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Abstract: We present a generalization of the extended Thomas-Fermi (ETF) theory to finite temperatures 

T. Starting from the Wigner-Kirkwood expansion of the Bloch density in powers of A, we denve the 

gradient expansion of the free energy and entropy density functionals %[p] and cr[ p] up to fourth 

order with their correct temperature-dependent coefficients. (Effective mass and spin-orbit contri- 

butions are taken into account up to second order.) For a harmonic-oscillator potential we show 

that both the A-expansion of the free energy and the entropy and the gradient expansion of the 

functionals $[ p] and u[ p] converge very fast and yield the exact quantum-mechanical results for 

/CT> 3 MeV, where the shell effects are washed out. Finally we discuss the Euler vanational 

equation obtained wnh the new functionals and use its numerical solutions for semi-mfinite 

symmetric nuclear matter to test the quality of parametrized trial densities. As an application. we 

present liquid-drop model parameters, calculated with a realistic Skyrme interaction, as functions of 

the temperature. 

1. Introduction 

A lot of interest has recently been focussed on highly excited nuclear systems in 

which the excitation energy is equilibrized amongst the nucleons. In that case a 

thermodynamical-statistical description is adequate and the excitation can be ex- 

pressed in terms of an intrinsic temperature. Such “hot nuclei” can nowadays be 

produced as compound systems in energetic heavy-ion collisions, and this provides a 

challenge to look for observable temperature dependences of their properties. One 

interesting speculation is to observe possible consequences of a phase-transition 

between liquid and gaseous nuclear matter, such as e.g. the associated critical 

temperature ‘). Another possibility is to measure the expected increase of the fissility 

of nuclei with increasing temperature ‘). 

In astrophysics, the equation of state of hot nuclear matter can play a crucial role 

for the formation of supernovae during the gravitational collapse of massive stars, 

* Laboratoire associe au CNRS. 
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where condensed nuclei can coexist with a nucleon gas in local thermodynamical 
equilibrium 3). 

The theoretical description of such hot systems with condensed (liquid) and 
gaseous components is conceptually easier in the case of stars with their practically 
infinite extension where it is possible to speak of phase transitions under (local) 
equilibrium conditions. In isolated hot compound nuclei such as are created in a 
heavy-ion collision, phase transitions do not strictly exist due to their finiteness. 

Their theoretical treatment is furthermore complicated by their instability due to 
nucleon evaporation, i.e. by the lack of an equilibrium situation. However, the 
relatively long evaporation times at not too high excitations may justify treating 

these systems like classical, superheated (and thus, metastable) liquid drops4). In 
this sense, variational calculations within a static mean-field or Hartree-Fock (HF) 
theory, together with the use of suitable boundary conditions, might be a sufficiently 
well-justified procedure for the description of hot, metastable nuclei. 

HF calculations for finite nuclei at finite temperature T were done for the first 
time about a decade ago5,6). At that time they were of a rather academic interest 
and the occupation of the continuum states, which leads to evaporation, was only 
given an approximate treatment. What was clearly demonstrated there in a selfcon- 
sistent way is the fact that the shell effects cease to exist - due to the smearing out of 
the Fermi surface - at a typical temperature T = 2.5-3 MeV which is roughly 
independent of the size of the nucleus. More recently, such calculations were taken 
up again for astrophysical applications, whereby periodic boundary conditions in the 
Wigner-Seitz approximation were used71s). The same technique was also used to 
describe an isolated, heated nucleus9); hereby the necessity was pointed out for the 
use of some subtraction procedure in order to obtain results which are independent 
of the size of the boundary at T > 4 MeV where the occupation of continuum states 
becomes important. 

Such HF calculations with the correct treatment of the continuum states become 
extremely time-consuming at higher temperatures, in particular if non-spherical 
boundary conditions are imposed in connection with the Wigner-Seitz approxima- 
tions). On the other hand, there is necessarily a fair amount of redundancy in the 
microscopic description of such a system for T 2 3 MeV where the shell effects are 
washed out and all expectation values become smooth functions of particle numbers 
and deformation. In this case a semiclassical treatment in terms of densities and 
average fields is not only sufficient, but also much more economical and physically 
transparent. The development and discussion of such a semiclassical method for 
T > 0 is the purpose of the present paper. 

Semiclassical variational calculations for average ground-state properties and 
deformation energies of nuclei at T = 0 have recently become very successful, 
particularly in connection with Skyrme-type effective interactions. [For an extended 
review of such calculations, see ref. lo) and the literature quoted therein.] The 
perturbative inclusion of shell effects by the Strutinsky method’l) has been justified 
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numerically within the HF framework12). The technically most refined of these 

semiclassical methods is the density variational method using local density function- 

als for the kinetic energy and spin densities in a gradient expansion, derived from 

the so-called extended Thomas-Fermi (ETF) model13), and is described in detail in 

ref. lo). The density variational method itself is practically as old as nuclear 

physics r4); its formal justification was, however, only given in 1964 by the 

Hohenberg-Kohn theorem 15). The importance of fourth-order gradient corrections 

in the kinetic energy density functional ~[p] was pointed out only recentlyr6) and 

made particularly evident in semiclassical calculations of fission barriers l”,r7). 

The extension of the Hohenberg-Kohn theorem to fermion systems at finite 

temperature18) encourages one to seek local density functionals for energy and 

entropy which are valid at T > 0. Whereas the Thomas-Fermi theory at T > 0 has 

been known for a long time 19) and has been used for infinite “) and semi-infinite21) 

nuclear matter calculations, the temperature-dependent second-order gradient terms 

of the ETF model have been derived only very recently in short papers22-24). [In 

ref. 22), only the functional of the free energy density %[p] for a local potential was 

derived; in ref. 23), effective mass and spin-orbit contributions were also included.] 

In the present paper we shall give a comprehensive presentation of the ETF model at 

finite temperature and derive also the fourth-order gradient corrections to the free 

energy and entropy density functionals P[p] and o[p], respectively. We shall 

present tests of these functionals against quantum-mechanical calculations and 

discuss their application in variational calculations. 

The paper is organized as follows. In sect. 2 we extend the Wigner-Kirkwood 

expansion of the Bloch density to finite temperature and derive the corresponding 

h-expansions of the nuclear density, the free energy density and the entropy density 

in terms of the local (HF) potential V(r) and its gradients, including also the effects 

of a variable effective nucleon mass and a spin-orbit potential up to second order in 

Pt. In sect. 3 we show how the potential V, its gradients and the Fermi energy are 

eliminated in order to gain the functionals F[p] and o[p]. In contrast to the kinetic 

energy density functional ~[p] at T = 0, the functionals %[p] and a[p] are obtained 

at T > 0 also in the classically forbidden region. In taking a careful limit T--f 0, we 

show that fl[p] reduces to the old functional G-[p] at T = 0 everywhere in space, 

thus strictly proving its hitherto only surmised validity at and outside the classical 

turning points. In sect. 4 we use the (deformed) harmonic-oscillator potential as, a 

model to test the convergence of the semiclassical expansions against exact 

quantum-mechanical calculations at T > 0. Sect. 5 is devoted to a discussion of the 

Euler variational equation obtained from the new TETF (i.e. temperature-dependent 

ETF) functionals in connection with a realistic Skyrme force. We show that this 

nonlinear fourth-order differential equation in the case of semi-infinite nuclear 

matter can be cast into a nonlinear second-order equation plus a simple quadrature. 

We discuss its numerical solutions for various temperatures and investigate the 

validity of variational calculations with parametrized trial densities. As an applica- 
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tion, we calculate liquid-drop model parameters as functions of temperature. Some 

more technical details and involved formulae are presented in two appendices. 

2. The Wigner-Kirkwood expansion at T > 0 

A convenient way to derive semiclassical expansions of energies or densities of a 

fermion system is to express them in terms of the partition function or the Bloch 

density and to use the Wigner-Kirkwood expansion25) of the latter in powers of p1. 

We will sketch this method only very briefly here and refer to the literature26) for 

the details. 

One starts from the wave functions q,(r) and eigenenergies E, of a system of N 

fermions + moving in an average potential V(r): 

(2.1) 

For the moment, we assume V(r) to be local and velocity- and spin-independent. 

(Later, we shall consider selfconsistent Hartree-Fock potentials and incorporate 

velocity- and spin-dependent parts.) All ground-state expectation values of this 

system can be calculated from the single-particle density matrix 

r=l 

where the summation goes over the N states with the lowest energies E,. The basic 

idea of the semiclassical approach 26) is to express p( r, r’) in terms of the Bloch 

density matrix27) defined by 

C(r, r’; fi) = Cr@(r’)cp,(r) eCPEr. (2.3) 

Here the summation goes over the complete spectrum { cp,} (thus including an 

integral over continuum states if present). The density matrix p(r, r’), eq. (2.2) can 

be obtained from C(r, r’; /3), eq. (2.3), by 

p(r, r’) =.Yhe’ [$C(r,f;P)], (2.4) 

where h is the Fermi energy and the symbol Pie1 signifies an inverse Laplace 

transformation: 

Note that p here is a complex mathematical variable and has nothing to do, in the 

present context, with any finite temperature. In fact, the inclusion of the factor l/p 

-i Throughout the formal parts of this paper, we consider only one kind of particle 
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in eq. (2.4) and the use of X as the variable conjugate to fi automatically implies 

occupation of the states below the Fermi energy A, and thus gives the ground-state 

density matrix. The quantity X is fixed by the particle number N: 

N= d3rp(v), 
J (2.6) 

where p(v) is the local density distribution 

p(r) = p(r, r). (2.7) 

The kinetic energy density r(r) is usually defined by 

r(r) = [V/V,&, +)lr_/. (2.8) 

Integrated quantities such as the particle number N or the total single-particle 

energy -%.r., 

can also be expressed directly in terms of the partition function Z(p) 

z(P) = /d3rC(r, r; P), 

through the relations *‘j) 

(2.10) 

N=_ql $Z(B) , [ 1 

Es p.= AN-JZ’~-~ +3) . [ 1 

(2.11) 

(2.12) 

Semiclassical expansions of p(r), 7(r) or E,, are now easily obtained by use of 
the A-expansion of C(r, r’; p) developed by Wigner, Kirkwood, Uhlenbeck and 
Bethz5). It has the form 

CwK(r,r’;P)=CTF(r,r’;P) 1+ ? A’?xII(r,r’;P) 
i 

(2.13) 
??=I 

Here C, is the Thomas-Fermi approximation, 

3/2 
e-pv((r+r’)/2)e-m(r-r’)Z/2t2*P 

9 (2.14) 

and the x,,(r, r’; /I) contain powers of p and gradients up to nth order of the 
potential V(r). Inserting C,, (2.13) into eq. (2.4), one obtains the A-expansion of 
p(r, r’) and thus of all the local densities and expectation values of interest. [See 
ref. 26) for detailed expressions up to fourth order in tz.] 
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2.1. ~MPE~TU~ D~~DE~CE OF THE BLOCH DENSITY 

We shall now extend the above formalism to a fermion system at finite tempera- 
ture T, treated quantum-statistically as a grand canonical ensemble. The density 
matrix p(r, r’) eq. (2.2) is then replaced by 

f&r’) = ~~~(~‘)~~(r)~~, (2.15) 
VI 

where n, are the Fermi-Dirac occupation numbers 

n,(T) = 1 + exp { [Gj}-i. (2.16) 

(We put the Boltzmann constant k equal to one and measure T in energy units.) As 

shown in ref.12), the density p(r, r’) eq. (2.15) can be formally obtained from the 
“cold” one, eq. f2.2}, via a convolution of the T = 0 spectral density (which is the 

Laplace inverse of Cjr, r’; ,Q) with the function 

Thus, due to the convolution theorem, the Bloch density at T > 0 is a product, 

CT(~, r’; P) = CJr, r’; P)J’r(P), (2.18) 

(2.17) 

of the Bloch density C, at T = 0 (given by eq. (2.3)) and the (two-sided) Laplace 
tr~sform i’,(p) of the function fT(E) (2.17): 

Insertion of C,, eq. (US), into eq. (2.4) automatically gives the density matrix 
p(r, r’), eq. (2X), from which the densities p(r) and T(r) of the hot system are 
derived by means of eqs. (2.7), (2.8). The main integrated quantities of interest are 
the entropy 

S= -C[~,lnn,+(l-n,)ln(l-n,)] (2.20) 
vi 

and the (single-particle) Helmholtz free energy 

F&= Cqn, - TS. 
Vr 

(2.21) 

In order to relate these qu~tities to the Bloch density C,, we introduce an entropy 
density a(r), 

o(r)= - Glrp,(r)12[n,lnn,f(l -n,)Ml --yI,)l 9 
Vi 

(2.22) 

and a free energy density F(r), 

F(r) = gT(r) + V(r)p(r) - To(r), (2.23) 
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so that 

S=/d”ro(r), Fs.+= d3@+). 
J 

(2.24) 

It is now relatively easy to verify 12) that P(r) can be related to the local Bloch 

density by 

(2.25) 

where 

C,(r, P) = Cr(r, r; P). (2.26) 

The entropy density then is simply obtained from F_(Y) by the canonical relation 

(2.27) 

In order to obtain the semiclassical expansions of the above densities, it is 

sufficient to replace the exact T = 0 Bloch function Co(r, r’; p) by its Wigner- 

Kirkwood expansion (2.13), hereby leaving the factor f&p) in eq. (2.18) untouched. 

Before we give the results in the next subsection, we briefly mention the Wigner 

function defined by 

f(p,q) =/d3r/d3fp(r, r’)e -“,1)“.(‘-“)6jq_~), (2.28) 

which is often used to calculate local densities in terms of its moments in p-space. 

For a local potential, one obtains from the Wigner-Kirkwood expansion up to 

where H,, is the classical Hamilton function 

J%(P+z) =p2/2m + v(q), 

n,(B) is the Fermi function 

IZ~(E)= {l+exp(-E/T)}-‘=JE f,(E’)dE’, 
--m 

and n?(E), n+"(E) are its derivatives. In the limit T = 0, the function 

(2.29) 

(2.30) 

(2.31) 

n,(E) 
becomes a step function and f(p, q) goes over into the form derived by Grammati- 

cos and Voros 13). 
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2.2. A-EXPANSION OF LOCAL DENSITIES 

Using the Wigner-Kirkwood expansion (2.13) of the Bloch density and performing 
the inverse Laplace transforms term by term, one gains the tz-expansions of the local 
densities defined above which only contain even powers of tt: 

PE&) = Pr&) + P&j + P&I + . . * > 

~ET,(r)=.FTF(r)S.F2(r)+~(r)+ *.. , 

%&) = %-&) +3(r) + f%(r) + . * - , (2.32) 

where the index shows the power of A. To keep the formulae to a reasonable size, we 
shall here only present the TF and second-order expressions. (The fourth-order 
terms, as far as they will be of use, are given in appendix B for a local potential.) We 
include here the contributions from a variable effective mass in the one-body 
h~lto~~, such as it occurs in Liartree-Fock calculations with Skyrme-type 
effective nucleon-nucleon interactions2’): 

n A2 

HZ -v Zm*(r) 
m-------v + V(r). (2.33) 

(Spin-orbit contributions will be discussed at the end of this section.) We define an 
effective mass field f(r) by 

f(r) = m/m*(P). (2.34) 

With this, the Wigner-Kirkwood expanded Bloch density becomes, up to order h2 
[see refs. 16*29)], 

(2.35) 

where 

(2.36) 

and 

b(r) = %vf )“/f- 5Af, d,(r) -fAV- $?jf.vV. 

The well-known TF densities at finite temperature are 19-*1) 

P&r) =AVr,,(%) 2 

sr&I = +&rI - ~~~~~~~~(~~~, 

bra = -rloPrr(r) + $GJ~~~(710), 

(2.37) 

(2.38) 

(2.39) 

(2.40) 
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where 

The second-order corrections become 

2 

~2(d=;$G 

(2.41) 

(2.42) 

(2.43) 

%(r) = b2(r) +& &AF -b2b)Jl12(vo) i 
+ d2WJ 

T 
-l,Z(VO) + ,; +vv2J-3,2b70) 3 1 

(2.44) 

u2(r) = -voP2(r) +k &A? 3b2(r) 
-j7J,2bJd 

4(r) - -3p-l/2(‘lo) +~w~2.L3,20 . I 
(2.45) 

In the above equations, J,(q,,) are the so-called Fermi integrals and their analytical 

continuations (for p < - 1). They are defined and discussed in detail in appendix A. 

The ETF expansion of the kinetic energy density T(r), eq. (2.9, need not be given 

explicitly; it can easily be gained from the above results via eq. (2.23). 

Note that the densities defined by eqs. (2.38)-(2.45) are analytical and finite 

functions of r in ali space for any finite temperature T > 0. This is different from the 

T = 0 case, where the ETF expansions pETF(r) and T&r) are defined only inside 

the classically allowed region and identically zero outside; the A” corrections with 

n > 2 even diverge at the classical turning points. This behaviour is easily recognized 

from the quantity no, eq. (2.41), which diverges with opposite signs for T -+ 0 on 

either side of the turning points given by X = V(r). The known T = 0 expressions for 

r&r) and PerrJr) [ref. 13,26)1 are recovered for T = 0 using the asymptotic values 

of the functions J,,(qa) discussed in appendix A. We will discuss the T = 0 limit in 

more detail in subsect. 3.3 after evaluation of the density functionals S[p] and a[p]. 

The inclusion of a spin-orbit potential of the form (u is the Pauli spin operator) 

t,O.= -iW(r)*(V X cr) (2.46) 

up to order A* is done exactly as in the T = 0 case shown in ref. 16). The lowest 
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semiclassical contribution to the spin-orbit density, defined 

J(r)= -i[(VrX(J)p(r,r’)]r=rf, 
is of the form 

by2’) 
(2.47) 

(2.48) 

where p&r) now is given by eq. (2.38). The spin-orbit contribution of order A2 to 
the free energy density is 

3. Densi functionals for free energy and entropy 

Our aim is now to derive functionals which allow us to express the free energy and 
the entropy (and thus also the kinetic energy) in terms of the local density p(r). 

According to the Hohenberg-Kohn theorem15) and its extension to fermion systems 
at finite temperaturei’), such functionals exist in principle. For an interacting 
fermion system, the exact functionals are not known. The difficulty of their 
determination is mainly due to (i) the presence of shell effects (at low temperatures), 
and (ii) the correlations. In our one-body problem we have no correlations to worry 
about, but still the shell effects make it hard to find a functional for the exact kinetic 

energy and the entropy. 
On the other hand, for the average part of the kinetic energy, obtained e.g. by a 

Strutinsky-smoothingll), it is relatively easy to find an approximate functional. In 
fact, the gradient expansion of the kinetic energy density functional 7aTF[p] ob- 
tained from the ETF model at T = 0 has been showni6) to reproduce the average 
kinetic energy in terms of the Strutinsky-averaged density c(r) to a very high degree 
of accuracy. This is not so surprising if one considers the well-established facts that 
(i) Strutinsky-averaging is semiclassical by nature and mathematically equivalent to 

the ETF A-expansion 26,30), and (ii) a microscopically Strutinsky-averaged fermion 
system can be formulated variationally “) and thus the Hohenberg-Kohn theorem 
applies to the averaged energy as a functional of the averaged density F(r). 

It is thus to be expected that the extension of the ETF model to finite temperature 
should lead to functionals which may be useful for excited nuclear systems. In 
particular, at temperatures T >, 2.5 to 3 MeV, where the shell effects are washed 
out 5-T), one may hope that these functionals become valid for the exact 
quantum-mechanical free energy .F&,, and entropy S. This has already been made 
evident24) by comparing the results of density variational calculations with the 
approximate T > 0 function& against those of Hartree-Fock calculations. In this 
section we shall briefly resume the derivation of the ETF gradient corrections at 
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T > 0 up to second order 22-24) and give also, for the first time, the fourth-order 

corrections for the case of a local potential. The new functionals will then be tested 

in fully quantum-mechanical calculations with a model potential in sect. 4. 

3.1. SECOND-ORDER FUNCTIONALS FOR A SKYRME-TYPE NONLOCAL POTENTIAL 

Following the method used in ref. 23), we shall now eliminate the potential and its 

gradients, as well as the chemical potential X, from the ETF densities given in 

subsect. 2.2. To lowest order, i.e. in the TF approximation, this elimination can only 

be done by inverting eq. (2.38) numerically: for any given density one finds no and 

inserts it into eqs. (2.39), (2.40) to obtain the free energy and the entropy density. 

(Note that in variational calculations with Skyrme-type interactions, the effective 

mass function f(r), eq. (2.34), is also a function of the density p.) 

In order to incorporate the gradient corrections of the A-expansion, we now define 

as the full density p(r) the sum of all terms in eq. (2.32) up to the desired order in A: 

P(F) = P&r) = P-&Y) + P*(r) + P4W + . ‘. . (3.1) 

This is the density as functionals of which we want to express s&r) and a,,(r), 

and which is treated variationally in the practical applications. 

The salient point 23) is now to define a new parameter n by the relation 

I+) =A%,,(n). (3‘2) 

(The function f(r) occurring in A& eq. (2.42), must hereby also be taken as 

function of p(r).) Note that 7 is different from 7, eq. (2.41) because the higher-order 

terms are incorporated in p(r) through eq. (3.1). Next we formally expand n in a 

series 

rl=no+r/2+ **. > (3.3) 

where no is given by eq. (2.41) and the TJ* with n > 0 are of order A” relative to no. 

We now expand the right-hand side of eq. (3.2) around 7, to obtain 

P=A~J,,,(rlo)+rl,A~:J-,,,(rlo)+ **. . (3.4) 

(Hereby we used the relation (AS) in appendix A.) By comparison of eqs. (3.4) and 

(3.1) term by term - the lowest terms are identical by construction - it is now 

possible to express n2, v~, _ . . successively through p2(r), p4(r), . _. . (See eq. (B.lO) in 

appendix B for the resulting n2.) 

In the next step we expand Fe&r) eq. (2.32) which is given in terms of nO, 

around n. For this purpose it is useful to reorganize the series (2.32) for FnrF(r) 

including the terms Ap,(r) occurring in Pn(r) - see eqs. (2.39), (2.44) - into the TF 

expression; using also eq. (2.41) to eliminate h we thus redefine 

@&r, no) = p(r)(Tn, + v) - $4V.‘.,,(rl,), (3.5) 

@n(r,vo) =%(r) -Q,(r) (n=2,4,...), (3.6) 
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~~~~(r,?I,)=~~+~~+.~~f .I-. (3.7) 

It now requires just some algebra to expand .# cETF(r, qo) around TJ and to insert the 
nn (n > 0) found previously. (This is shown in appendix B for the case of a local 

potential.} 
The final step is to express the gradients of the potential V(r) in terms of 

gradients of the density p(r). This is done by taking the corresponding derivatives of 
eq. (3.1), not forgetting that vnO equals -V V/T etc., re-expanding those expres- 
sions around n, and inverting the resuIting equations. The whole procedure, if 
carried through consistently up to order fi4, requires some tedious algebra but is 
straightforward. We present here the result up to second order for a one-body 
hamiltonian of the form (2.33) with variable effective mass, including also a 
spin-orbit term, eq. (2.46). The functions for the free energy density becomes23) 

~mFlPl=%4PI +&Ed +ebl + . .- (3.8) 

with 

(3.10) 

{We leave out a term proportional to Ap which does not contribute to the total free 
energy.) Hereby we have defined the coefficient p(n) as 

Note that p(q) depends on p and the temperature 2” through eq. (3.2). It is, however, 
a universal function of q which can be computed once and for all. The coefficient 
l(n) was also derived independently in a different context by a completely different 
method22~; the fictional .&[P] given there corresponds to a local potential (thus 
f=l and W=O) and contains only the first term of our above result t. A rough 
approximation (to within less than 3% for all values of 11) is 23) 

S(n) = $[I t 2/(1 i- eV)i”l. 

A better numerical approximation may be found in ref. 22). 

f3.12) 

t Eq. (14) of ref.*‘) contains a trivial misprint. 
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The functional for the entropy density 

%ETFbI = %[PI + hd +&I + . . . 
is found most easily using 

275 

(3.13) 

(3.14) 
h,p=comt 

We obtain? 

4PI = :w3,Ad -k (3.15) 

i 

&PI2 
dpl= - g+?I fp 4 f +‘P(vf)2+3vp.vf . 

1 

(3.16) 

The coefficient v(q) is defined by (see also eqs. (B.20), (B.24)) 

(3.17) 

The kinetic energy density functional need not be given explicitly; it is simply 
obtained from 

(3.18) 

3.2. FOURTH-ORDER FUNCTIONALS FOR LOCAL POTENTIALS 

To carry the variable effective mass and the spin-orbit corrections to fourth order 
by hand would require a formidable amount of work which is better left to a 
computer, as was done for the T = 0 functional for ~[p] by Grammaticos and 
Vorost3). We have done the case of a purely local potential; some intermediate 
results are given in the appendix B. The final fourth-order gradient corrections are, 
after partial integrations, 

(3.19) 

I- 
(3.20) 

The coefficients 19,( 17) and x1(v) are again universal functions of 9 which are given 
in appendix B in terms of the J,(q). 

t E?q. (55) of ref.23) is in error. 
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3.3. T= 0 LIMIT OF THE TETF FU~CTI~~ALS 

It is interesting to investigate the T = 0 limit. of the new TETF functionals for the 
following reason. In the standard derivation13,16) of the ETF functionals at T = 0, 

the classically forbidden region is not accessible, As we mentioned in subsect. 2.2, 
the densities 7 srr(~) and pETF(y) diverge at the classical turning points for T= 0 
and are identically zero outside. The functional r n-&p] derived at T = 0 is therefore 
a priori only justified inside the classically allowed region. It was nevertheless used in 
innumerable cases under the assumption that it could be analytically continued to 
the whole space. 

From our theory at T r 0, it has become possible for the first time to verify this 
analytical continuation24). [See also ref. lo) for an explicit discussion.] The reason is 
simply that one has no turning point problem at T s 0; the densities 
pETF(r), SET&r), etc. are all analytical and therefore the TETF functionals given 
above are strictly valid in all space. 

Using the fact that p, eq. (3.2), is a monotonously increasing function of 7 and of 
temperature T, and using the asymptotic behaviour of J1,2(7]) for large r) (see eq. 
(A-11)), it is seen 10*24 ) that for any finite density p, the parameter n goes to infinity 
in the limit T --) 0 like l/T: 

(3.21) 

From the asymptotic values of the coefficients c(q), V(V), ~~(~) and xl(q) for large 
YI given in table 4 in appendix B, and using eq. (3.2I) it is readily verified that the 
functional Prsrr[ p] goes over to the kinetic energy density functional knownt0,13,16) 
at T=O 

(3.22) 

and the entropy density uTETF[pJ goes to zero like 2”. This holds at any point in 
space where the density is finite, even if it is arbitrarily small. 

A note on the sixth- and higher-order gradient corrections is in place here. From 
dimensional considerations, the correction @Jp] must be of the form 

(3.23) 

it will give a finite contribution to the free energy at T> 0, The coefficients 

\1/1(17)> +2(v), * *. will in the limit T--t 0 go like qe2: 

q,(s) r+aq- 2a T*(~wz,M)~~-~/~. (3 -24) 

Hence the correction T&] (and also all the higher-order terms) to the kinetic energy 
functional at T = 0 will diverge for any realistic density which goes exponentially to 



J. Bartel et al. / ETF theoty 277 

zero for large distances, and will give an infinite contribution to the kinetic energy. 

Since the ETF density gradient expansions are to be understood as asymptotic series, 

the functional ~n~[p] at T = 0 must therefore be truncated after the fourth-order 

term, as discussed before 10,16). 

4. Test calculations with harmonic-oscillator wave functions 

In this section, the semiclassical expansions of the free energy density 9, kinetic 

energy density r and entropy density u as functionals of the local density p will be 

tested against their quantum-mechanical analogues defined directly in terms of wave 

functions. According to the theorem of Hohenberg and Kohn 15p1*) these functionals 

do not depend on the particular form of the potential, as long as it is local. As a 

simple approximation to a selfconsistent mean field, the harmonic oscillator is 

frequently used because of the simple form of its eigenfunctions. We shall use it here 

as a testing model for which the densities p(r), R(v), r(r) and u(r) can be 

calculated analytically. Since shell effects disappear at excitation energies corre- 

sponding to a nuclear temperature of the order of 3 MeV, the functionals derived in 

sect. 3 can be used for T 2 3 MeV with the exact quantum-mechanical densities. For 

high enough temperatures (T >, 5 MeV), these show indeed a completely smooth 

shape without quantum oscillations. We shall also investigate the Wigner-Kirkwood 

expansion of the partition function at finite temperature and the semiclassical 

expansions of the kinetic energy and the entropy, which can be derived from it 

analytically. 

We choose the harmonic-oscillator potential to be axially deformed and write in 

cylindrical coordinates with r = x + y F-7 

V(r,z)=~m(o~r2+~,2z2). (4.1) 

The frequencies are chosen as 

al = wo$‘3 ) Ldz=woq-*‘3, (4.2) 

so that the axis ratio q = WJW, can be used as a deformation parameter. The 

eigenvalues E, and eigenfunctions v, of this potential are standard and need not be 

given here. The density distribution 

r+> =CI%(~YnZ (4.3) 

and the kinetic energy density 

(4.4) 

as well as the entropy density a(r), eq. (2.22) are then readily computed with the 

Fermi occupation numbers n, given in eq. (2.16). 
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4.1. THE WIGNER-KIRKWOOD EXPANSION AT FINITE TEMPERATURE 

Before we test the density functionals derived in sect. 3, let us first study 

integrated quantities such as the free energy F or the entropy S in the Wigner- 

Kirkwood expansion. For this purpose we write F and S as inverse Laplace 

transforms as done in eqs. (2.25) and (2.27), but replacing the Bloch density C,( Y, 0) 

by the partition function Z,(p). For the harmonic-oscillator potential (4.1) this is 

given by (including a spin factor 2) 

with fT( j3) defined by eq. (2.19). The partition function Z,( /?) can be expanded in 

powers of A as done in ref.26) for spherical shapes 

2 
z;.“.(p) 1 WQOY = _ ( pho,)3 24 (2q2’3 + - 4 4’3) 

(Pj%j4 

+ 5760 
(24q 4/3+20~~2/3+7~~8/3 )). (4.6) 

The total free energy F is obtained as 

Similarly the entropy S can be expressed as 

In these equations the chemical potential h is fixed by eq. (2.11) to yield the correct 

particle number. 

Inserting the A-expansion of the partition function Z, eq. (4.6) one can express 

N, F and S through the Fermi integrals J,, .$ given in appendix A. For spherical 

shapes one obtainst (up to order A4) 

t For economical reasons the results arc given here only for spherical shapes. The extension to the 
deformed case is very easy and follows directly from the partition function (4.6). 
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For not too light nuclei the argument (X/T) of the Fermi integrals is much larger 
than unity for nuclear temperatures up to about 10 MeV. This enables us to use the 
asymptotic expansion (A.ll) of J,(q) for q B- 1 to obtain 

3 1 A yr2 T2 
(4.10) 

1 h4 1 A2 r2 A2T2 v2 T2 77~~ T4 

17 Aw, x e-Q’T 
+- 

960 l+e-‘jT ‘l+e-X/T 
-1 

I 
> (4.11) 

2 T 7~~ T 77r4 

G-E?45 a0 

e-h/T 17 hfiw, 
--- 

960 T2 [I+ emXiT12 . 

(4.12) 

(Note that the expansion (A.ll) is limited to a finite number of terms for the J,(n) 
with non-negative integer index p.) 

II_ 
N 2T 

0.4 

\ 1 / I / 

\ 

\ 

T= O.S\ /---\ 

30 40 50 60 70 

N 

Fig. 1. Entropy versus particle number at various temperatures (in MeV). Dashed and dotted lines: exact 
quantum-mechanical results. Sohd Izne: result of the semiclassical Wigner-Kirkwood expansion. The 

temperature dependence of the semiclassical quantity shown is too small to be visible on the figure. 
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TABLET 

Entropy S and free energy F of N = 70 fermions in a spherical harmonic-oscillator potential at different 

temperatures T; the contributions at different orders in the h-expansions (4.11) and (4.12) are shown 

and their sums (WK) are compared to the exact quantum-mechanical values (ex) 

0 2534.48 - 35.37 - 0.14 2498.97 2487.24 

1 14.91 - 0.10 14.81 6.67 2526.92 - 35.21 -0.14 2491.57 2485.89 

3 44.43 -0.31 44.12 43.86 2466.63 - 33.96 - 0.14 2432.53 2432.41 

5 73.06 - 0.52 72.54 72.54 2347.31 - 31.49 -0.14 2315.68 2315 68 

To test the convergence of the semiclassical expansions (4.11) and (4.12) we 
compare the results thus obtained with the exact values for F and S as calculated 
microscopically with eqs. (2.20), (2.21). As an illustration we show in fig. 1 the 
entropy S. A very similar comparison can be made when investigating e.g. 
the excitation energy E *. A pronounced shell structure is observed in the 
quantum-mechanical results at low excitations; it is washed out as the temperature 
increases. For T >, 3 MeV the exact and the semiclassical results coincide? showing 
that for such temperatures the Wigner-Kirkwood expansion reproduces the quan- 
tum-mechanical results. To study the convergence of the semiclassical expansion, we 
give in table 1 for N = 70 particles the contributions at different orders in A and 
compare their sum to the exact results. The rapid convergence known for the T = 0 

case 26) is recovered here. 

4.2. TEST OF THE TETF DENSITY FUNCTIONALS 

We shall now test the functionals FTErF[~] and (~rnrr[p] derived in sect. 3 by 
inserting the exact density p(r), eq. (4.3), into them and comparing the results with 
the corresponding quantities evaluated directly from the wave functions. In fig. 2 we 
show the kinetic energy density and entropy densities for two different temperatures. 
Rather than the kinetic energy density T(V) as defined in eq. (4.4) we have drawn the 
equivalent quantity 

T(r) = T(r) -$Ap (4.13) 

which gives identical kinetic energies but shows almost no quantum oscillations even 
at zero temperature. Instead of using the full Rd[p] as given in appendix B and the 
corresponding a,[~] we have included the fourth-order corrections in the form of 
eqs. (3.19), (3.20) which give the same contribution to the total F4 and S,, 
respectively. The distributions obtained are very close to the exact ones. It might 

t The temperature dependence of the semiclassical quantities is too small to be visible on the figure. 
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Fig. 2. Kinetic energy density T(Y) (a) and entropy density U(T) (b) for two different temperatures. The 
exact quantum-mechanical distributions (full lines) are compared with the semiclassical ones (dashed 

lines) obtamed via the TETF functionals in terms of the exact densities p(r). 



t I I 

q=l (b) 
\. 

‘. I-= 5 MeV 



J. Bartel et al, / ETF theoq 283 

look puzzling that at temperatures as high as T = 5 MeV quantum oscillations still 

persist, whereas it was shown above that all shell effects have been washed out for 

the integrated quantities at these temperatures. This behaviour is quite similar to the 

one observed with the Strutinsky-averaging procedure where one needs a parameter 

y about twice as large to smooth out the oscillations of density profiles than the one 

needed for smoothing the single-particle energies37). Similarly as for the kinetic 

energy density in eq. (4.13), one might try to find an equivalent entropy density if(r) 
by adding any divergence of a vector field that vanishes at infinity. It would give 

identical results for the entropy S, but might be smooth in r-space. In this sense the 

quantum oscillations of a(r) defined by eq. (2.22) have a certain arbitrariness and 

should not be given too much physical significance. 

Looking at integrated quantities we give in fig. 3 the total kinetic energy E,, and 

the entropy S as functions of the particle number N. For a temperature T = 5 MeV 

Ekln (MeV) 

1345 

Y N=70 
T =5 MeV 

1320 - 

E ------------- TF 

1315 c” 

,/- -------_______ 
--_. 

(a) 
1 I 

05 1.0 1.5 2.0 
9 

Fig. 4. Same as fig. 3, but for fixed particle number N = 70 as a function of the deformation parameter q. 
The top most curve is the result obtained wth the approximate functional, eq. (5.39). 
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Fig. 4. (continued). 

the contributions at each level of the semiclassical approbation (TF, second and 
fourth order) are shown. The exact E,, and S were obtained by integrating 7(r), 

eq. (4.4), and a(r), eq. (2.22). (Note the scales used!) It turns out that going to 
fourth order in the functionals the exact entropy is reproduced to within less than 
1% for all particle numbers shown. This agreement is still better for the kinetic 
energy where the deviation is less than l%o and even 0.1%0 for N >, 140. As already 
seen from fig. I, shell effects no longer play any role at the temperature of T= 5 
MeV chosen here. 

To demonstrate that the function& derived are valid not only for spherical but 
also for deformed shapes we show in fig. 4 the kinetic energy and entropy for N = 70 
particles as a function of the deformation parameter q. The complete functionals up 
to fourth order are seen to give the correct deformation dependence - which is for 
instance not at all the case at the TF level as already observed for T = 0 in 
ref. r6) - and deviate from the exact rest&s by less than I to 2 parts in thousand. 
This small deviation is to be explained by ~gher-order corrections which obviously 
contribute very little. Due to the smallness of the fourth-order correction to the 
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TABLE 2 

285 

Relative contributions to free energy and entropy of N = 70 particles as in table 1, but obtained this 

time through the various gradient correction terms of the functionals .FTETF[ p] and oTTETF[p] 

1 0.015 0.004 0.255 0.069 

2 0.015 0.003 0.113 0.015 

3 0.015 0.003 0.065 0.006 

4 0.015 0.002 0.041 0.003 

5 0.015 0.002 0.027 0.002 

entropy it even seems reasonable to limit oneself to second order, S, + S,. For the 

total kinetic energy, however, it appears important to correctly include the term 

rJp] into the calculation. Replacing the finite-T functional r4[p] by its form valid at 

T = 0, a total kinetic energy E& is obtained which overestimates the exact E,, by 

- 4 MeV and gives an energy which is no better than if the fourth-order correction 

were omitted altogether. To study the importance of the different gradient correc- 

tions, we show their relative contributions to the total free energy and the entropy in 

table 2. They are seen to decrease with increasing temperatures (except for F,, the 

contribution of which stays approximately constant). 

5. Density variational calculations 

In this section we shall discuss the Euler differential equation which follows from 

a density variational calculation with the TETF functionals developed above. We 

shall limit ourselves here to a one-component nuclear system (i.e. with only one kind 

of nucleons) without Coulomb interaction. We do not discuss here isolated, metasta- 

ble nuclei at finite temperature; they will be the object of a forthcoming publication. 

Instead, we consider a nucleus consisting of N neutrons in thermodynamical 

equilibrium with a surrounding neutron gas. In order to make the calculation 

selfconsistent, we use the energy density obtained in the Hartree-Fock approxima- 

tion for a Skyrme-type effective nucleon-nucleon interaction2*), with variable den- 

sity dependence 31): 

&Jr) = A2 -----7(r) + &)p2(r) ++&+yr> 
2m*( r) 

+b[vp(r>12+ w(+qr). (5.1) 
J(r) is the spin-orbit density, eq. (2.47). The effective mass m*(r) and the spin-orbit 
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potential W(r) are 28) 

wr)=p$7Pw; 
the coefficients b and p are given in terms of the Skyrme parameters by 

(5.3) 

(5.4) 

In principle, we have to question to what extent the Skyrme parameters t,, t,, t,, 

x2, tp 01 and W, wiI1 themselves depend on the temperature T. This could 
theoreti~ly be decided by a fi~te-temperature Brueckner calculation and a density 
matrix expansion such as performed by Negele and Vautherin in the T = 0 case 32)_ 
As long as such calculations are not available, we make the same assumption as in 
all Skyrme calculations at T > 0 done so far 5-1o): i.e. keeping the Skyrme parame- 
ters deter~ned by nuclear ground-state properties. 

The energy which is made stationary at T > 0 is the Gibbs free energy: 

6/d’r{ &&) - To(r) - XP(r) i-P,} = 0, (5.6) 

where the chemical potential X plays the rble of a Lagrange multiplier fixing the 
nucleon number, and PO is the external pressure needed to maintain the thermo- 
dynamical equilibrium. Using the TETF functional developed in sect. 3 for the free 
energy density, we can rewrite eq. (5.6) as a variational equation for the density P(P): 

6 
- 
6PW J f 

d3r $$&Pj-XP+P,)=O. (5.7) 

.FmTF[p] is now given by eqs. (3.8)-(3.10) and (3.19) after replacing the potential 
term VP in $r&f, eq. (3.91, by the ~ght-hod side of eq. (5.1) excepting the first 
term. It is useful to split FET,[ p] into a homogeneous term FW( p), which is the free 
energy density of symmetric infinite nuclear matter, and the sum of all gradient 
terms. Using eqs. (2.48) and (5.3) in the spin-orbit energy, we obtain 

with 

EApl= -fTA*,J,,z(~ll)iTrtp+~r,p2+ &p2+*_ (5.9) 

Note that the TF part of the term proportional to rp of the Skyrme energy is 
included in the first term of eq. (5.9). The second- and fourth-order terms sJp1 and 
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&[ p ] are given by eqs. (3.10) and (3.19), respectively. Since 9Jp] is proportional to 
(~p)~, it further simplifies the notation to collect all coefficients of (vP)~ in eqs. 
(3.10) and (5.8) into one function s(p) and to finally write 

-5mbl =%(d +4P)(vP)2+%M. (5.10) 

Performing now the variation in eq. (5.7), we obtain the Euler equation 

~~(p)--2s(p)Ap--s’(p)(~p)2+6p= . =&I A 
(5.11) 

The primes on functions of p shall henceforth denote derivatives with respect to p. 

The functional derivative GS$[pJ/Sp contains eight terms with up to fourth-order 
gradients of p with complicated coefficients. This makes eq. (5.11) a highly nonlinear 
fourth-order partial differential equation which in general will be very difficult to 
solve even in the spherical case. 

One practical way out of this difficulty is to parametrize the density profile p(r) 

and to minimize the total free energy with respect to the parameters. This procedure 
has been followed in the T = 0 case and led to an excellent agreement with 
Strutinsky-averaged Hartree-Fock resultsl’). 

The second possibility, chosen here, is to perform a “leptodermous”, i.e. liquid- 
drop model (LDM) type expansion 10,33) of the free energy: 

P= a,A + asA2i3 + acAll + . . . , (5.12) 

where a, is the volume (free) energy constant. Under the assumption that the 
density of the nucleus is essentially flat in the interior and varies only in a relatively 
narrow surface region, the LDM parameters a,, a, etc. can be systematically gained 
from a semi-infinite nuclear matter calculation. Strictly speaking, the surface tension 
and the Coulomb repulsion tend to spoil this leptodermous behaviour, the former 
leading to an increased central density in light nuclei and the latter to a central 
depression of p(r) in heavy nuclei. These modifications of the density profile have, 
however, been shown in realistic calculations lo) to affect the total binding energies 
by less than - 1 MeV, so that the leptodermous assumption is well justified in 
calculations of total energies for nuclei with A >, 40. 

We thus apply the density variational principle to the surface free energy given by 

a, = 4nr,20 = 4713; 
/_,_ { dz 6md~(z)1 -hpb)+&} 9 (5.13) 

where p(z) is the one-dimensional profile of semi-infinite nuclear matter. At finite 
temperature, a, is the interface energy defined by Ravenhall et al. 21) of the profile 
connecting the condensed (i.e. liquid) nuclear matter with density p. and the nuclear 
gas with density pg. Thus the density profile p(z) has the limits 

P(+~mPcl> PM -pg. (5.14) 
z--,+m 

For a given temperature T > 0, the four quantities X, PO, p. and pg are determined 
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by the Maxwell construction which consists in solving simultaneously the two sets of 
equations 

x =C(K%) =%$s) > (5.15) 

p,=XP,--(P,)=XP,-~(Pg). (5.16) 

At zero temperature where PO = 0, eq. (5.13) reduces to the standard expression of 
the surface energy33); in this case the chemical potential X is identical with the 
binding energy per nucleon of infinite nuclear matter. 

eo(Po) 
h=8&(p,)=p,=a,, (T=O). (5.17) 

The nuclear radius constant r,, in eq. (5.13) is given by 

rO= ($rp0)-1’3. (5.18) 

With this one-dimensional geometry, the Euler equation (5.11) can be simplified, 
because the variable z does not appear explicitly. Noting that FJp] is now of the 
form 

6bl= dPw)4 + %w’~2 + hw)2P”> (5.19) 

where the primes on p denote derivatives with respect to z, the Euler equation (5.11) 
becomes 

e(P) -2&)P” - s%G’)” - 12&)(PYP” - 3g’(P)(P’)4 

+2h(p)p’4’+h’(p)[4p~“’ + 3(p”)‘] +2h”(p)(p’)*p” 

+4z’(p)(p’)2p”+z”(p)(p’)4=x. (5.20) 

This is still a rather unpleasant nonlinear fourth-order differential equation. (The 
reader will not confuse the derivatives s’(p), Z”(p), etc. with respect to p and those 
with respect to z: p’, p”!) 

The nice feature now is that eq. (5.20) can be integrated once after the substitution 

P = llPW1” =P(P>. (5.21) 

Expressing all spatial derivatives of p via eq. (5.21) through p(p) and its derivatives 
with respect to p, one finds that the left-hand side of eq. (5.20) can be written as a 
total differential. The equation can thus be integrated once over p, whereby the 
integration constant is the pressure Pa, so that one is left with the following 
second-order differential equation for p(p): 

sp + (3g - 1’) p2 + yl ( pq’ - h’pp’ - hpp” = f.2 ; (5.22) 

here we have introduced the energy density 

Q(P) =<(p) -xP + PO (5.23) 

whose spatial integral is the thermodynamical (or grand canonical) potential. 
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The boundary conditions for p(p) are very simple. In the two limits z + + cc, all 

spatial derivatives of p(z) vanish, and thus also p, and eq. (5.20) reduces to the first 

set of equilibrium conditions, eq. (5.15). On the other hand, eq. (5.16) implies that 

also a(p), eq. (5.23), vanishes at the boundaries. Looking at eq. (5.22) we see that 

also p’(p) must be zero there, so that the boundary conditions for p(p) are 

Pbd ‘PbJ =P’(Po) =P’(Pg> = 0. (5.24) 

From eq. (5.21) it is furthermore obvious that p(p) must be positive definite in 

between the boundaries. 

Once eq. (5.22) for p(p) has been solved, one can obtain the inverse profile 

function z(p) from eq. (5.21) by a simple quadrature: 

Z(P)= -o-& dp’fc. (5 25) 

The integration constant C, which is formally infinite with the choice of eq. (5.14): is 

practically irrelevant since the surface energy, eq. (5.13), is invariant under a 

coordinate translation along z. Using eqs. (5.21) and (5.22), the surface tension u, 

eq. (5.13), can, in fact, be expressed directly as an integral over p which after some 

partial integrations takes the form 

u=L:& ---4$(P) +sdP)P(P)]. (5.26) 

This result can also be obtained directly from eq. (5.13) requiring that a, should be 

stationary with respect to a scale transformation z + z’ = z/a, just as one derives 

virial theorems for bound systems. With eq. (5.10) this leads to 

(5.27) 

which after the substitution (5.21) reduces to eq. (5.26). 

The coefficient of the term proportional to AlI3 in the total free energy eq. (5.12) 

can be written as 

a, = ~TT~,K + ucomP. (5.28) 

The first term is the proper curvature energy with K given in this case by lo) 

K=Jm (z-zo>{~~~~IPl-~P+~o}dz 

+-/- p’[Z(p’)2+2hp”]dz, 
-ca 

where 

(5.29) 

(5.30) 
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With eqs. (5.21) and (5.22), K can be re-expressed in the form 

+:[~(P)P(P) +~(P)P’(P)] (5.31) 

which is easily seen to be independent of the integration constant C in eq. (5.25). 

The second term in eq. (5.28) is the so-called compression energy33) stemming 

from the fact that the central density &, in a finite nucleus is slightly increased with 

respect to the infinite matter density pa due to the surface tension and the finite 

compressibility of nuclear matter. To lowest order in the droplet model expansion of 

the total energy in powers of the small quantity &, - p0 one finds33) 

a camp = -2af/K,, (5.32) 

where K, is the incompressibility of the condensed infinite matter phase given at 

TaOby 

K, = 9P,C’( PO) . (5.33) 

The contribution acomp is usually small, of the order of - lo-20% of the total a,, 

for all realistic interactions lo). 

The nonlinear second-order differential equation (5.22) for p(p) with the boundary 

conditions (5.24) is most easily solved by decomposing it into a system of two 

first-order equations by the substitution 

4(P) = ~(P)lJ(Ph’(P). (5.34) 

One then has to solve the coupled equations 

q’=~p+(3g-(‘)p2+~~-II. 
I 

i (5.35) 

The division by p and h causes no difficulty, since both functions are positive 

definite for pg < p < po. At the boundaries, we have q = q’ = 0. 

We have solved eqs. (5.35) numerically using a finite-difference technique34) with 

Newton iteration, starting from approximate solutions po( p) and qo( p). As starting 

approximation we took a parametrized density profile of the form 

PO - P, 
p(z)=fJ,+ (l+ez/a)Y’ 

(5.36) 
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Fig. 5. Profiles of the interface between condensed (left) and gaseous (right) symmetric nuclear matter at 

various temperatures T (given in MeV). Solid hnes: exact numerical solutions of the Euler equation (5.22). 

Dashed fines: variational densities parametrized as in eq. (5.36). The force SkM* was used36). 

which was used in earlier variational calculations10,35). It leads to 

(5.37) 

In order to be consistent with the earlier calculations10,35), we included in the 

coefficients g(p), h(p) and Z(p) also all those spin-orbit and effective mass 

contributions to .%Qp], left out in the derivation in subsect. 3.2, in their form valid 

for T = 0. These terms, which are found in their simplest form in ref. lo), have only a 

minor influence on the results and therefore the neglect of their temperature 

dependence should not be serious t. 

In fig. 5 we show the density profiles obtained at various temperatures with the 

Skyrme force SkM* which gives excellent ground-state properties of stable spherical 

nuclei36). The solid lines are the exact numerical solutions of eqs. (5.35) and (5.25), 

whereas the dashed lines show the profiles, eq. (5.36) with the variational parameters 

a and y which minimize a,, eq. (5.13), at each temperature. The small differences 

demonstrate that a restricted variational calculation with trial densities of the form 

(5.36) gives already very good solutions. 

In fig. 6 we present the LDM parameters a, and a,, evaluated according to eqs. 

(5.13), (5.26)-(5.33) versus the temperature T. The solid lines are the exact results 

obtained with the numerical solution of the full Euler equation (5.22). The dashed- 

dotted lines are obtained if the fourth order term 9$[p] is omitted (i.e. putting 

p To leading order, it is sufficient to replace the nucleon mass M by WI*(P) everywhere in S4[ p]. 
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(MeV) 
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0 5 T 10 (Me’/) 15 

Fig. 6. Surface energy u, and curvature energy (1, (including the compression energy) versus T, obtamed 

with the SkM* force. Solid lanes: using exact solution of the full Euler equation. Dashed hnes: vanatlonal 

result with the parametrized density profiles (5.36). Dashed-dotted Lnes: using exact solution of Euler 

equation truncated after the second-order gradient terms. 

g(p) = g(p) = Z(p) = 0); the solution for p(p) is then simply 

P(P) = fw/m. (5.38) 

The dashed lines finally correspond to the results obtained with the full functional 
P-=&p], but using the parametrized density profiles, eq. (5.36) and minimizing a, 
with respect to (Y and y. 

Both parameters a, and a, go to zero at the critical temperature T,,, = 14.6 MeV 
where the liquid and gas densities p0 and ps become equallo). Beyond T,,,, only one 
phase exists and the parameters a,, a, lose their meaning. 

The results obtained with the parametrized trial densities reproduce the exact 
solutions within less than 1% at low temperatures and within less than 0.1% for 
T >, 5 MeV. This gives a very nice a posteriori justification of the restricted 
variational approach used earlier 1o,35). We also learn from fig. 6 that the fourth-order 

gradient corrections become less important at higher temperatures, as already 
noticed in sect. 4. For 0 < T < 3 MeV, however, they are clearly necessary to obtain 
reliable LDM parameters, a conclusion which was already drawn from calculations 
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at T = 0 [ref. “)I. In the earlier calculations, we had used an approximate TETF 
functional P$&[p] in which the fourth-order term was taken in its form valid at 
T = 0, i.e. 

(5.39) 

hereby the IJ~[P] contribution to the entropy was neglected. The LDM parameters 
obtained with this approximation 10,35) are practically the same as those which we 
obtained here with the full functional 9 TETF[~] (shown by the dashed lines in fig. 
6); the surface energies a, agree within less than 0.5% and the parameters a, within 
less than 1.5%. This accords with our model results of sect. 4: The contribution from 
uJp] to the total entropy is always very small; the temperature-dependent part of 
rd[p] contributes up to several MeV in the total kinetic energy for finite nuclei and 
thus is not negligible, but it shows up very little in the LDM parameters a, and a, 
which must be multiplied by A2/3 and A113, respectively, to give their contributions 
to the total energy. In table 3 we present the surface energies a, obtained for T = 0 

for a series of current Skyrme force parametrizations, obtained both from the exact 
solution of the Euler equation and with the trial density profiles, eq. (5.36). The 
difference is roughly the same for all forces and smaller than 1%. 

The asymmetric - or isovectorial - LDM parameters can be obtained along the 
same lines, treating neutrons and protons separately; in this case one has to solve 
two coupled Euler equations. Their systematical evaluation will be the object of a 
future publication. 

Surface energy coefficients a, for semi-infinite nuclear matter at T = 0 have also 
been calculated in the Hartree-Fock (HF) approximation using various Skyrme 
forces45). The agreement with the semiclassical results for a, is very good (within 
I< 4%), in particular with respect to the variation of a, with the parameters of the 
force. As already discussed earlier 10,46), the HF results are typically higher than the 
ETF values by 0.5-0.8 MeV. A smaller part of the difference (- 0.1-0.3 MeV) is 

TABLET 

Surface energy coefficient CI, obtained from the semi-infinite nuclear matter profiles at T = 0 with 
various Skyrme forces 

Force a:” [MeV] aP= 
s Aa 

SIII “) 17.91 18.04 0.13 
Skab) 18.37 18.51 0.14 

SkMC) 16.45 16.60 0.15 
SkM* d, 17.07 17.22 0.15 
To83 ‘) 17.27 17.43 0.16 

The first column (ex) gives the results obtained from the exact numerical solutlon of the Euler 

equation. The second column (par) shows the variational results using the parametrized density profiles, 

(5.36). Aa is the difference. The numerical uncertainty of a? is iO.03 MeV, that of agar less than 
to.01 MeV. 

“) Ref.38). b, Ref. 39). “) Ref.40). d, Ref. 36). ‘) Ref. 41). 
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related to a systematic overbinding found in the ETF variational resultsiO); the 

largest part may be due to numerical uncertainties (- 0.5 MeV or more) of the HF 

results4’). [See ref. 46) for a systematic comparison of surface energies obtained with 

both models.] 

6. Summary and conclusions 

We have presented the recently developed ETF model at finite temperatures. The 

functionals for the free energy density FE&p] and for the entropy density 

urnrr[p] have been presented, for a nonlocal Skyrme-type one-body potential up to 

second order and for a local potential up to the fourth-order gradient corrections. 

For a harmonic-oscillator potential, we have shown that the Wigner-Kirkwood type 

&expansion of the free energy and the entropy converges very fast and reproduces 

the quantum-mechanical results very accurately for temperatures T z 3 MeV where 

the shell effects in the energy are washed out. 

We have also demonstrated that the TETF functionals allow one to calculate the 

total free energy and entropy with an accuracy that reaches 0.1% or less for T z 3 

MeV, independently of the deformation of the potential and of the particle number 

(as long as it is not too small). This is perhaps the first time that kinetic energy and 

entropy of a (non-interacting!) fermion system have been calculated through the 

local density p(r) alone with such a precision, and gives a very nice numerical 

illustration for the validity of the Hohenberg-Kohn theorem 15,18). Since this theorem 

also tells us that the functionals for the uncorrelated part of the free energy, and thus 

also the entropy, do not depend on the special form of the potential V(Y) (as long as 

it is local), our results have a validity which is not restricted to the case of the 

oscillator potential chosen here as a test example. 

These results encourage one to develop and use the T’ETF theory also for nonlocal 

parts of the potential, like the effective mass and spin-orbit terms whose full 

contributions to the functionals g[ p] and G[ p] have also been given here up to 

second order. In particular, our functionals now make it possible to perform density 

variational calculations for excited nuclear systems using a Skyrme-type effective 

interaction. In order to illustrate this, we have derived the appropriate Euler-Lagrange 

equation for the density of a symmetric nucleus. We have for the first time solved 

numerically this nonlinear, fourth-order differential equation for the case of a 

one-dimensional semi-infinite density profile which describes the interface (without 

curvature effects) of a nuclear liquid-gas two-phase system. Earlier attempts to do 

this in the case of simple semi-infinite nuclear matter at T = 0 having failed, 

variational calculations with parametrized trial density of a modified Fermi function 

type have been frequently used [see ref. lo) and the literature quoted therein]. We 

have shown here that, indeed, such trial densities allow to calculate the surface (free) 

energy from the semi-infinite profile to within - 1% at T = 0 and even more exactly 

at higher temperatures. 
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This opens up the possibility to calculate thermal properties of excited nuclear 

systems in a semiclassical way which becomes quantitatively equivalent to the 

Hartree-Fock method for T z 3 MeV, but which requires much less numerical effort. 

In particular, the problem of including correctly the continuum states 9, is eliminated 

here since everything is determined by the local density p(r). Among many interest- 

ing applications, we mention the equation of state of hot nuclear matter as used in 

astrophysics for the calculation of supernovae evolution, the determination of LDM 

parameters as functions of the temperature, or fission barriers of highly excited 

nuclei. Several attempts in these directions have already been undertaken21,23,35,42), 

in some cases using the TF functionals only21). 

We want to stress here the importance of the second- and fourth-order gradient 

corrections for describing correctly the nuclear surface properties on which, in 

particular, the fission barriers depend very crucially10~17~23). Calculations with 

simplified functionals may accidentally lead to reasonable results in certain cases for 

certain forces, but should be taken with great care. 

A remark on the so-called low-temperature expansion might also be appropriate. 

It is obtained if in the ETF densities (2.38)-(2.45) all functions JP(qO) are expanded 

according to eq. (All) for large values of q. (2.41), or equivalently, if the 

temperature factor fr( p) of the Bloch density (2.18) is expanded in powers of (PT). 

This leads to a simple quadratic temperature dependence of the kinetic energy 

density functional “So). However, the limit no zz7 1 is never correct, even at very low 

temperatures, in the nuclear surface near and beyond the classical turning point. 

Therefore this approximation should not be used for finite nuclei. It has, in fact, 

been shown to give rather bad results “Zig). 

As we have clearly demonstrated, such simplifying assumptions are no longer 

necessary since the inclusion of the full functionals .9$[p] and Pd[p] with their 

correct temperature-dependent coefficients is quite easy and guarantees a sufficient 

accuracy in the kinetic (free) energy of realistic nuclear systems at arbitrary 

temperatures. 

We have greatly benefitted from stimulating discussions with W. Stocker. 

Appendix A 

ANALYTICAL CONTINUATION OF THE FERMI INTEGRALS AND THEIR NUMERICAL 

COMPUTATION 

The so-called Fermi integrals 

4(9)=fl+ex;;x_q) dx w -1) 61) 

are well known from the Thomas-Fermi model at finite temperature “-‘i), where the 
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functions J,(n) occur for values p = 5, ?j and - f . In the TETF model we encounter 
derivatives of these functions which necessitate their analytical continuation to 
values of /J, < - 1 for which the integral (Al) is not defined. For the mathematically 
interested reader, we refer to a recent article by Fernandez Velicia43) who exten- 
sively discussed these analytical continuations, their series expansions and numerical 
approximations. The functions discussed in ref. 43) are in fact 

J(7) = 

1 M 

J 

XP 

r(~+l> 0 l+exp(X-v) 
dx (A-2) 

which, for any real non-negative integer p, differ from J,(n), eq. (A.l), only by a 
factor. The real functions jW(n) (for real n) are analytic for arbitrary values of p. 
(For negative integer p, the pole occurring in the integral of eq. (A-2) cancels that of 
the gamma function.) They obey the differential recurrence relation 

For p=O, -1, -2,... they are elementary functions. In particular one finds 

jb( n) = J,(n) = ln(1 + e?) , 

Ll(-q) = (1 f eeq)-l, etc. 1 
(A.4) 

Since in the present context we are mostly interested in the real functions with 
non-integer p, we choose to stay with the convention according to eq. (A.l) and 
define the J,(q) for p < - 1 by the derivative relation 

J,-r(n) =; ;JM (@O, -/_~@:rm = {1,2,3 ,... }) (A.51 

which leads to analytic functions for any real non-negative integer p. 
Since the integral in eq. (A.l) does not exist for p < - 1, we had to look for 

numerically stable ways to calculate the J_ 3,2(n), J_ 5,2(n), etc. (The functions for 
p=+, $and -1 z are easily found in standard computer program libraries; we used 
the CERN library routine “FERDIR”.) Numerical differentiation works well to 
obtain J_ 3,2( 7) but becomes unstable for the higher derivatives due to the way in 
which J_ 1,2( 17) is approximated. For this reason we took from ref. 43) the expansion 

J,(n)=I’(p+l) f s(l-2”-‘)6(p+l-n) 
n=O . 

2%7 O” 
+------- 

+ sin(rP) k=O 
ri + q2)“’ cos[ +p + parctg( n/r,)] 

N 1 
-rLC - 

QP + 1) 

( i 
1 ncos[(n + p)$m] 

n=On! T(l*+l-n) rk i 

(/-<<-l;NEf%-@l$ (A.6) 
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where 

r,=n(2k+ 1). 

Deriving both sides of eq. (A.6) with respect to n and using the relation 

J,(O) = r(/4 + l)(l - 27){(p + 1) 

297 

(A.71 

which is found using standard relations for the Riemann zeta function l(z), we 
obtain the alternative expansion 

Jp(d=--- 27T -g (r;+?j*y2 
s%v-4 k-0 

cos[iw + P arctg(rl/rk)] 

(p< -1; -p@N). (A.91 

Both eqs. (A.9) and (A.6) can be used for the numerical computation of J,(q) with 
non-integer p < - 1; the series (A.6) converges faster but requires the knowledge of 
J,(O) which may be obtained by numerical differentiation of Jp+l(q) at r] = 0. 

For p = - 5 the convergence of these series is too slow for practical use; we 
therefore calculated J_ 3,2(q) by numerical differentiation of J_ 1,2( 7). For p < -- z, 
convergence to a relative accuracy of 10 - 5 could be achieved using less than 550 
items (in most cases 10-50) of the above series. 

For values n ,< - 1.5, faster numerical convergence is found with the following 
well-known expansion i9): 

J,(q)=r(p+l) E (-l)“-i&e”” WO). (A.10) 
k=l 

Another well-known asymptotic expansion for large positive arguments is i9) 

I.c+1 

J,(v) - -!-- 
q=-l (p+ 1) i 1+ E (22k-2)7rZklB (AW 

k=l 

where B,, are the Bernoulli numbers. The series (A.ll) is, however, semi-convergent 
and can therefore only be used for a reliable numerical computation for sufficiently 
large values of n. For the Fermi integrals J,(q) with - y Q p G - $ the conver- 
gence of the series (A.ll) is so fast for TJ 2 20 that it can be limited to 5 to 9 items to 
obtain a relative accuracy of 10 - 5. 

Appendix B 

FOURTH-ORDER CORRECTIONS TO THE DENSITY FUNCTIONALS 

In this appendix we sketch the derivation of the fourth-order gradient corrections 
to the functionals of the free energy and the entropy in the case of a local potential 
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V(r). (The extension to the nonlocal case is lengthy but str~~tfo~ard and follows 
the same lines as the local case sketched here). The Bloch-density up to fourth order 
in the Wigner-Kirkwood expansion reads 26) 

where 

c~(~)-~(AV)~$~VV~V~~/+~A(V-V)~~ 

d4(~)=~A~~vti)24-~~V~~(~~)~. 03.2) 

As shown in subsect. 2.2, we obtain by inverse Laplace transformation of eq. (B.1) 
the density peTF( r) and the free energy density .9&rF( r): 

PETF~~)=PTF(~~)+Pz~~,rlo)+P~~~~7jo~= :P(+ (B-3) 

FE&r) =gTP(40) +.%(r, RJ -+&(r, 40)f VW 

where 

90(p) = (A - ~(~II/T. (B.5) 

As in subsect. 2.2, we denote P&Y), eq. (B.3), in short by p which will be the 
variational density in the applications of the functionals FE&p] and u&p] to be 
derived here. The explicit expressions of the zeroth- (TF) and second-order terms 
have already been given in subsect. 2.2; that of p4(rt qo)’ wifl not be needed, as we 
will show, and that of s4(r, q,,) is 

with 

As in subsect. 2.2 we define q as the solution of the equation 

p(r) =&J,,,(r) (B.8) 
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for any value of r. We now formally expand rl up to fourth order: 
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~=~0+~2+~4, (W 

where n2, n4 are of order Pz* and tt4, respectively, relative to no. By a formal Taylor 
expansion of eq. (B.8) around q0 and comparison of coefficients of equal order in ti, 

one obtains the explicit form of qz: 

2 P,(vd fi* 1 1 
=--_e 

1)2=z J_,,,(TJO) 2m 12 ‘J-1,2(7?0) 

with 

(B.10) 

(B.11) 

the explicit form of n4 will not be needed, as we shall immediately see. 
We now expand @4(r, no), eq. (B.6), around 9, using eq. (A.5) and keep 

consistently all terms up to order A4: 

em&> =&r(n) - ( 92 + 7J4)7ii + (92 + ~4)w&,2(7?) 

- $4,~7dJ-1,2(7?) 

The second and third terms cancel due to eq. (B.8). Noting from eqs. (2.43), (2.44) 

and (3.6) that 

and using the first equality in (B.lO), we obtain 

.9&r(~) =&&I) +&(c 9) +&(c 17) + $4r7%-&). (B.13) 

F&r), eq. (B.13), now only depends on functions of n (and therefore of p) and of 
the potential V and its gradients. In order to get rid of the latter, we build the 
corresponding combinations of second, third and fourth derivatives of p, using eqs. 
(B.3) and (B.8), but keeping consistently only those terms which contribute to 
F&r(r) in second and fourth order in A. After some tedious algebra one can 
express all gradients of V through combinations of gradients of p, and one finally 
obtains the functional for the free energy density: 

,,t(r) =~TE~~[PI =9&p) +%[PI +%[PI, (B.14) 
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where Frr(p) and &[p] have been given in subsect. 3.1 and &[p] has the form 

S4[p]= !T - 
i 1 2 1 J-l/h?) 

2m T Jl,,h) 

x 91V4P + +2----- 
(~P~~+~~vP~v~P+~~~(vP)~+~~vP~v(vP)~ 

P P P P2 

++6 

APT 

PZ 

+~ (VP14 

7 P3 I . 

(B.15) 

The 9, are universal functions of 11 which can be expressed in terms of the following 

combinations of J,( 7): 

X = Jl/z J- 3,2@ 1/2 9 Y = J&J - 5,2/J: l/2 7 2 = J&2 J- 7,2/J: l/2 > 

w = J;,2J - 9,2/J? l/2 ) 0 = J$2 J- 11,2/J: 1/2. (B.16) 

Here and in the following, the argument of J,, is always understood to be 7. The 

expressions for the +, are 

+I= -i&x, G2= -&2+&y, (p3= -&x2+&y, 

$4= -&)X2-&Y, C&= -&x3+$$xy-$2, 

Cp66= -&2+&xy- $2, 

& = - &x4 + $x”y - $&y” --xz+gw. (B.17) 

In practice we only need the functional S$[p] integrated over all space. Assuming 
that all derivatives of p vanish at infinity, we can integrate eq. (B.15) by parts to 

obtain 

(AP)~ 
fllp+fl2 

AP(vP)* +B 

P2 

6’~)~ d3r 

I 3P3 ’ 

(B.18) 

so that only first and second derivatives of p will be required. The coefficients (Ii(v) 
are 

6, = +QX”-&y), s,=~(~r3-~Xy+~z), 
t/2 r/2 

4= J J_,/,(&x4-$x~y+&y2+&XZ-&w). (B.19) 
r/2 

From eq. (B.18) we finally find the functional for the integrated entropy from the 
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canonical relation S = f- 8/aT>F],. Using 

J?l 3 J&d - =-....... 
CW P T J-&d ’ 

(B.20) 

which together with the relation (A.5) fohows directly from eqs. (B.7), (B.81, one 
arrives at 

(B.21) 

where the coefficients xi(q) are given by 

J1/2 dCl -- 
Xi=0i+3/_l,2 dq 

(i= 1,2,3) 

and take the explicit form 

(B.22) 

~~xz+~X*z-~yZ-~w-~~XM'+~~U). 

The functions ei(q) and xi(n) can be computed once and for ah. 

(B.23) 

With the asymptotic expansions (A.10) and (A.11) of the J,(n), the quantities 
x, y, z, w, u, eq. (B.16) can be shown to become constants in the limits n * 0 and 
n 3>> 1 and the & and xi take simple values which are shown in table 4. Note in 
particular that for arbitrary fjnite values of p, q goes to -I- cc iike l/T in the limit 
T + 0 as explained in sect. 3; then the integrand of S, everywhere goes to zero 
linearly with T and s4[p] goes over to the functional (A2/2m)r4[p] which is well 
known from the T= 0 case*3$16). 

TABLE 4 

Asymptotic values of the various coefficients defined in appendix B for the two limits q -C 0 and YJ % 1 

eo -1 l/3 -l/15 l/105 - l/945 1,080 -l/360 0 l/180 -l/360 0 2 

=-> 1 -l/3 - l/27 -l/135 -l/567 -l/2187 l/27011 -l/24017 l,‘SlOr, 0 0 0 3/n 
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The coefficients l(q) and v( 17) occurring in the second-order functionals - see 
eqs. (3.11), (3.17) - can be expressed by the quantities x and Y in eq. (B.16) as? 

{= -&x, v=i(x+2x2- 3Y). (B.24) 
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