249 research outputs found

    Colored Spin Systems, BKP Evolution and finite N_c effects

    Full text link
    Even within the framework of the leading logarithmic approximation the eigenvalues of the BKP kernel for states of more than three reggeized gluons are unknown in general, contrary to the planar limit case where the problem becomes integrable. We consider a 4-gluon kernel for a finite number of colors and define some simple toy models for the configuration space dynamics, which are directly solvable with group theoretical methods. Then we study the dependence of the spectrum of these models with respect to the number of colors and make comparisons with the large limit case.Comment: 17 pages, 4 figures, references update, to appear on EPJ

    The Semiclassical Gluon Distribution at Next-to-Leading Order

    Get PDF
    The interaction of the partonic fluctuation of the virtual photon in deep inelastic scattering with soft color fields describing the hadron is treated in an eikonal approximation. It is known that, in this approach, the small-x limit of the leading-order gluon distribution xg(x,Q^2) is a constant characterizing the averaged local field strength in the target. Matching the next-to-leading order calculation in this semiclassical framework with the one-loop parton model result, we obtain the next-to-leading order contribution to xg(x,Q^2). It shows a ln(1/x) enhancement at small x and is sensitive to the large distance structure of the target. The final expression is a simple integral over non-Abelian eikonal factors measuring the target color field. We derive a quantitative relation between the short-distance cutoff of this integral and the scale of the gluon distribution function in the MS-bar scheme. Our calculation demonstrates that higher order contributions can be systematically included in the semiclassical approach.Comment: 19 pages LaTeX, 8 figures include

    Interaction of Reggeized Gluons in the Baxter-Sklyanin Representation

    Full text link
    We investigate the Baxter equation for the Heisenberg spin model corresponding to a generalized BFKL equation describing composite states of n Reggeized gluons in the multi-color limit of QCD. The Sklyanin approach is used to find an unitary transformation from the impact parameter representation to the representation in which the wave function factorizes as a product of Baxter functions and a pseudo-vacuum state. We show that the solution of the Baxter equation is a meromorphic function with poles (lambda - i r)^{-(n-1)} (r= 0, 1,...) and that the intercept for the composite Reggeon states is expressed through the behavior of the Baxter function around the pole at lambda = i . The absence of pole singularities in the two complex dimensional lambda-plane for the bilinear combination of holomorphic and anti-holomorphic Baxter functions leads to the quantization of the integrals of motion because the holomorphic energy should be the same for all independent Baxter functions.Comment: LaTex, 48 pages, 1 .ps figure, to appear in Phys. Rev.

    Exact resolution of the Baxter equation for reggeized gluon interactions

    Get PDF
    The interaction of reggeized gluons in multi-colour QCD is considered in the Baxter-Sklyanin representation, where the wave function is expressed as a product of Baxter functions Q(lambda) and a pseudo-vacuum state. We find n solutions of the Baxter equation for a composite state of n gluons with poles of rank r in the upper lambda semi-plane and of rank n-1-r in the lower lambda semi-plane (0 leq r leq n-1). These solutions are related by n-2 linear equations with coefficients depending on coth (pi lambda). The poles cancel in the wave function, bilinear combination of holomorphic and anti-holomorphic Baxter functions, guaranteeing its normalizability. The quantization of the intercepts of the corresponding Regge singularities appears as a result of the physical requirements that the holomorphic energies for all solutions of the Baxter equation are the same and the total energies, calculated around two singularities lambda, lambda^* --> + i or -i, coincide. It results in simple properties of the zeroes of the Baxter functions. For illustration we calculate the parameters of the reggeon states constructed from three and four gluons. For the Odderon the ground state has conformal spin |m -m | = 1 and its intercept equals unity. The ground state of four reggeized gluons possesses conformal spin 2 and its intercept turns out to be higher than that for the BFKL Pomeron. We calculate the anomalous dimensions of the corresponding operators for arbitrary alpha_s/omega.Comment: LaTex, 42 pages, 8 .ps figures. Expanded and improved versio

    η−ηâ€Č\eta-\eta^\prime mixing and the next-to-leading-order power correction

    Full text link
    The next-to-leading-order O(1/Q4)O(1/Q^4) power correction for ηγ\eta\gamma and ηâ€ČÎł\eta^\prime\gamma form factors are evaluated and employed to explore the η−ηâ€Č\eta-\eta^\prime mixing. The parameters of the two mixing angle scheme are extracted from the data for form factors, two photon decay widths and radiative J/ψJ/\psi decays. The χ2\chi^2 analysis gives the result: fη1=(1.16±0.06)fπ,fη8=(1.33±0.23)fπ,Ξ1=−9∘±3∘,Ξ8=−21.3∘±2.3∘f_{\eta_1}=(1.16\pm0.06)f_\pi, f_{\eta_8}=(1.33\pm0.23)f_\pi, \theta_1=-9^\circ\pm 3^\circ, \theta_8=-21.3^\circ\pm 2.3^\circ, where fη1(8)f_{\eta_{1(8)}} and Ξ1(8)\theta_{1(8)} are the decay constants and the mixing angles for the singlet (octet) state. In addition, we arrive at a stringent range for fηâ€Čc:−10f_{\eta^\prime}^c:-10 MeV≀fηâ€Čc≀−4\le f_{\eta^\prime}^c\le -4 MeV.Comment: 23 pages, 9 figures, To be publshied in Phys. Rev.

    Coherent Phonon Dynamics in Short-Period InAs/GaSb Superlattices

    Full text link
    We have performed ultrafast pump-probe spectroscopy studies on a series of InAs/GaSb-based short-period superlattice (SL) samples with periods ranging from 46 \AA to 71 \AA. We observe two types of oscillations in the differential reflectivity with fast (∌\sim 1- 2 ps) and slow (∌\sim 24 ps) periods. The period of the fast oscillations changes with the SL period and can be explained as coherent acoustic phonons generated from carriers photoexcited within the SL. This mode provides an accurate method for determining the SL period and assessing interface quality. The period of the slow mode depends on the wavelength of the probe pulse and can be understood as a propagating coherent phonon wavepacket modulating the reflectivity of the probe pulse as it travels from the surface into the sample.Comment: 6 pages, 4 figure

    Sex Differences in Sum Scores May Be Hard to Interpret: The Importance of Measurement Invariance

    Get PDF
    In most assessment instruments, distinct items are designed to measure a trait, and the sum score of these items serves as an approximation of an individual’s trait score. In interpreting group differences with respect to sum scores, the instrument should measure the same underlying trait across groups (e.g., male/female, young/old). Differences with respect to the sum score should accurately reflect differences in the latent trait of interest. A necessary condition for this is that the instrument is measurement invariant. In the current study, the authors illustrate a stepwise approach for testing measurement invariance with respect to sex in a four-item instrument designed to assess disordered eating behavior in a large epidemiological sample (1,195 men and 1,507 women). This approach can be applied to other phenotypes for which group differences are expected. Any analysis of such variables may be subject to measurement bias if a lack of measurement invariance between grouping variables goes undetected

    Breast cancer screening: evidence for false reassurance?

    Get PDF
    Tumour stage distribution at repeated mammography screening is, unexpectedly, often not more favourable than stage distribution at first screenings. False reassurance, i.e., delayed symptom presentation due to having participated in earlier screening rounds, might be associated with this, and unfavourably affect prognosis. To assess the role of false reassurance in mammography screening, a consecutive group of 155 breast cancer patients visiting a breast clinic in Rotterdam (The Netherlands) completed a questionnaire on screening history and self-observed breast abnormalities. The length of time between the initial discovery of breast abnormalities and first consultation of a general practitioner ("symptom-GP period") was compared between patients with ("screening group") and without a previous screening history ("control group"), using Kaplan-Meier survival curves and log-rank testing. Of the 155 patients, 84 (54%) had participated in the Dutch screening programme at least once before tumour detection; 32 (38%) of whom had noticed symptoms. They did not significantly differ from control patients (n = 42) in symptom-GP period (symptom-GP period > or = 30 days: 31.2% in the symptomatic screened group, 31.0% in the control group; p = 0.9). Only 2 out of 53 patients (3.8%) with screen-detected cancer had noticed symptoms prior to screening, reporting symptom-GP periods of 2.5 and 4 years. The median period between the first GP- and breast clinic visit was 7.0 days (95% C.I. 5.9-

    S-Matrix Unitarity, Impact Parameter Profiles, Gluon Saturation and High-Energy Scattering

    Get PDF
    A model combining perturbative and non-perturbative QCD is developed to compute high-energy reactions of hadrons and photons and to investigate saturation effects that manifest the S-matrix unitarity. Following a functional integral approach, the S-matrix factorizes into light-cone wave functions and the universal amplitude for the scattering of two color-dipoles which are represented by Wegner-Wilson loops. In the framework of the non-perturbative stochastic vacuum model of QCD supplemented by perturbative gluon exchange, the loop-loop correlation is calculated and related to lattice QCD investigations. With a universal energy dependence motivated by the two-pomeron (soft + hard) picture that respects the unitarity condition in impact parameter space, a unified description of pp, pip, Kp, gamma* p, and gamma gamma reactions is achieved in good agreement with experimental data for cross sections, slope parameters, and structure functions. Impact parameter profiles for pp and longitudinal gamma* p reactions and the gluon distribution of the proton xG(x,Q^2,b) are calculated and found to saturate in accordance with S-matrix unitarity. The c.m. energies and Bjorken x at which saturation sets in are determined.Comment: 65 pages with 13 figures, Introduction, Sec. 3, and Conclusion extende

    Critical Correlations of Wilson Lines in SU(3) and the High Energy γ∗p\gamma^*p Cross Section

    Full text link
    We discuss deep inelastic scattering at high energies as a critical phenomenon in 2+1 space - time dimensions. In the limit of Bjorken x→0x \to 0, QCDQCD SU(3) with quark fields becomes a critical theory with a diverging correlation length Ο(x)∝x−12λ2\xi(x) \propto x^{-\frac{1}{2 \lambda_2}} where the exponent λ2=2.52\lambda_2=2.52 is obtained from the center group Z(3) of SU(3). We conjecture that the dipole wave function of the virtual photon for transverse sizes 1/Q<x⊄<Ο1/Q<x_{\bot}<\xi obeys correlation scaling ι∝(x⊄)−(1+n)\Psi \propto (x_{\bot})^{-(1+n)} before exponentially decaying for distances larger than the correlation length. Using this behavior combined with different xx -independent dipole proton cross sections we calculate the proton structure function and compare with the experimental data. We take the good agreement with the measured proton structure function F2(x,Q2)_2(x,Q^2) as an indication that at high energies dimensional reduction to an effective three dimensional theory with a critical point occurs.Comment: 21 pages, 3 figure
    • 

    corecore