8,680 research outputs found

    1.6 GHz VLBI Observations of SN 1979C: almost-free expansion

    Full text link
    We report on 1.6 GHz Very-Long-Baseline-Interferometry (VLBI) observations of supernova SN 1979C made on 18 November 2002. We derive a model-dependent supernova size. We also present a reanalysis of VLBI observations made by us on June 1999 and by other authors on February 2005. We conclude that, contrary to our earlier claim of strong deceleration in the expansion, SN 1979C has been undergoing almost-free expansion (m=0.91±0.09m = 0.91\pm0.09; R∝tmR \propto t^m) for over 25 years.Comment: 4 pages, 4 figures; submitted to A&A on 14 May 2009. Accepted on 7 Jul 200

    Radio emission of SN1993J: the complete picture. I. Re-analysis of all the available VLBI data

    Full text link
    We have performed a complete re-calibration and re-analysis of all the available VLBI observations of supernova SN1993J, following an homogeneous and well-defined methodology. Observations of SN1993J at 69 epochs, spanning 13 years, were performed by two teams, which used different strategies and analysis tools. The results obtained by each group are similar, but their conclusions on the supernova expansion and the shape and evolution of the emitting region differ significantly. From our analysis of the combined set of observations, we have obtained an expansion curve with unprecedented time resolution and coverage. We find that the data from both teams are compatible when analyzed with the same methodology. One expansion index (m3=0.87±0.02m_3 = 0.87 \pm 0.02) is enough to model the expansion observed at 1.7\,GHz, while two expansion indices (m1=0.933±0.010m_1 = 0.933\pm0.010 and m2=0.796±0.005m_2 = 0.796\pm0.005), separated by a break time, tbr=390±30t_{br} = 390\pm30 days, are needed to model the data, at frequencies higher than 1.7\,GHz, up to day 4000 after explosion. We thus confirm the wavelength dependence of the size of the emitting region reported by one of the groups. We also find that all sizes measured at epochs later than day 4000 after explosion are systematically smaller than our model predictions. We estimate the fractional shell width (0.31±0.020.31 \pm 0.02, average of all epochs and frequencies) and the level of opacity to the radio emission by the ejecta. We find evidence of a spectral-index radial gradient in the supernova shell, which is indicative of a frequency-dependent ejecta opacity. Finally, we study the distribution and evolution of the azimuthal anisotropies (hot spots) found around the radio shell during the expansion. These anisotropies have intensities of ∌20\sim 20% of the mean flux density of the shell, and appear to systematically evolve during the expansion.Comment: 13 pages, 9 figures, accepted for publication in A&

    Can a Work Organization Have an Attitude Problem? The Impact of Workplaces on Employee Attitudes and Economic Outcomes

    Get PDF
    Using the employee opinion survey responses from several thousand employees working in 193 branches of a major U.S. bank, we consider whether there is a distinctive workplace component to employee attitudes despite the common set of corporate human resource management practices that cover all the branches. Several different empirical tests consistently point to the existence of a systematic branch-specific component to employee attitudes. “Branch effects” can also explain why a significant positive cross-sectional correlation between branch-level employee attitudes and branch sales performance is not observed in longitudinal fixed-effects sales models. The results of our empirical tests concerning the determinants of employee attitudes and the determinants of branch sales are consistent with an interpretation that workplace-specific factors lead to better outcomes for both employees and the bank, and that these factors are more likely to be some aspect of the branches’ internal operations rather than some characteristic of the external market of the branch.

    The First VLBI Image of the Young, Oxygen-Rich Supernova Remnant in NGC 4449

    Full text link
    We report on sensitive 1.4-GHz VLBI radio observations of the unusually luminous supernova remnant SNR 4449-1 in the galaxy NGC 4449, which gave us the first well-resolved image of this object. The remnant's radio morphology consists of two approximately parallel bright ridges, suggesting similarities to the barrel shape seen for many older Galactic supernova remnants or possibly to SN 1987A. The angular extent of the remnant is 65 x 40 mas, corresponding to (3.7 x 2.3) x 10^{18} (D/3.8 Mpc) cm. We also present a new, high signal-to-noise optical spectrum. By comparing the remnant's linear size to the maximum velocities measured from optical lines, as well as using constraints from historical images, we conclude that the supernova explosion occurred between ~1905 and 1961, likely around 1940. The age of the remnant is therefore likely ~70 yr. We find that SNR 4449-1's shock wave is likely still interacting with the circumstellar rather than interstellar medium.Comment: 7 pages, Accepted for publication in MNRA
    • 

    corecore