177 research outputs found

    Relentless increase of resistance to fluoroquinolones and expanded-spectrum cephalosporins in Escherichia coli: 20 years of surveillance in resource-limited settings from Latin America.

    Get PDF
    AbstractPrevious studies on commensal Escherichia coli from healthy children in the Bolivian Chaco have shown remarkable resistance rates to the old antibiotics since the early 1990s, and the emergence of resistance to newer drugs (fluoroquinolones and expanded-spectrum cephalosporins) in the 2000s. Here we report the results of a new survey conducted in 2011 in the same setting. Rectal swabs were obtained from 482 healthy children (aged 6–72 months) from three urban areas of the Bolivian Chaco. Screening for antibiotic-resistant E. coli was performed by a direct plating method, as in the previous studies. The blaCTX-M genes were investigated by PCR/sequencing, and CTX-M-producing isolates were subjected to genotyping and detection of several plasmid-mediated quinolone resistance mechanisms. Results showed high rates of resistance to nalidixic acid (76%), ciprofloxacin (44%) and expanded-spectrum cephalosporins (12.4%), demonstrating a relentless increase of resistance to those drugs over the past two decades. CTX-M-type extended-spectrum beta-lactamases were found to be widespread (12%, 97% of extended-spectrum beta-lactamase producers). Compared with the previous studies, CTX-M-producing E. coli underwent a dramatic dissemination (120-fold increase since early 2000s) and a radical change of dominant CTX-M groups (CTX-M-1 and CTX-M-9 groups versus CTX-M-2 group). Most CTX-M producers were not susceptible to quinolones (91%), and 55% carried plasmid-mediated quinolone resistance genes (different combinations of aac(6')-Ib-cr, qnrB and qepA). This study shows the rapid and remarkable increasing trend for resistance to fluoroquinolones and expanded-spectrum cephalosporins in one of the poorest regions of Latin America, and underscores the need for urgent control strategies aimed at preserving the efficacy of those drugs in similar settings

    A comparison of an interferon-gamma release assay and tuberculin skin test in refractory inflammatory disease patients screened for latent tuberculosis prior to the initiation of a first tumor necrosis factor α inhibitor

    Get PDF
    Treatment with TNFα inhibitors increases risk of reactivating a latent tuberculosis\infection (LTBI). Therefore screening, prior to therapy with TNFα inhibitors, has been recommended, even in low-endemic areas such as well-developed Western Europe countries. We evaluated interferon-gamma release assay (IGRA), as opposed to tuberculin skin test (TST), for detection of LTBI in refractory inflammatory disease patients prior to the initiation of a first TNFα inhibitor. In addition, we evaluated the impact of impaired cellular immunity on IGRA. Patients starting on TNFα inhibition were screened for LTBI by TST and IGRA (Quantiferon-TB Gold). Data on tuberculosis exposure and Bacillus Calmette–Guérin (BCG) vaccination were obtained. Cellular immunity was assessed by CD4+ T lymphocyte cell count. Nine out of 56 patients (16.1%) tested positive for LTBI. A concordant positive result was present in three patients with a medical history of tuberculosis exposure. Six patients with discordant test results had either: (1) a negative TST and positive IGRA in combination with a medical history of tuberculosis exposure (n = 1) or (2) a positive TST and negative IGRA in combination with BCG vaccination (n = 3) or a medical history of tuberculosis exposure (n = 2). CD4+ T lymphocyte cell counts were within normal limits, and no indeterminate results of IGRA were present. IGRA appears reliable for confirming TST and excluding a false positive TST (due to prior BCG vaccination) in this Dutch serie of patients. In addition, IGRA may detect one additional case of LTBI out of 56 patients that would otherwise be missed using solely TST. Immune suppression appears not to result significantly in lower CD4+ T lymphocyte cell counts and indeterminate results of IGRA, despite systemic corticosteroid treatment in half of the patients. Confirmation in larger studies, including assessment of cost-effectiveness, is required

    Upregulation of pirin expression by chronic cigarette smoking is associated with bronchial epithelial cell apoptosis

    Get PDF
    BACKGROUND: Cigarette smoke disrupts the protective barrier established by the airway epithelium through direct damage to the epithelial cells, leading to cell death. Since the morphology of the airway epithelium of smokers does not typically demonstrate necrosis, the most likely mechanism for epithelial cell death in response to cigarette smoke is apoptosis. We hypothesized that cigarette smoke directly up-regulates expression of apoptotic genes, which could play a role in airway epithelial apoptosis. METHODS: Microarray analysis of airway epithelium obtained by bronchoscopy on matched cohorts of 13 phenotypically normal smokers and 9 non-smokers was used to identify specific genes modulated by smoking that were associated with apoptosis. Among the up-regulated apoptotic genes was pirin (3.1-fold, p < 0.002), an iron-binding nuclear protein and transcription cofactor. In vitro studies using human bronchial cells exposed to cigarette smoke extract (CSE) and an adenovirus vector encoding the pirin cDNA (AdPirin) were performed to test the direct effect of cigarette smoke on pirin expression and the effect of pirin expression on apoptosis. RESULTS: Quantitative TaqMan RT-PCR confirmed a 2-fold increase in pirin expression in the airway epithelium of smokers compared to non-smokers (p < 0.02). CSE applied to primary human bronchial epithelial cell cultures demonstrated that pirin mRNA levels increase in a time-and concentration-dependent manner (p < 0.03, all conditions compared to controls). Overexpression of pirin, using the vector AdPirin, in human bronchial epithelial cells was associated with an increase in the number of apoptotic cells assessed by both TUNEL assay (5-fold, p < 0.01) and ELISA for cytoplasmic nucleosomes (19.3-fold, p < 0.01) compared to control adenovirus vector. CONCLUSION: These observations suggest that up-regulation of pirin may represent one mechanism by which cigarette smoke induces apoptosis in the airway epithelium, an observation that has implications for the pathogenesis of cigarette smoke-induced diseases

    A Prognostic Model for Estimating the Time to Virologic Failure in HIV-1 Infected Patients Undergoing a New Combination Antiretroviral Therapy Regimen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 genotypic susceptibility scores (GSSs) were proven to be significant prognostic factors of fixed time-point virologic outcomes after combination antiretroviral therapy (cART) switch/initiation. However, their relative-hazard for the time to virologic failure has not been thoroughly investigated, and an expert system that is able to predict how long a new cART regimen will remain effective has never been designed.</p> <p>Methods</p> <p>We analyzed patients of the Italian ARCA cohort starting a new cART from 1999 onwards either after virologic failure or as treatment-naïve. The time to virologic failure was the endpoint, from the 90<sup>th </sup>day after treatment start, defined as the first HIV-1 RNA > 400 copies/ml, censoring at last available HIV-1 RNA before treatment discontinuation. We assessed the relative hazard/importance of GSSs according to distinct interpretation systems (Rega, ANRS and HIVdb) and other covariates by means of Cox regression and random survival forests (RSF). Prediction models were validated via the bootstrap and c-index measure.</p> <p>Results</p> <p>The dataset included 2337 regimens from 2182 patients, of which 733 were previously treatment-naïve. We observed 1067 virologic failures over 2820 persons-years. Multivariable analysis revealed that low GSSs of cART were independently associated with the hazard of a virologic failure, along with several other covariates. Evaluation of predictive performance yielded a modest ability of the Cox regression to predict the virologic endpoint (c-index≈0.70), while RSF showed a better performance (c-index≈0.73, p < 0.0001 vs. Cox regression). Variable importance according to RSF was concordant with the Cox hazards.</p> <p>Conclusions</p> <p>GSSs of cART and several other covariates were investigated using linear and non-linear survival analysis. RSF models are a promising approach for the development of a reliable system that predicts time to virologic failure better than Cox regression. Such models might represent a significant improvement over the current methods for monitoring and optimization of cART.</p

    Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is characterised by chronic inflammation of the airways and progressive destruction of lung parenchyma, a process that in most cases is initiated by cigarette smoking. Several mechanisms are involved in the development of the disease: influx of inflammatory cells into the lung (leading to chronic inflammation of the airways), imbalance between proteolytic and anti-proteolytic activity (resulting in the destruction of healthy lung tissue) and oxidative stress. Recently, an increasing number of data suggest a fourth important mechanism involved in the development of COPD: apoptosis of structural cells in the lung might possibly be an important upstream event in the pathogenesis of COPD. There is an increase in apoptotic alveolar epithelial and endothelial cells in the lungs of COPD patients. Since this is not counterbalanced by an increase in proliferation of these structural cells, the net result is destruction of lung tissue and the development of emphysema. Data from animal models suggest a role for Vascular Endothelial Growth Factor (VEGF) in the induction of apoptosis of structural cells in the lung. Other mediators of apoptosis, such as caspase-3 and ceramide, could be interesting targets to prevent apoptosis and the development of emphysema. In this review, recent data on the role of apoptosis in COPD from both animal models as well as from studies on human subjects will be discussed. The aim is to provide an up to date summary on the increasing knowledge on the role of apoptosis in COPD and pulmonary emphysema

    Lycopene Inhibits NF-kB-Mediated IL-8 Expression and Changes Redox and PPARγ Signalling in Cigarette Smoke–Stimulated Macrophages

    Get PDF
    Increasing evidence suggests that lycopene, the major carotenoid present in tomato, may be preventive against smoke-induced cell damage. However, the mechanisms of such a prevention are still unclear. The aim of this study was to investigate the role of lycopene on the production of the pro-inflammatory cytokine IL-8 induced by cigarette smoke and the possible mechanisms implicated. Therefore, human THP-1 macrophages were exposed to cigarette smoke extract (CSE), alone and following a 6-h pre-treatment with lycopene (0.5–2 µM). CSE enhanced IL-8 production in a time- and a dose-dependent manner. Lycopene pre-treatment resulted in a significant inhibition of CSE-induced IL-8 expression at both mRNA and protein levels. NF-kB controlled the transcription of IL-8 induced by CSE, since PDTC prevented such a production. Lycopene suppressed CSE-induced NF-kB DNA binding, NF-kB/p65 nuclear translocation and phosphorylation of IKKα and IkBα. Such an inhibition was accompanied by a decrease in CSE-induced ROS production and NOX-4 expression. Lycopene further inhibited CSE-induced phosphorylation of the redox-sensitive ERK1/2, JNK and p38 MAPKs. Moreover, the carotenoid increased PPARγ levels which, in turn, enhanced PTEN expression and decreased pAKT levels in CSE-exposed cells. Such effects were abolished by the PPARγ inhibitor GW9662. Taken together, our data indicate that lycopene prevented CSE-induced IL-8 production through a mechanism involving an inactivation of NF-kB. NF-kB inactivation was accompanied by an inhibition of redox signalling and an activation of PPARγ signalling. The ability of lycopene in inhibiting IL-8 production, NF-kB/p65 nuclear translocation, and redox signalling and in increasing PPARγ expression was also found in isolated rat alveolar macrophages exposed to CSE. These findings provide novel data on new molecular mechanisms by which lycopene regulates cigarette smoke-driven inflammation in human macrophages
    • …
    corecore