84 research outputs found

    THz streak camera performance for single-shot characterization of XUV pulses with complex temporal structures

    Get PDF
    The THz-field-driven streak camera has proven to be a powerful diagnostic-technique that enables the shot-to-shot characterization of the duration and the arrival time jitter of free electron laser (FEL) pulses. Here we investigate the performance of three computational approaches capable to determine the duration of FEL pulses with complex temporal structures from single-shot measurements of up to three simultaneously recorded spectra. We use numerically simulated FEL pulses in order to validate the accuracy of the pulse length retrieval in average as well as in a single-shot mode. We discuss requirements for the THz field strength in order to achieve reliable results and compare our numerical study with the analysis of experimental data that were obtained at the FEL in Hamburg - FLASH. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Status and future of the soft X-ray free-electron laser beamline at the SHINE

    Get PDF
    The Shanghai High repetition rate XFEL and Extreme light facility (SHINE) is under construction and aims at generating X-rays between 0.4 and 25 keV with three FEL beamlines at repetition rates of up to 1 MHz. The soft X-ray FEL beamline, FEL-II, will be ready for commissioning in 2025. It is designed to cover the photon energy from 0.4 to 3 keV, in which the baselines of the FEL operation modes are self-amplified spontaneous emission (SASE), self-seeding, echo-enabled harmonic generation (EEHG), and polarization control. Therefore, a high repetition-rate external seed laser, large period length modulator, soft X-ray monochromator, planar undulator, and elliptically polarized undulator have been adopted in the FEL-II beamline. Several potentials such as an ultra-short pulse mode and a multi-color mode are also foreseeable without significant equipment changes in the follow-up operation. A dual-period undulator design is suggested for the echo-enabled harmonic generation (EEHG) commissioning, and it has great potential to break through the unreachable energy of the fully coherent X-ray in the future. The FEL-II beamline will deliver SASE radiation and fully coherent radiation in all the wavelengths of interest

    Photon diagnostics at the FLASH THz beamline

    Get PDF
    The THz beamline at FLASH, DESY, provides both tunable (1–300 THz) narrow-bandwidth (∼10%) and broad-bandwidth intense (up to 150 uJ) THz pulses delivered in 1 MHz bursts and naturally synchronized with free-electron laser X-ray pulses. Combination of these pulses, along with the auxiliary NIR and VIS ultrashort lasers, supports a plethora of dynamic investigations in physics, material science and biology. The unique features of the FLASH THz pulses and the accelerator source, however, bring along a set of challenges in the diagnostics of their key parameters: pulse energy, spectral, temporal and spatial profiles. Here, these challenges are discussed and the pulse diagnostic tools developed at FLASH are presented. In particular, a radiometric power measurement is presented that enables the derivation of the average pulse energy within a pulse burst across the spectral range, jitter-corrected electro-optical sampling for the full spectro-temporal pulse characterization, spatial beam profiling along the beam transport line and at the sample, and a lamellar grating based Fourier transform infrared spectrometer for the on-line assessment of the average THz pulse spectra. Corresponding measurement results provide a comprehensive insight into the THz beamline capabilities

    Role of heat accumulation in the multi-shot damage of silicon irradiated with femtosecond XUV pulses at a 1 MHz repetition rate

    Get PDF
    The role played by heat accumulation in multi-shot damage of silicon was studied. Bulk silicon samples were exposed to intense XUV monochromatic radiation of a 13.5 nm wavelength in a series of 400 femtosecond pulses, repeated with a 1 MHz rate (pulse trains) at the FLASH facility in Hamburg. The observed surface morphological and structural modifications are formed as a result of sample surface melting. Modifications are threshold dependent on the mean fluence of the incident pulse train, with all threshold values in the range of approximately 36-40 mJ/cm<sup>2</sup>. Experimental data is supported by a theoretical model described by the heat diffusion equation. The threshold for reaching the melting temperature (45 mJ/cm<sup>2</sup>) and liquid state (54 mJ/cm<sup>2</sup>), estimated from this model, is in accordance with experimental values within measurement error. The model indicates a significant role of heat accumulation in surface modification processes

    Influence of different focusing solutions for the TESLA X-ray FEL's on debunching of the electron beam

    No full text
    For SASE-FELs the total undulator length increases with decreasing wavelength. In the X-ray wavelength range,the optimum-function is of the order of 40 m, which makes a separate focusing structure the best choice. In prin-ciple, three periodic focusing structures can be considered, namely a singlet (FODO), doublet or a triplet structure.In this report, the three different types of focusing for the TESLA X-ray FEL parameters will be discussed

    The SASE FEL at the Tesla Test Facility as user facility

    No full text
    During the past years, the experience gained with the TESLA Test Facility FEL resulted in several changes of its design. In addition, as the FEL is developed further to become a user facility during 2003, more details of future development of the FEL and the complete experimental hall for the users is taking shape. In this contribution, some of the aspects re briefly mentioned
    corecore