndrome Mice
Background: The cognitive dysfunction in Down syndrome (DS) is partially caused by deficient neurogenesis during fetal stages. Curcumin enhances neurogenesis and learning and memory.
Objectives: We aimed to test the ability of curcumin to rescue the neuromorphological and cognitive alterations of the Ts65Dn (TS) mouse model of DS when administered prenatally or during early postnatal stages, and to evaluate whether these effects were maintained several weeks after the treatment.
Methods: To evaluate the effects of prenatal curcumin administration, 65 pregnant TS females were subcutaneously treated with curcumin (300 mg/kg) or vehicle from ED (Embryonic Day) 10 to PD (Postnatal Day) 2. All the analyses were performed on their TS and Control (CO) male and female progeny. At PD2, the changes in neurogenesis, cellularity, and brain weight were analyzed in 30 TS and CO pups. The long-term effects of prenatal curcumin were evaluated in another cohort of 44 TS and CO mice between PD30 and PD45. The neuromorphological effects of the early postnatal administration of curcumin were assessed on PD15 in 30 male and female TS and CO pups treated with curcumin (300 mg/kg) or vehicle from PD2 to PD15. The long-term neuromorphological and cognitive effects were assessed from PD60 to PD90 in 45 mice. Data was compared by ANOVAs.
Results: Prenatal administration of curcumin increased the brain weight (+45%, P < 0.001), the density of BrdU (bromodeoxyuridine)- (+150%, P < 0.001) and DAPI (4',6-diamidino-2-phenylindole)- (+38%, P = 0.005) positive cells, and produced a long-term improvement of cognition in TS (+35%, P = 0.007) mice with respect to vehicle-treated mice. Postnatal administration of curcumin did not rescue any of the short- or long-term altered phenotypes of TS mice.
Conclusion: The beneficial effects of prenatal curcumin administration to TS mice suggest that it could be a therapeutic strategy to treat DS cognitive disabilities.This study was supported by the “Fondazione Generali e Assicurazioni Generali”, Italy; Fundación Tatiana Pérez de Guzmán el Bueno, IDIVAL (NVAL 19/23), and the Spanish Ministry of Economy and Competitiveness (PSI-2016-76194-R, AEI/FEDER, EU)
Prenatal Administration of Oleic Acid or Linolenic Acid Reduces Neuromorphological and Cognitive Alterations in Ts65dn Down Syndrome Mice
Background: The cognitive impairments that characterize Down syndrome (DS) have been attributed to brain hypocellularity due to neurogenesis impairment during fetal stages. Thus, enhancing prenatal neurogenesis in DS could prevent or reduce some of the neuromorphological and cognitive defects found in postnatal stages.
Objectives: As fatty acids play a fundamental role in morphogenesis and brain development during fetal stages, in this study, we aimed to enhance neurogenesis and the cognitive abilities of the Ts65Dn (TS) mouse model of DS by administering oleic or linolenic acid.
Methods: In total, 85 pregnant TS females were subcutaneously treated from Embryonic Day (ED) 10 until Postnatal Day (PD) 2 with oleic acid (400 mg/kg), linolenic acid (500 mg/kg), or vehicle. All analyses were performed on their TS and Control (CO) male and female progeny. At PD2, we evaluated the short-term effects of the treatments on neurogenesis, cellularity, and brain weight, in 40 TS and CO pups. A total of 69 TS and CO mice were used to test the long-term effects of the prenatal treatments on cognition from PD30 to PD45, and on neurogenesis, cellularity, and synaptic markers, at PD45. Data were compared by ANOVAs.
Results: Prenatal administration of oleic or linolenic acid increased the brain weight (+36.7% and +45%, P < 0.01), the density of BrdU (bromodeoxyuridine)- (+80% and +115%; P < 0.01), and DAPI (4',6-diamidino-2-phenylindole)-positive cells (+64% and +22%, P < 0.05) of PD2 TS mice with respect to the vehicle-treated TS mice. Between PD30 and PD45, TS mice prenatally treated with oleic or linolenic acid showed better cognitive abilities (+28% and +25%, P < 0.01) and a higher density of the postsynaptic marker PSD95 (postsynaptic density protein 95) (+65% and +44%, P < 0.05) than the vehicle-treated TS animals.
Conclusion: The beneficial cognitive and neuromorphological effects induced by oleic or linolenic acid in TS mice suggest that they could be promising pharmacotherapies for DS-associated cognitive deficits.This study was supported by “Fondazione Generali e Assicurazioni Generali”, Italy; Fundación Tatiana Pérez de Guzmán el Bueno, IDIVAL (NVAL 19/23), and the Spanish Ministry of Economy and Competitiveness (PSI-2016-
76194-R, AEI/FEDER, EU)
Increased hippocampal epigenetic age in the Ts65Dn mouse model of Down Syndrome
Down syndrome (DS) is a segmental progeroid genetic disorder associated with multi-systemic precocious aging phenotypes, which are particularly evident in the immune and nervous systems. Accordingly, people with DS show an increased biological age as measured by epigenetic clocks. The Ts65Dn trisomic mouse, which harbors extra-numerary copies of chromosome 21 (Hsa21)-syntenic regions, was shown to recapitulate several progeroid features of DS, but no biomarkers of age have been applied to it so far. In this pilot study, we used a mouse-specific epigenetic clock to measure the epigenetic age of hippocampi from Ts65Dn and euploid mice at 20 weeks. Ts65Dn mice showed an increased epigenetic age in comparison with controls, and the observed changes in DNA methylation partially recapitulated those observed in hippocampi from people with DS. Collectively, our results support the use of the Ts65Dn model to decipher the molecular mechanisms underlying the progeroid DS phenotypes
Treatment with corn oil improves neurogenesis and cognitive performance in the Ts65Dn mouse model of Down syndrome
Individuals with Down syndrome (DS), a genetic condition due to triplication of Chromosome 21, are characterized by intellectual disability that worsens with age. Since impairment of neurogenesis and dendritic maturation are very likely key determinants of intellectual disability in DS, interventions targeted to these defects may translate into a behavioral benefit. While most of the neurogenesis enhancers tested so far in DS mouse models may pose some caveats due to possible side effects, substances naturally present in the human diet may be regarded as therapeutic tools with a high translational impact. Linoleic acid and oleic acid are major constituents of corn oil that positively affect neurogenesis and neuron maturation. Based on these premises, the goal of the current study was to establish whether treatment with corn oil improves hippocampal neurogenesis and hippocampus-dependent memory in the Ts65Dn model of DS. Four-month-old Ts65Dn and euploid mice were treated with saline or corn oil for 30 days. Evaluation of behavior at the end of treatment showed that Ts65Dn mice treated with corn oil underwent a large improvement in hippocampus-dependent learning and memory. Evaluation of neurogenesis and dendritogenesis showed that in treated Ts65Dn mice the number of new granule cells of the hippocampal dentate gyrus and their dendritic pattern became similar to those of euploid mice. In addition, treated Ts65Dn mice underwent an increase in body and brain weight. This study shows for the first time that fatty acids have a positive impact on the brain of the Ts65Dn mouse model of DS. These results suggest that a diet that is rich in fatty acids may exert beneficial effects on cognitive performance in individuals with DS without causing adverse effects
- …