39 research outputs found

    Drosophila Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, similar to 80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25-50%) than euchromatic reference regions (3-11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11-27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (similar to 90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4-3.6 vs. 8.4-8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu

    A DNA methylation reader complex that enhances gene transcription

    Full text link
    [EN] DNA methylation generally functions as a repressive transcriptional signal, but it is also known to activate gene expression. In either case, the downstream factors remain largely unknown. By using comparative interactomics, we isolated proteins in Arabidopsis thaliana that associate with methylated DNA. Two SU(VAR)3-9 homologs, the transcriptional antisilencing factor SUVH1, and SUVH3, were among the methyl reader candidates. SUVH1 and SUVH3 bound methylated DNA in vitro, were associated with euchromatic methylation in vivo, and formed a complex with two DNAJ domain-containing homologs, DNAJ1 and DNAJ2. Ectopic recruitment of DNAJ1 enhanced gene transcription in plants, yeast, and mammals. Thus, the SUVH proteins bind to methylated DNA and recruit the DNAJ proteins to enhance proximal gene expression, thereby counteracting the repressive effects of transposon insertion near genes.This work was supported by grants NIH R01 GM60398 (to S.E.J.), NIH R01G M089778 (to J.A.W.) and NIH R35 GM124736 (to S.B.R), by an EMBO Long-Term Fellowship (ALTF 1138-2014) (to C.J.H), and by a Ruth L. Kirschstein National Research Service Award (GM007185) (to L.Y.). S.E.J. is an investigator of the Howard Hughes Medical Institute.Harris, CJ.; Scheibe, M.; Wongpalee, SP.; Liu, W.; Cornett, EM.; Vaughan, RM.; Li, X.... (2018). A DNA methylation reader complex that enhances gene transcription. Science. 362(6419):1182-1186. https://doi.org/10.1126/science.aar785411821186362641

    Drosophila Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Full text link
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu

    Cell Surface Proteomics Provides Insight into Stage-Specific Remodeling of the Host-Parasite Interface in Trypanosoma brucei*

    No full text
    African trypanosomes are devastating human and animal pathogens transmitted by tsetse flies between mammalian hosts. The trypanosome surface forms a critical host interface that is essential for sensing and adapting to diverse host environments. However, trypanosome surface protein composition and diversity remain largely unknown. Here, we use surface labeling, affinity purification, and proteomic analyses to describe cell surface proteomes from insect-stage and mammalian bloodstream-stage Trypanosoma brucei. The cell surface proteomes contain most previously characterized surface proteins. We additionally identify a substantial number of novel proteins, whose functions are unknown, indicating the parasite surface proteome is larger and more diverse than generally appreciated. We also show stage-specific expression for individual paralogs within several protein families, suggesting that fine-tuned remodeling of the parasite surface allows adaptation to diverse host environments, while still fulfilling universally essential cellular needs. Our surface proteome analyses complement existing transcriptomic, proteomic, and in silico analyses by highlighting proteins that are surface-exposed and thereby provide a major step forward in defining the host-parasite interface

    A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development

    Get PDF
    Histone modifications and chromatin remodeling represent universal mechanisms by which cells adapt their transcriptional response to rapidly changing environmental conditions. Extensive chromatin remodeling takes place during neuronal development, allowing the transition of pluripotent cells into differentiated neurons. Here, we report that the NuRD complex, which couples ATP-dependent chromatin remodeling with histone deacetylase activity, regulates mouse brain development. Subunit exchange of CHDs, the core ATPase subunits of the NuRD complex, is required for distinct aspects of cortical development. Whereas CHD4 promotes the early proliferation of progenitors, CHD5 facilitates neuronal migration and CHD3 ensures proper layer specification. Inhibition of each CHD leads to defects of neuronal differentiation and migration, which cannot be rescued by expressing heterologous CHDs. Finally, we demonstrate that NuRD complexes containing specific CHDs are recruited to regulatory elements and modulate the expression of genes essential for brain development

    Determining the Mitochondrial Methyl Proteome in <i>Saccharomyces cerevisiae</i> using Heavy Methyl SILAC

    No full text
    Methylation is a common and abundant post-translational modification. High-throughput proteomic investigations have reported many methylation sites from complex mixtures of proteins. The lack of consistency between parallel studies, resulting from both false positives and missed identifications, suggests problems with both over-reporting and under-reporting methylation sites. However, isotope labeling can be used effectively to address the issue of false-positives, and fractionation of proteins can increase the probability of identifying methylation sites in lower abundance. Here we have adapted heavy methyl SILAC to analyze fractions of the budding yeast <i>Saccharomyces cerevisiae</i> under respiratory conditions to allow for the production of mitochondria, an organelle whose proteins are often overlooked in larger methyl proteome studies. We have found 12 methylation sites on 11 mitochondrial proteins as well as an additional 14 methylation sites on 9 proteins that are nonmitochondrial. Of these methylation sites, 20 sites have not been previously reported. This study represents the first characterization of the yeast mitochondrial methyl proteome and the second proteomic investigation of global mitochondrial methylation to date in any organism

    The characterization of Mediator 12 and 13 as conditional positive gene regulators in Arabidopsis

    Get PDF
    Mediator 12 (MED12) and MED13 are components of the Mediator multi-protein complex, that facilitates the initial steps of gene transcription. Here, in an Arabidopsis mutant screen, we identify MED12 and MED13 as positive gene regulators, both of which contribute broadly to morc1 de-repressed gene expression. Both MED12 and MED13 are preferentially required for the expression of genes depleted in active chromatin marks, a chromatin signature shared with morc1 re-activated loci. We further discover that MED12 tends to interact with genes that are responsive to environmental stimuli, including light and radiation. We demonstrate that light-induced transient gene expression depends on MED12, and is accompanied by a concomitant increase in MED12 enrichment during induction. In contrast, the steady-state expression level of these genes show little dependence on MED12, suggesting that MED12 is primarily required to aid the expression of genes in transition from less-active to more active states

    The Rhoptry Pseudokinase ROP54 Modulates Toxoplasma gondii Virulence and Host GBP2 Loading

    No full text
    ABSTRACT Toxoplasma gondii uses unique secretory organelles called rhoptries to inject an array of effector proteins into the host cytoplasm that hijack host cell functions. We have discovered a novel rhoptry pseudokinase effector, ROP54, which is injected into the host cell upon invasion and traffics to the cytoplasmic face of the parasitophorous vacuole membrane (PVM). Disruption of ROP54 in a type II strain of T. gondii does not affect growth in vitro but results in a 100-fold decrease in virulence in vivo, suggesting that ROP54 modulates some aspect of the host immune response. We show that parasites lacking ROP54 are more susceptible to macrophage-dependent clearance, further suggesting that ROP54 is involved in evasion of innate immunity. To determine how ROP54 modulates parasite virulence, we examined the loading of two known innate immune effectors, immunity-related GTPase b6 (IRGb6) and guanylate binding protein 2 (GBP2), in wild-type and ∆rop54II mutant parasites. While no difference in IRGb6 loading was seen, we observed a substantial increase in GBP2 loading on the parasitophorous vacuole (PV) of ROP54-disrupted parasites. These results demonstrate that ROP54 is a novel rhoptry effector protein that promotes Toxoplasma infections by modulating GBP2 loading onto parasite-containing vacuoles. IMPORTANCE The interactions between intracellular microbes and their host cells can lead to the discovery of novel drug targets. During Toxoplasma infections, host cells express an array of immunity-related GTPases (IRGs) and guanylate binding proteins (GBPs) that load onto the parasite-containing vacuole to clear the parasite. To counter this mechanism, the parasite secretes effector proteins that traffic to the vacuole to disarm the immunity-related loading proteins and evade the immune response. While the interplay between host IRGs and Toxoplasma effector proteins is well understood, little is known about how Toxoplasma neutralizes the GBP response. We describe here a T. gondii pseudokinase effector, ROP54, that localizes to the vacuole upon invasion and is critical for parasite virulence. Toxoplasma vacuoles lacking ROP54 display an increased loading of the host immune factor GBP2, but not IRGb6, indicating that ROP54 plays a distinct role in immune evasion
    corecore