35 research outputs found

    New nucleic dyes for pico-and nanoplankton cytometric analysis

    Get PDF
    Flow cytometry (FCM) is a promising tool in the field of aquatic phytoplankton ecology because it allows for multi-parameter assessment of the physiological state of individual cells in an algal population. It can help to elucidate major questions such as phytoplankton taxa identification, the evaluation of cell quantity and viability, and the measuring of phytoplankton and general microbial metabolic activities. Traditionally, microalgal characterization is performed by microscopic analysis using UV-excited nuclear dyes (e.g. Hoechst and DAPI) or dyes that are excited in the blue-green part of the spectrum such as propidium iodide and eosin. The development of multi-laser cytometric systems has widened the possibilities for multi-parametric analysis and cell sorting of phytoplankton populations. Notwithstanding, significant algae autofluorescence originating from different types of chlorophyll and accessory pigments may overlap with propidium iodide and/or eosin staining and affect the resolution of algae clusters and cell sorting

    New nucleic dyes for pico-and nanoplankton cytometric analysis

    Get PDF
    Flow cytometry (FCM) is a promising tool in the field of aquatic phytoplankton ecology because it allows for multi-parameter assessment of the physiological state of individual cells in an algal population. It can help to elucidate major questions such as phytoplankton taxa identification, the evaluation of cell quantity and viability, and the measuring of phytoplankton and general microbial metabolic activities. Traditionally, microalgal characterization is performed by microscopic analysis using UV-excited nuclear dyes (e.g. Hoechst and DAPI) or dyes that are excited in the blue-green part of the spectrum such as propidium iodide and eosin. The development of multi-laser cytometric systems has widened the possibilities for multi-parametric analysis and cell sorting of phytoplankton populations. Notwithstanding, significant algae autofluorescence originating from different types of chlorophyll and accessory pigments may overlap with propidium iodide and/or eosin staining and affect the resolution of algae clusters and cell sorting

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    © 2024 The Authors. Journal of Extracellular Vesicles, published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.Peer reviewe

    Circulating microparticles: square the circle

    Get PDF
    Background: The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results: MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions: Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
    corecore