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INVESTIGATION

Drosophila Muller F Elements Maintain a Distinct
Set of Genomic Properties Over 40 Million Years
of Evolution
Wilson Leung and Participating Students and Faculty of the Genomics Education Partnership1

ABSTRACT The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila
melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties
impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the
D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We
find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among
the F elements,D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes
have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective
Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in
D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting
that density and types of transposons affect the degree of local heterochromatin formation. F element genes
have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription
through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has
smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of
inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct
from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu.
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Classically, chromatin has been demarcated into twomajor types based
on the staining patterns in interphase nuclei. Regions that remain
densely stained throughout the cell cycle are classified as heterochro-
matin, whereas regions that stain weakly during interphase are clas-
sified as euchromatin (Heitz 1928). Heterochromatic regions generally
are late replicating and have lower rates of recombination, lower gene
density, greater repeat density, greater levels of histone 3 lysine 9 di-
and tri-methylation (H3K9me2/3), and associated Heterochromatin
Protein 1a (HP1a) compared with euchromatic regions (reviewed in
Grewal and Elgin 2007).

With an estimated size of 4.2 Mb overall, theDrosophila melanogaster
Muller F element, (also known as the dot chromosome, or the fourth
chromosome in that species) is unusual in that it appears entirely het-
erochromatic by most criteria, but the distal 1.3 Mb has a gene density
and fraction of active genes (~50% in S2 cells) that are similar to the
euchromatic regions of the D. melanogaster genome (Riddle et al. 2009,
2012). Insertion of a PEV reporter (hsp70-driven white) in most cases
results in a variegating phenotype (partial silencing; see Supplemental
Text in File S1), indicating that even this distal region of the F element is
packaged as heterochromatin (Sun et al. 2004; Riddle et al. 2008). Sub-
sequent high-resolution mapping of the chromatin landscape of the F
element supports this conclusion (Riddle et al. 2012). These character-
istics of the F element have made it an ideal platform for elucidating
factors that are involved in heterochromatin formation and for exploring
their impact on genes that are embedded in a heterochromatic domain
(Elgin and Reuter 2013).

Immunofluorescent staining of polytene chromosomes with anti-
bodies directed against H3K9me2 shows that, similar to D. melanogaster,
the F elements of D. erecta, D. mojavensis, and D. grimshawi also are
enriched in H3K9me2 (Figure 1, left). These enrichment patterns indicate
that the F element has maintained its heterochromatic properties in
species (i.e., D. mojavensis and D. grimshawi) that last shared a common
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ancestor with D. melanogaster about 40 million years ago (Powell 1997;
Figure 1, right).

To investigate the evolution of this unusual domain, we performed
comparative analyses of the repeat and gene characteristics of the F
element in four Drosophila species. The Drosophila 12 Genomes Con-
sortium (Drosophila 12 Genomes Consortium et al. 2007) and the
modENCODE project (Kharchenko et al. 2011) have produced a large
collection of genomic datasets for D. melanogaster and 11 other Dro-
sophila species. Previous analyses of the evolution of these Drosophila
species have relied primarily on the Comparative Analysis Freeze 1
(CAF1) draft assembly and computational (GLEAN-R) gene predic-
tions (Drosophila 12 Genomes Consortium et al. 2007). Most of these
analyses only focused on the Muller elements A–E and the properties
of the F element generally have not been examined carefully.

In this study, we have built on these genomic resources by per-
forming manual sequence improvement and gene annotation of the
D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic
reference regions derived from the Muller D elements. The D element
analysis regions (referred to as “base”) are located proximal to the peri-
centric heterochromatin so that they have a similar topological position
in the nucleus as the F element. To identify characteristics that are
associated with the proximity to pericentric or telomeric heterochroma-
tin, we also analyzed two additional euchromatic regions from the
D. erecta D element: a 1.4-Mb region that extends further from the base
of the D element (referred to as “extended”) and a 1.3-Mb region adja-
cent to the telomeric region of the D element (referred to as “telomeric”).
[See the exact coordinates of all the analysis regions in Table S1, Genome
Browser views (showing repeat density and gaps) in Figure S1, and
a detailed description of how these regions were selected in File S1.]

The high-quality assemblies and gene annotations generated in
this study enable us to address several questions about the evolution of
the F element: What are the differences in the types and distributions
of repeats among the F elements? Do F element genes exhibit different
characteristics (e.g., coding spans, intron sizes) compared with genes
on the other autosomes? How does the low recombination rate affect

codon bias, the selective pressure experienced by F element genes, and
the frequency of gene movement?

Our analyses show that F element genes in both the Sophophora and
Drosophila clades have maintained a set of distinct characteristics (larger
gene size, lower codon bias, lower melting temperature) compared with
genes on other autosomes. Most of the D. melanogaster F element genes
(~90%) have remained on the same Muller element in all four
Drosophila species, but there have been a large number of inver-
sions. F elements of the species in theDrosophila clade (i.e.,D. mojavensis
and D. grimshawi) exhibit different repeat distributions and gene
characteristics compared to the species in the melanogaster subgroup
(i.e., D. melanogaster and D. erecta). F element genes generally exhibit
lower codon bias and weaker positive selection compared to genes in
the euchromatic reference regions; these characteristics are least pro-
nounced in D. grimshawi, which also has a much lower density of the
Drosophila INterspersed Element 1 (DINE-1) transposon. Despite
these differences, our analyses show that F element genes in all four
species generally share a common set of characteristics that presum-
ably reflect the local environment and could contribute to their ability
to function in a heterochromatic domain.

MATERIALS AND METHODS

General overview
Sequence improvement and gene annotation of the three Drosophila
species studied here were organized using the framework provided by
Genomics Education Partnership (Shaffer et al. 2010). Additional
details for some of the analysis protocols are available in File S1.
We have set up an instance of the University of California, Santa Cruz
(UCSC) Genome Browser (Kent et al. 2002) to facilitate the visuali-
zation and access to the improved sequences and gene annotations
produced in this study (available at http://gander.wustl.edu). The im-
proved sequences and annotations are also available in File S9.

Most of the data conversions were performed with the use of tools
in the Kent source utilities (part of the UCSC Genome Browser source

Figure 1 The Drosophila F element
has maintained its heterochromatic
properties in four different Drosophila
species. (Left) Immunofluorescent stain-
ing of polytene chromosomes using
H3K9me2-specific antibodies shows
that the D. melanogaster, D. erecta,
D. mojavensis, and D. grimshawi F ele-
ments (colored arrows) are enriched in
H3K9me2 (a mark of heterochroma-
tin). (Right) Phylogenetic tree of the
Drosophila genomes sequenced by
the Drosophila 12 Genomes Consor-
tium (Powell 1997). The colored stars
next to the species names in the phy-
logenetic tree denote the species an-
alyzed in this study; the same color
scheme is used in this and subsequent
figures.
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tree; Kent et al. 2002). BEDTools was used to identify intersections
and unions among genomic features and to manipulate BED files
(Quinlan and Hall 2010). Custom scripts were used to facilitate data con-
version and analysis. The analyses were run on a Dell Precision T5400
Linux server (with 8 Xeon processors and 8GB of RAM) and a MacBook
Pro laptop (with an Intel Core i7 processor and 8GB of RAM). Some of
the analyses were run in parallel using GNU Parallel (Tange 2011).

Immunofluorescent staining of polytene chromosomes
The D. erecta (1402120224.01), D. mojavensis (1508121352.22), and
D. grimshawi (1528722541.00) stocks were obtained from theDrosophila
Species Stock Center at the University of California, San Diego. The
protocol for the immunofluorescent staining of polytene chromosomes
from Drosophila third instar larval salivary glands has been described
previously (Stephens et al. 2004). An anti-H3K9me2 rabbit polyclonal
antibody (Upstate 07-441) was used at a dilution of 1:250. Secondary
antibody labeled with Alexa-Fluor 594 (red) was used at a 1:750 dilution
(Invitrogen, catalog number A-11012). Formaldehyde fixation times
were 12 min, with the exception of D. grimshawi salivary glands, which
were fixed for 10 min before squashing and staining.

Sequence improvement
The D. mojavensis and D. grimshawi CAF1 assemblies produced by
the Drosophila 12 Genomes Consortium were retrieved from the
AAA: 12 Drosophila Genomes web site (http://rana.lbl.gov/drosophila/).
The placements of the fosmid end reads were specified in the reads.
placed file in each CAF1 assembly. The F and D element scaffolds
were partitioned into a list of overlapping fosmids based on the
reads.placed file for each species. This set of fosmids was obtained
from the Drosophila Genomics Resource Center at Indiana University
and used as templates for sequencing reactions. However, because many
of the fosmid clones used to construct the original D. grimshawi CAF1
assemblies were unavailable from the Drosophila Genomics Resource
Center, we could only improve approximately 90% of the D. grimshawi
F element. Hence the analysis of this region was performed on a mosaic
of the original CAF1 assembly and improved regions.

The overall sequence improvement protocol has previously been
described (Slawson et al. 2006; Leung et al. 2010). Reads placed in
each fosmid region were retrieved from the National Center for Bio-
technology Information Trace Archive (http://www.ncbi.nlm.nih.gov/
Traces/home/) and assembled using the Phred, Phrap, and Consed
software package (Ewing and Green 1998; Gordon et al. 1998). In
collaboration with the Genome Institute at Washington University,
we improved each fosmid project by identifying and resolving misas-
semblies as well as designing additional sequencing reactions to resolve
gaps and low quality regions. These fosmid projects were improved to
a sequence improvement standard similar to the one used by the mouse
genome project (Mouse Genome Sequencing Consortium et al. 2002).
To ensure the correctness of the final assembly, inconsistent mate pairs
within each fosmid project were resolved and restriction digests were
used to confirm the final assembly. Each fosmid was digested with four
restriction enzymes (i.e., EcoRI, EcoRV, HindIII, and SacI). The frag-
ment sizes of the in silico digests of the final consensus sequence must
be in congruence with the fragment sizes of at least two of the actual
restriction digests to meet the standard. Each fosmid project was com-
pleted by at least two students independently; experienced undergrad-
uates worked with the Genomics Education Partnership (GEP) staff to
reconcile the results and produce the final consensus sequence.

To identify differences between the CAF1 and improved sequen-
ces, the CAF1 sequence was soft-masked using WindowMasker with
default parameters. The improved sequences were compared against

the original CAF1 sequence using MegaBLAST (Morgulis et al. 2008)
with an E-value threshold of 1e-5. The UCSC Chain and Net protocol
(Kent et al. 2003) was then applied to the MegaBLAST alignments.
The Net alignments were converted into PSL and BED formats to
facilitate analysis of the differences between the two assemblies.

Repeat analysis
WindowMasker (Morgulis et al. 2006) was run on the different analysis
regions using default parameters and the results were converted into
BED format using custom Perl scripts. Tallymer (Kurtz et al. 2008) was
used to estimate k-mer frequencies in the different analysis regions.
Each genome assembly was indexed using mkindex and the occratio
program was used to determine the distributions of unique k-mers. The
count of each 13-mer was generated using the search program in
Tallymer. Tandem repeats were identified using Tandem Repeats
Finder (Benson 1999) with the following parameters: Match = 2,
Mismatch = 7, Delta = 7, Match Probability = 80, Mismatch Prob-
ability = 10, Minscore = 50, and MaxPeriod = 2000. Simple repeats
and low complexity regions were identified using tantan (Frith 2011)
with default parameters (-r = 0.005), and the results were reported in
BED format (-f 3). The distribution of dinucleotide repeats was de-
termined using a Perl script that iterates from a dinucleotide repeat
size of 22100. Each dinucleotide repeat was searched against the
analysis regions and the (potentially overlapping) matches were tab-
ulated and plotted using Microsoft Excel.

Transposon analysis
The protocols used to construct and classify the species-specific
transposon libraries are described in File S1. The Drosophila RepBase
repeat library (release 17.07) was obtained from RepBase (Jurka et al.
2005). The ReAS repeat library (version 2) was obtained from the FlyBase
FTP site at ftp://ftp.flybase.net/genomes/aaa/transposable_elements/
ReAS/v2/consensus_fasta/.

RepeatMasker (Smit et al. 1996) (version open-3.4.0) was run on
the analysis regions using the cross_match search engine at the most
sensitive (-s) setting, without masking low complexity or simple
repeats (-nolow). Transposon fragments identified by RepeatMasker
were converted into BED format using custom scripts for subsequent
analysis. Overlapping transposon fragments identified by RepeatMasker
were merged together using BEDTools only if the overlapping
repeats had the same repeat class. Repeat density was calculated
using a sliding window of 1 kb with a step size of 500 bp.

Gene annotations
This comparative analysis used the high-quality D. melanogaster gene
annotations (release 5.50) produced by FlyBase as reference (Marygold
et al. 2013). The annotation protocol has been described previously
(Shaffer et al. 2010). GEP students annotated each fosmid by using
computational evidence organized on an instance of the UCSC Genome
Browser (Kent et al. 2002) set up by the GEP staff. The computational
evidence included sequence similarity to D. melanogaster proteins as
well as predictions from multiple ab initio and evidence-based gene
predictors. For species with RNA-Seq data, additional evidence tracks
such as RNA-Seq read coverage, splice junction predictions from
TopHat (Trapnell et al. 2009) and assembled transcripts from Cufflinks
(Trapnell et al. 2010) were also made available. See File S1 for additional
details on the protocol used to construct the RNA-Seq transcriptome
and predicted protein libraries for each species.

The GEP has developed a set of annotation guidelines (Annotation
Instruction Sheet) to standardize the treatment of annotations that are
ambiguous because of insufficient evidence. These annotation guidelines
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and additional resources supporting the GEP annotation protocol are
available on the GEP web site (http://gep.wustl.edu).

Each annotation project was completed independently by at least
two GEP students. The GEP staff supervised students who reconciled
the submitted annotations using the Apollo Genome Annotation
Curation Tool (Lewis et al. 2002). These reconciled gene annotations
were mapped back to the improved genomic scaffolds and were in-
corporated into the GEP UCSC Genome Browser (available through the
“GEP Genes” track, http://gander.wustl.edu). The GEP staff reviewed
these gene models in the context of all the available evidence tracks to
resolve any remaining annotation issues.

The D. erecta, D. mojavensis, and D. grimshawi GLEAN-R gene
annotations (Release 1.3) produced by the Drosophila 12 Genomes
Consortium were compared to the annotations produced here. The
GLEAN-R annotations were obtained from FlyBase (available at http://
flybase.org/static_pages/downloads/bulkdata7.html) and converted into
BED format using custom scripts. We used BLAT (Kent 2002) with
default parameters to map the D. mojavensis and D. grimshawi
GLEAN-R gene predictions against the improved assemblies because
the underlying genomic sequences for these two species have changed
due to the sequence improvements reported here. Utilities in BEDTools
(Quinlan and Hall 2010) and custom scripts were then used to compare
the GLEAN-R predictions with our gene annotations.

Analysis of gene characteristics
The GEP gene annotations are in BED format, and most of the gene
characteristics (e.g., gene size, coding exon size) were determined
using BEDTools (Quinlan and Hall 2010) and custom scripts. When
calculating the coding exon sizes for the first and last coding exons,
only the translated portion of the exon was included even though the
transcribed exon may be larger because of untranslated regions. The
gene characteristics of the most comprehensive isoform for each gene
were imported into R (version 3.0.2) for subsequent analysis and
visualization of the results.

Violin plots of the different gene characteristics were generated by
the vioplot function in the R vioplot package. The Kruskal-Wallis Rank
Sum Test was performed using the kruskal.test function in R (R Core
Team 2013). The kruskalmc function in the pgirmess package was used
to perform the multiple comparison tests after Kruskal-Wallis.

Codon bias analysis
The Effective Number of Codons (Nc) and the Codon Adaptation
Index (CAI) for each gene in the analysis regions were determined
using the chips and the cai programs in the EMBOSS package (Rice
et al. 2000), respectively. Typically, highly expressed genes are used as
the reference set when calculating CAI because they are under the
strongest translational selection and would typically show a strong
preference for a subset of transfer RNAs (Rocha 2004). Because ex-
pression data were unavailable for some of the species used in this
study, we used the program scnRCA (O’Neill et al. 2013) to analyze all
of the GLEAN-R predictions to construct the species-specific refer-
ence gene set that exhibits the dominant codon bias for each species.
The scnRCA parameters used to construct the reference gene sets
were as follows: -i r -g true -d 2.0 -p 1.0 -m -1.

The codon frequency table for each species was created by analyzing
the species-specific reference gene set with the cusp program in the
EMBOSS package. The species-specific codon usage tables were then
used in the cai program (via the -cfile parameter) to calculate the CAI
value for each gene. The violin plots and Kruskal-Wallis Tests were
created using the same procedure as described in the “Analysis of gene
characteristics” section.

Heat maps of codon bias for each gene in the analysis regions were
created using the heatmap.2 function in the R package gplots. The
dendrograms next to the heat maps were created using Ward hierar-
chical clustering with Euclidean distance.

Nc vs. CAI scatterplots
The codon bias statistics for each gene were calculated as described above
and the results were imported into R to produce the Nc vs. CAI scatter-
plots. We then applied locally estimated scatterplot smoothing (LOESS)
to identify the major trends in the scatterplots (Cleveland and Devlin
1988). The span parameter for the LOESS regression line was determined
by generalized cross-validation (criterion = gcv, family = symmetric)
using the loess.as function in the R package fANCOVA.

Melting temperature metagene profile: Because the transcription
start sites have not been identified in D. erecta, D. mojavensis, and
D. grimshawi gene annotations, we used the coding span (i.e., from
start codon to stop codon, including introns) and the 2 kb upstream
and downstream of the coding spans as a first approximation for this
analysis. The melting temperatures were determined by the dan tool in
the EMBOSS package using a sliding window of 9 bp (windowsize = 9)
and a step size of 1 (shiftincrement = 1) with the following parameters:
dnaconc = 50, saltconc = 50, mintemp = 55. The results were converted
into BigWig format (Kent et al. 2010) for subsequent analysis.

Melting temperatures for the coding spans were normalized to 3 kb
using bigWigSummary (part of the Kent source utilities). Melting
temperatures for the normalized 3 kb region and the 2 kb flanking
regions were imported into R and the standard graphics plot function in
R was used to produce the metagene profiles.

Distance–Distance plots of gene characteristics
To determine whether any subset of F element genes has characteristics
that differ from those of the group of genes as a whole, we constructed
Distance–Distance plots for each F element separately using the rrcov
package in R. Eight characteristics of the most comprehensive isoform
of each gene were used in this analysis: coding span (bp from start to
stop codon, including introns); intron repeat size (total size of all trans-
poson fragments within introns); size of coding regions (sum of all
coding exons in bp); number of coding exons; median size (in bp) of
coding exons; median size (in bp) of introns; and Nc and CAI (calcu-
lated as described previously).

Using these eight gene characteristics, we calculated the classical
Mahalanobis distance (MD) for each gene. MD measures the difference
between the characteristics of each gene and the centroid (which is
derived from the multivariate distribution of the characteristics of all
F element genes). Unlike Euclidean distances, MD accounts for the
variance of each gene characteristic and the covariance among the eight
gene characteristics. The magnitude of MD corresponds to the
dissimilarity of the characteristics of each gene compared to the
centroid (i.e., large MD indicates that the gene has very different
characteristics compared to the rest of the genes in the dataset).

However, because MD is sensitive to extreme outliers, we also
calculated the robust Mahalanobis distance (RD) using the Stahel-Donoho
estimator (sde). This robust estimator mitigates the impact of outliers
on MD by assigning a weight to each gene based on its outlyingness
(calculated using projection pursuit; (Van Aelst et al. 2012). Hence a scat-
terplot of MD vs. RD (i.e., Distance–Distance plot) can be used to identify
additional outliers that were masked by classical MD.

To create the Distance–Distance plots, the gene characteristics were
normalized using the scale function in R because the different variables
have values that differ by orders of magnitude (e.g., gene span vs. CAI).
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The CovRobust function in the rrcov package was used to calculate the
robust distances (with the parameter “sde”). Plots of the RD vs. the MD
were produced using the generic plot command in R (with the param-
eter “which=‘dd’”). Points were considered to be outliers if their values
were greater than the square root of the 97.5% quantile of the x2

distribution with 8 degrees of freedom (i.e., 4.19).

Whole-genome alignments
To facilitate analysis of the wanderer genes (genes present on the F
element in one species and on another Muller element in a different
species), we produced a set of whole-genome alignments for D. mela-
nogaster, D. yakuba, D. erecta, D. mojavensis, D. virilis, and D. grimshawi.
(The Chain and Net alignments are available on the GEP UCSC Genome
Browser, http://gander.wustl.edu.) Repeats in each genome were soft
masked and the genome assemblies were aligned against each other using
LAST (Kiełbasa et al. 2011) with default parameters followed by the
UCSC Chaining and Netting protocol (Kent et al. 2003).

RESULTS

Improved F and D element assemblies and
gene annotations

Sequence improvement: Previous studies have shown that theDrosophila
F elements have a greater repeat density than the other autosomes
(Leung et al. 2010), which could lead to a greater frequency of gaps
and misassemblies. These assembly issues could introduce substantial
bias into the analysis of genome characteristics (Salzberg and Yorke
2005). Quality assessments (see File S1) of the CAF1 assemblies (Dro-
sophila 12 Genomes Consortium et al. 2007) led us to improve the D.
mojavensis F element, the D. grimshawi F element, and the D. moja-
vensis euchromatic reference region from the D element to a quality
standard that is similar to those used for the mouse genome project. As
part of this sequence improvement standard, we resolved inconsistent
mate pairs within each assembly and confirmed each assembly using
restriction digests (see the section Materials and Methods for details).
These experimental data provided additional confirmation of the accu-
racy of the final F element assemblies, and enabled us to perform
genomic analysis of the F elements with high confidence, ensuring
accuracy (in particular) in the repeat and gene movement analyses.

Collectively, sequence improvement of the D. mojavensis and
D. grimshawi analysis regions covered a total of approximately
3.8 Mb (1.7 Mb from the D. mojavensis F element, 1.1 Mb from
the D. grimshawi F element, and 1.0 Mb from the D. mojavensis D
element), closing 72 of 86 gaps and adding a total of 44,468 bases (Table
S2A). Alignments between the CAF1 and the improved regions identi-
fied a total of 309 changes; 127 (41.1%) of these changes are single base
substitutions, insertions, or deletions, while the remaining changes are
more substantial (Table S2B). Detailed alignments between the CAF1
and the improved regions are available through the “D. mojavensis
CAF1 Difference” and “D. grimshawi CAF1 Difference” tracks on the
GEP UCSC Genome Browser (http://gander.wustl.edu).

An example of the improvement achieved is shown for the region
surrounding the GLEAN-R annotation GI14058-PA (a putative ortholog
of the D. melanogaster unc-13 gene) in D. mojavensis; this illustrates how
the improved assemblies enabled us to produce more accurate gene
models for the D. mojavensis F element (Figure 2).

Manual gene annotations: We also constructed manually curated
gene models, including all isoforms, for each of the analysis regions.
Because of the large evolutionary distance among D. melanogaster,

D. mojavensis, and D. grimshawi and the limited expression data
available, this analysis only focuses on the coding regions of genes.
(See the section Materials and Methods and File S1 for detailed de-
scription of the annotation protocol.) The manual annotation process
also allows us to identify potential annotation errors in D. mela-
nogaster (e.g., rdgC as described in File S1).

Collectively, we annotated a total of 878 genes (1619 isoforms). A
summary of the changes in the number of isoforms and coding exons,
as well as descriptions of other noncanonical features (e.g., novel GC
donor sites) compared with D. melanogaster (release 5.50) is available
in File S2. Overall, 58% (552/947) of the GLEAN-R gene predictions
match our annotation of the most comprehensive isoform (i.e., the
isoform with the largest coding region, Table S3A), and 85% (3648/
4287) of the coding exons predicted by GLEAN-R match the coding
exons in the most comprehensive isoform (Table S3B).

Although a similar percentage of the coding exons predicted by
GLEAN-R match our annotations in both the F and D elements
(80.7–82.8%), a substantially lower percentage of the GLEAN-R gene
models match our annotations on the D. mojavensis and D. grimshawi
F elements (32.1% and 39.1%, respectively) than on the D elements
(57.6% and 58.0%, respectively). Many of the differences between the
GLEAN-R predictions and our annotations on the D. mojavensis and
D. grimshawi F elements can be traced to improvement of the un-
derlying sequence (e.g., unc-13 in Figure 2). Hence, the lower percentage
of GLEAN-R gene models that match our annotations can primarily be
attributed to the higher rate of assembly problems in the CAF1 assem-
blies for the D. mojavensis and D. grimshawi F elements. Our results
show that manual sequence improvement and gene annotation can
improve over half of the gene models in regions with high repeat density.

F elements consistently show high repeat density but
vary in repeat composition
The most striking difference between the D. melanogaster F element
and the other autosomes is its high density of repeats, primarily
remnants of transposable elements (Bergman et al. 2006; Riddle et al.
2009). To obtain an overview of the repetitive element landscape of
F elements in the four Drosophila species, we analyzed the types and
distribution of repeats using four different approaches: WindowMasker,
tantan, Tandem Repeats Finder, and RepeatMasker with species-specific
transposon libraries (Figure 3). (Detailed repeat statistics are available in
File S3 and File S4.)

WindowMasker analysis shows the F elements have high repeat
density: To obtain an overview of the total repeat content, we tabulated
the total number of bases masked by WindowMasker for each of the
analysis regions. Unlike other repeat finding tools, WindowMasker relies
only on the genomic sequence to identify over-represented sequences that
correspond to low complexity sequences, simple repeats, or transposable
elements, which makes it an ideal tool for analyzing the repeat contents of
genomes without comprehensive repeat libraries (Morgulis et al. 2006).
The results show that F elements consistently exhibit higher repeat den-
sities than their corresponding euchromatic reference regions (D elements)
in all four species (Figure 3A). D. mojavensis and D. grimshawi have
higher repeat densities than D. melanogaster and D. erecta in both the F
elements and the D elements. In fact, the D. mojavensis and D. grimshawi
D elements have repeat densities that are similar to those of the
D. melanogaster and D. erecta F elements.

To better understand the composition of the repeats identified by
WindowMasker, we used Tallymer (Kurtz et al. 2008) to analyze the
frequency of short sequences (i.e., words) in each analysis region. A
more repetitive region requires a larger word size in order to achieve
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the same percentage of words that are unique compared with a less
repetitive region (Chor et al. 2009). Tallymer analysis shows that
approximately 95% of the 13-mers (i.e., sequences with a length of
13) are unique in the euchromatic reference regions (Table S4). In
congruence with the WindowMasker results, which show that the D.
mojavensis F element has the highest repeat density, we find that more
13-mers appear at a greater frequency on the D. mojavensis F element
than in the other analysis regions. In contrast, most of the 13-mers at
the base of the D. melanogaster and D. erecta D elements occur at low
frequencies. The Tallymer analysis also shows that the D. grimshawi F
and D elements have the most similar distributions of 13-mers (i.e.,
the most similar repeat density) among the four species (Figure 4A).

Examination of the 13-mers identified by Tallymer shows that
many of the 13-mers that appear at a high frequency in D. mojavensis
and D. grimshawi contain AT and CA dinucleotide repeats. Analyses
of the distribution of dinucleotide repeats show that CA dinucleotide
repeats are shorter on the D. melanogaster and D. erecta F elements,
but longer on the D. mojavensis and D. grimshawi F elements, than in
the euchromatic reference regions (Figure 4B). Thus, while low den-
sity of CA repeats was previously associated with the F element in
D. melanogaster (Pardue et al. 1987), this does not seem to hold in
general. The D. mojavensis and D. grimshawi F elements are also
enriched in AT dinucleotide repeats compared with those of D. mel-
anogaster and D. erecta. The lack of CG repeats in both the F and D
elements is also striking (see the Discussion section).

Simple and low complexity repeats are particularly abundant on
the D. grimshawi F element: The tantan analysis (Frith 2011) shows
that D. mojavensis and D. grimshawi have a greater density of simple
and low complexity sequences in both the F element and the euchro-
matic reference regions compared with the corresponding regions in
D. melanogaster and D. erecta (Figure 3B). The analysis also reveals
some species-specific differences: simple and low complexity repeats
appear to contribute the most to the repeat density of the D. grim-
shawi genome. The D. grimshawi F element has a substantially greater
density of simple and low complexity repeats (18%) compared with
the F elements of the other species examined (7–11%). In contrast to
the other species, the D. mojavensis F element shows a lower density

of simple and low complexity repeats compared to its euchromatic
reference region (11% vs. 14%).

Tandem repeats show a skewed distribution on the D. erecta D
element: Tandem repeats may play a particular role in genome
rearrangement and regulation of gene expression (Sinha and Siggia
2005; Farré et al. 2011). For this analysis, tandem repeats are defined
as regions with a minimum size of 25 bases and a maximum period of
2000 (see the section Materials and Methods for the complete list of
search parameters). Results from Tandem Repeats Finder (Benson
1999) show that the D. mojavensis and D. grimshawi F elements and
their euchromatic reference regions have a higher density of tandem
repeats than the corresponding regions in D. melanogaster and D. erecta
(Figure 3C). Although the base and the extended regions of the D. erecta
D element both show a low density of tandem repeats, the analysis
region near the telomere shows a high density, as do the euchromatic
reference regions inD. mojavensis andD. grimshawi. A skew to a greater
density of tandem repeats toward the telomere is apparent in a sliding
window analysis of the D. erecta D element as a whole. In contrast, the
D. melanogaster D element does not show the same skew in the density
of tandem repeats (Figure S2).

Recent expansion of DINE-1 transposons leads to high transposon
density on the D. mojavensis F element: Transposons may play an
important role in targeting heterochromatin formation (Grewal and
Elgin 2007). Because many transposons are species-specific, we
constructed transposon libraries for each species and then used
RepeatMasker (Smit et al. 1996) to identify transposon remnants in
each analysis region. (See File S1 for the protocols used to construct
and classify the species-specific transposon libraries, and File S4 for
transposon density estimates using different species-specific transposon
libraries.) Among the F elements, D. mojavensis has the highest trans-
poson density (~50%) whereas D. grimshawi has the lowest (~20%).
Strikingly, ~53% of the transposon fragments on the D. mojavensis F
element show sequence similarity to DINE-1 elements.

The RepeatMasker results are generally in concordance with the
WindowMasker results (Figure 3D): F elements have a greater trans-
poson density compared with the euchromatic reference regions (D

Figure 2 Sequence improvement of the D. mojavensis
F element scaffold. One of the gaps in the D. mojaven-
sis CAF1 assembly is located within the initial coding
exon of the B and E isoforms of the putative ortholog of
unc-13 in D. mojavensis (red arrow). The improved as-
sembly added 434 bases to resolve the 25-bp gap in
this region (bottom) and allows us to produce annotation
for the entire coding exon. Another gap was resolved by
incorporating a 1.2-kb scaffold (scaffold_6641, chartreuse
yellow rectangle) from the CAF1 assembly into the im-
proved F element assembly (black arrow). This scaffold
contains an internal coding exon for the A and D isoforms
of unc-13. The remaining gaps and low quality regions
were resolved by additional sequencing. Changes be-
tween the CAF1 and the improved assemblies are sum-
marized in the “Difference with D. mojavensis CAF1
Assembly” track (red rectangles). The “GEP Gene Anno-
tations” track (green) shows the manual gene annotations
for all the isoforms of unc-13 in D. mojavensis based on
the improved sequence. The “FlyBase Gene Annotations”
evidence track (blue) shows the GLEAN-R gene predic-
tions currently maintained by FlyBase.
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elements). In some cases the transposon density estimate is higher
than the total repeat density estimate by WindowMasker (e.g., D.
mojavensis F element). This discrepancy is primarily caused by the
difficulty associated with precisely defining the boundaries of each
repeat copy (Bao and Eddy 2002).

Although the WindowMasker analysis (Figure 3A) shows that the
D. grimshawi and D. mojavensis F elements have a similar repeat
density (38% and 44%, respectively), the RepeatMasker analysis (Fig-
ure 3D) shows that the D. grimshawi F element has a much lower
density of transposons than the D. mojavensis F element (20% and
50%, respectively). This difference can primarily be attributed to the
density of DINE-1 elements (2% in D. grimshawi vs. 27% in D. moja-
vensis) and DNA transposons (5% vs. 12%). In particular, DINE-1 (a
helitron) accounts for 53% of the D. mojavensis F element transposon
fragments but only 8% of the transposon fragments on the D. grim-
shawi F element (Figure S3). DINE-1 elements account for approxi-
mately half of all transposon fragments on the D. melanogaster and
D. erecta F elements (46% and 45%, respectively). The high level of
DINE-1 in D. mojavensis suggests a recent expansion.

To ensure that the low transposon density found on the D. grim-
shawi F element is not an artifact of misassemblies in the CAF1
genome assembly (see File S1), we performed an additional repeat
analysis using the species-specific ReAS libraries previously produced
by the Drosophila 12 Genomes Consortium (Drosophila 12 Genomes
Consortium et al. 2007). ReAS is less susceptible to the effects of

misassemblies compared with alignment-based de novo repeat finders
because it identifies repeats by finding overrepresented sequences
within genomic reads (Li et al. 2005). This analysis did not alter the
conclusion that the D. grimshawi F element has the lowest transposon
density among the species analyzed here (Figure S4).

Multiple subfamilies of the DINE-1 element are observed: The
RepeatMasker results show that most of the differences in
the transposon density of the F elements can be attributed to the
DINE-1 element (Figure 3D). Comparison of the DINE-1 fragments
identified by RepeatMasker using the species-specific libraries vs. the
RepBase Drosophila library (Jurka et al. 2005) shows that there are
additional DINE-1 elements in the D. grimshawi, D. mojavensis, and
D. erecta species-specific transposon libraries that are not in the
Drosophila RepBase library. Analysis of the distribution of the
DINE-1 elements shows that 40% of the DINE-1 fragments (based
on total size) on the D. grimshawi F and D elements, and 29% on the
D. mojavensis D element found by the species-specific repeat librar-
ies do not overlap with repeats in the Drosophila RepBase library. In
contrast, although the D. mojavensis F element appears to have an
expanded number of DINE-1 elements, only 9% do not overlap with
repeats in the Drosophila RepBase library (Table S5 and File S5).
Analysis of the scaffolds assembled from unmapped D. mojavensis
modENCODE RNA-Seq reads suggests that some of these helitrons
are being transcribed in the D. mojavensis genome; a potential

Figure 3 The repetitive element landscapes of the F and the base of the D elements in D. melanogaster (red), D. erecta (orange), D. mojavensis (blue),
and D. grimshawi (purple). (A) WindowMasker analysis (low complexity repeats and transposons); (B) tantan analysis (simple and low complexity repeats);
(C) Tandem Repeats Finder; (D) RepeatMasker analysis (transposon density). Within each species, the F element generally shows a higher repeat density
(particularly transposable elements) than the euchromatic reference regions from the D elements. Except for tandem repeats, the base (light orange),
extended (olive), and telomeric (green) regions from the D. erecta D element generally show similar repeat density.
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candidate is shown in Figure S5. (See File S1 for a more detailed
description of this analysis.)

Overall repeat distribution on the F element: Collectively, the repeat
analysis shows the F elements have a higher repeat density than the
euchromatic reference regions in all four Drosophila species. It also
shows that although the D. mojavensis and D. grimshawi F elements
have similar total repeat densities, they have strikingly different repeat
compositions. A total of 75% of the repeats that overlap with a repeat
identified by WindowMasker on the D. mojavensis F element are
transposons (particularly DINE-1 elements) compared to only 27%
on the D. grimshawi F element, whereas the D. grimshawi F element
shows a greater density of simple and low complexity repeats than the
D. mojavensis F element (39% vs. 20%). These differences in repeat
composition could impact the local chromatin structure and thus the
evolution of the resident genes.

Evolution of F element genes
Despite its high repeat density, the distal arm of the D. melanogaster F
element contains 79 genes, many of which have important develop-
mental and housekeeping functions (Riddle et al. 2012). Our manual
gene annotations (described previously) show that the D. melanogaster,
D. erecta, D. mojavensis, and D. grimshawi F elements all have approx-
imately 80 genes. The gene density of the F element is lower than that of
the euchromatic reference regions from the D element (~60 genes/Mb
vs. ~80 genes/Mb) for these four species (Table S6). Among the four
species, the D. mojavensis F element has the lowest gene density (48
genes/Mb compared with 60–66 genes/Mb in the other F elements).
This reflects the increased size of the D. mojavensis F element due to the
expansion of repetitious elements (1.7 Mb vs. 1.2–1.3 Mb in the other F
elements) (Table S6 and Figure 3).

Although we have produced annotations for all isoforms, our
analysis below is based only on the isoform with the largest coding
region (i.e., the most comprehensive isoform) for each gene. Restrict-
ing our analysis to the most comprehensive isoform allows us to avoid
counting the same region multiple times because of alternative splic-
ing. We initially examined genes at the base, extended, and telomeric
regions (described previously) of the D. erecta D element. Since the
genes in these three euchromatic regions exhibit similar character-
istics, the primary focus of the following analysis is on the comparison
of genes between the F element and the base of the D element (results
for all of the analysis regions are available in Figure S6). Summary
statistics for all of the gene characteristics, and results of multiple
comparison tests after the Kruskal-Wallis (KW) rank sum tests (Krus-
kal and Wallis 1952), are available in File S6.

F element genes are larger because they have larger introns and
more coding exons: Comparisons of the distribution of gene
characteristics using violin plots (Hintze and Nelson 1998) show that
the coding span (i.e., the region that spans from the start codon to the
stop codon, including introns) for F element genes is much larger
(median 5156–7569 bp) than for genes at the base of the D elements
(median 1028–1736 bp) (Figure 5, top left). The KW test shows that
this difference is statistically significant (p-value: 2.12E-48).

Part of this difference in the coding span can be attributed to the
significantly higher transposon density (KW test p-value: 2.40E-82)
within the introns of F element genes (Figure 5, top center; “repeat
size” is the total size of the transposon fragments within the introns of
a gene, in bp). Among the four species analyzed in this study, 71–83%
of the F element genes contain at least one transposon fragment in
an intron. In contrast, only 20–46% of the D element genes contain
at least one transposon fragment. Consistent with the results of the

Figure 4 Distributions of 13-mers
and dinucleotide repeats in the
regions analyzed. (A) Consistent
with the WindowMasker results,
more 13-mers are found to be
repeated (present at a higher fre-
quency) on the D. mojavensis F
element (dark blue line) than the
other analysis regions. The genomic
sequence in each analysis region is
partitioned into overlapping 13-
mers and the frequency of each
13-mer is tabulated using Tallymer.
The values on the x-axis correspond
to the number of times that a partic-
ular 13-mer is found in the analysis
region whereas the y-axis corre-
spond to the total number of 13-
mers (of all sequences) that appear
at each frequency. For example, ap-
proximately 106 13-mers appear
only once in each analysis region.
(B) Cumulative dinucleotide repeats
analysis shows a higher frequency of
dinucleotide repeats on the D.
mojavensis and D. grimshawi F ele-
ments (dark blue and purple lines,
respectively) than on the D. mela-

nogaster and D. erecta F elements (dark red and orange lines, respectively). A pseudocount of one has been added to the cumulative distribution
plots in order to show a continuous distribution in the semi-log plot.
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transposon density analysis, we find that the D. mojavensis F element
has the highest intron transposon density (median 1930 bp) whereas
D. grimshawi has the lowest (median 210 bp).

In addition to differences in the repeat sizes within introns, the
violin plots also show that the coding regions (i.e., the region that
spans from the start codon to the stop codon, excluding introns) of F
element genes are significantly larger (median 2313–2565 bp) than the
coding regions for D element genes (median 918–1305 bp) (Figure 5,
top right). The KW test shows that this difference in the size of the
coding regions is statistically significant (p-value = 7.03E-33). Further-
more, although the actual genes found at the base of the D elements of
D. mojavensis and D. grimshawi differ from those found at the base of
the D. melanogaster and D. erecta D elements (due to various rear-
rangements), a multiple comparison test after KW shows no signifi-
cant difference in the size of the coding regions.

To further analyze the difference in the distribution of coding
spans and the coding regions between the genes on the F and D
elements, we examined the distributions of the number of exons, the
coding exon sizes, and intron sizes. Previous analysis has shown that
D. melanogaster F element genes have more transcribed exons than
genes in other domains (Riddle et al. 2012). In congruence with this
observation in D. melanogaster, our analysis shows that F element
genes in the four Drosophila species have significantly more coding
exons (median 6–7) than D element genes (median 2–3) (KW test
p-value = 5.59E-50) (Figure 5, bottom left). In contrast, the distribu-
tions of coding exon sizes are similar between F element genes (me-
dian 196–201.5 bp) and D element genes (median 195–284.5 bp). A
KW test indicates that there is a significant difference in the distribu-
tion of coding exon sizes (p-value = 2.12E-07). However, multiple
comparison tests show that only the differences between the coding
exons of all four F elements and the coding exons from the base of the
D. melanogaster and D. erectaD elements are statistically significant (see
File S6). Hence, in general, F element genes have larger coding regions
because they tend to have more coding exons than D element genes.

Consistent with the greater transposon density on the F element,
we find that F element genes generally have significantly larger introns
(median 172.5–228 bp) than D element genes (median 65–84 bp)
(Figure 5, bottom right; KW test p-value = 6.14E-62). Multiple com-
parison tests show that D. grimshawi is the exception, as the difference
in intron sizes between the D. grimshawi F and D element genes is not
statistically significant. The intron size distribution for the D. grim-
shawi D element is significantly different from that of the other D
elements, but is not significantly different from that of the D. mela-
nogaster and D. erecta F elements. These observations are in concor-
dance with the results of the transposon density analysis, which shows
that the D. grimshawi F and D elements have more similar transposon
densities compared to those of other species (see Figure 3D).

Hence the larger coding spans observed for F element genes
(Figure 5, top left) can primarily be attributed to a combination of
significantly larger repeat sizes within introns (Figure 5, top center)
and larger coding regions (Figure 5, top right). The larger coding
regions of F element genes can be attributed to a significantly higher
number of coding exons (Figure 5, bottom left) but not to the size of
the individual coding exons (Figure 5, bottom center). Introns of F
element genes are significantly larger than introns of genes in the
euchromatic reference regions for D. melanogaster, D. erecta, and D.
mojavensis but not for D. grimshawi (Figure 5, bottom right).

F element genes show lower codon bias than D element genes:
Previous analysis of codon usage bias in 12 Drosophila species (using
33 D. melanogaster F element genes and their corresponding GLEAN-R
annotations) showed that F element genes exhibit lower codon bias
compared with genes on the other Muller elements (Vicario et al.
2007). Here we expand the codon bias analysis to all of the manually
annotated F element genes in four Drosophila species using two metrics:
the Effective Number of Codons (Nc), which measures deviations
from uniform codon usage (Wright 1990), and the CAI, which mea-
sures deviations from the species-specific optimal codon usage (Sharp

Figure 5 Violin plots of gene charac-
teristics for each analysis region. A
violin plot is composed of a boxplot
and a kernel density plot: the black
dot denotes the median; the darker
regions and the thin white box denote
the range between the first (Q1) and
third (Q3) quartiles [i.e., the interquar-
tile range (IQR)]. Whiskers extending
from the white box span from Q1-
1.5☓IQR to Q3+1.5☓IQR; the data
points beyond the whiskers are out-
liers. For violin plots using a log scale,
a pseudocount of one was added to
all data points. The larger coding
spans of F element genes can be at-
tributed not only to larger introns (of-
ten containing repeats), but also to
larger coding regions. The larger cod-
ing regions reflect the higher number
of coding exons.
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and Li 1987). (Lower Nc values and higher CAI values indicate stronger
codon bias.)

Violin plots of Nc show that F element genes exhibit significantly
smaller deviations from uniform codon usage (median 53.92–54.95)
than genes at the base of the D elements (median 48.35–50.33) in all
four species (KW test p-value = 8.84E-38) (Figure 6A). Multiple com-
parison tests show that the contrast between F and D genes is the only
statistically significant difference in the distribution of Nc. Violin plots
of CAI also show that F element genes exhibit significantly lower
codon bias than D element genes (KW test p-value = 1.66E-119)
(Figure 6B). However, multiple comparison tests show that the CAIs
for D. mojavensis and D. grimshawi are significantly greater (indicat-
ing more optimal codon usage) than those for D. melanogaster and D.
erecta for both the F element genes (median 0.409–0.412 vs. 0.185–
0.188) and the D element genes (median 0.483–0.510 vs. 0.372–0.397).

Codon bias in D. grimshawi F element genes can primarily be
attributed to selection: To infer the selective pressure experienced by
genes in the different analysis regions, we compared the Nc and CAI
values of each gene using a scatterplot (Vicario et al. 2007). This
analysis posits that Nc measures deviations from uniform codon usage
that could either be attributed to mutational bias or selection, while
CAI measures deviations from optimal codon usage and primarily
reflects selection. Hence, genes that exhibit both large deviations from
uniform codon usage (i.e., low Nc) and small deviations from optimal
codon usage (i.e., high CAI) are thought to be under stronger selective
pressure, while genes with low Nc and low CAI are under stronger
influence from mutational biases (Vicario et al. 2007). After construct-
ing the Nc vs. CAI scatterplots for each analysis region, we applied
locally estimated scatterplot smoothing (LOESS, (Cleveland and Devlin
1988)) to capture the overall trends seen in each scatterplot (Figure 6C).
Regression lines that show a positive slope indicate that the codon bias
can primarily be attributed to mutational biases, while a negative slope

indicates that the codon bias can primarily be attributed to selection on
codon usage.

Consistent with previous reports using a smaller gene set (Vicario
et al. 2007), our analysis shows that codon bias for most of the genes on
the D. melanogaster and D. erecta F elements can be attributed to
mutational biases rather than selection (i.e., most of the genes are in
the part of the LOESS regression line that shows a positive slope),
indicating low selective pressure relative to what is seen for the D
element genes. In contrast, we find that codon bias for most of the
genes on the D. grimshawi F element, along with genes on the D
elements, can primarily be attributed to selection (i.e., most of the genes
are in the part of the LOESS regression line with negative slope). Thus
we observe that the F element with the lowest transposon density (D.
grimshawi) differs from the other F elements in this regard, with more
of the genes showing evidence of response to selective pressure. We also
find that most of the D. mojavensis F element genes have CAI values
that are higher than those for a gene with equal codon usage (dotted
line in Figure 6C), indicating a more optimal pattern of codon usage
compared to F element genes in D. melanogaster and D. erecta. Al-
though most of the F element genes within each Nc vs. CAI scatterplot
follow a similar trend, there are a few outliers (Figure 6C). For example,
the Muller F element genes ATPsyn-beta and RpS3A exhibit low Nc and
high CAI in all four Drosophila species (Figure S7, see Discussion) (See
File S1 and the heat maps in File S7 for the detailed analysis on the
changes in codon usage preferences for each amino acid).

A subset of F element genes exhibits distinct characteristics in all
four species: Our analyses show that the overall characteristics of F
element genes are distinct from genes at the base of the D element.
However, previous studies have shown that some regions on the D.
melanogaster F element differ from the general case in being enriched
in H3K27me3, rather than H3K9me2/3, in a tissue-specific fashion;
genes that reside in these regions are associated with Polycomb (PcG)

Figure 6 F element genes exhibit
different patterns of codon bias in D.
mojavensis and D. grimshawi com-
pared to D. melanogaster and D.
erecta. (A) Distributions of Effective
Number of Codons (Nc). (B) Distribu-
tions of Codon Adaptation Index
(CAI). (C) Scatterplots of Nc vs. CAI
show that, similar to the base of the
D elements, codon bias in the D. grim-
shawi F element genes can be attrib-
uted primarily to selection rather than
mutational biases, as indicated by
a LOESS regression line (red line) with
negative slope (see main text). The
dotted line in each Nc vs. CAI scatter-
plot demarcates the CAI value for
a gene with no codon bias relative to
the species-specific reference gene
sets constructed by the program
scnRCA (see File S1).
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(Kharchenko et al. 2011; Riddle et al. 2012). PcG proteins regulate the
expression of many genes involved in development (such as homeotic
genes) by altering the chromatin structure (reviewed in (Lanzuolo and
Orlando 2012)). Hence it is of particular interest to ask whether the six
F element genes associated with PcG exhibit characteristics that differ
from the rest of the F element genes.

Because there are only six genes on the D. melanogaster F element
that are associated with PcG, there is insufficient statistical power to
analyze each gene characteristic separately to ascertain if PcG genes
exhibit significantly different properties compared to the other F ele-
ment genes. Consequently, we performed a multivariate analysis of the
gene characteristics described above (see File S1 for details). For each
F element, we constructed a Distance–Distance (DD) plot (Rousseeuw
and Van Zomeren 1991) of gene characteristics to identify outliers
(Figure 7). Detection of outliers using MDs (Mahalanobis 1936) show
that there are three F element genes (bt, fd102C, and Sox102F) that
consistently exhibit characteristics that are distinct from other F ele-
ment genes in all four species. The bt gene, for example, is an outlier
because it has a substantially larger coding span, larger coding region,
and more coding exons compared to the other F element genes in all
four species. The DD plot also identifies some species-specific outliers:
CG31999 is an outlier in the D. mojavensis F element because it has
a gene size of 157 kb (compared to 10 kb in D. melanogaster).

Detection of outliers using robust distances identifies additional
outliers (triangles in the top left quadrant, Figure 7) that are not
detected by the MD because of the masking effect (Ben-Gal 2005).
Robust distance in the DD plots identifies 25–29 F element genes as
outliers and 14 of these outliers are found in all four species. Analysis
of these 14 genes using modMINE (Contrino et al. 2012) shows that
they are significantly enriched in “RNA polymerase II distal enhancer
sequence specific DNA binding transcription factor activity”
(GO:0003705, Holm-Bonferroni adjusted p-value = 8.36E-4).

Of the 14 outliers that are found in all four species, five of them
(ey, fd102C, Sox102F, sv, and toy) are associated with PcG domains.

The only exception is zfh2, which is an outlier in three of the four
species (D. melanogaster, D. mojavensis, and D. grimshawi). Hence the
DD plot analysis suggests that F element genes that reside in domains
enriched in H3K27me3 might have different characteristics than F
element genes that reside in domains enriched in H3K9me2/3.

F element genes show lower melting temperature
metagene profiles
Despite residing in a domain with heterochromatic properties, D.
melanogaster F element genes exhibit expression levels that are similar
to those of other euchromatic genes (Riddle et al. 2012). One of the
mechanisms for regulating gene expression is the pausing of RNA
Polymerase II during early elongation (reviewed in (Adelman and
Lis 2012)). Previous analysis has shown that the efficacy of elongation
depends on the stability of the 9-bp RNA-DNA hybrid in the elon-
gation complex (Tadigotla et al. 2006). Genes that exhibit polymerase
pausing have a distinct 9 bp melting temperature profile (i.e., greatest
melting temperature at 25–30 bp downstream of the transcription
start site, where pausing occurs) (Nechaev et al. 2010).

Previous studies have shown that D. melanogaster F element genes
exhibit lower melting temperatures than genes that reside in other
domains (Riddle et al. 2012). To ascertain whether this difference is
conserved in other Drosophila species, we performed a metagene anal-
ysis of the melting temperature profile. (See the section Materials and
Methods for details on the definition of the metagene.)

The metagene profiles show that F element genes in all four Dro-
sophila species have lower melting temperatures (Tm) than genes at the
base of the D element. In all cases, the coding spans (i.e., from start
codon to stop codon, including introns) show substantially higher melt-
ing temperatures than the 2-kb flanking regions (Figure 8). Coding spans
of the D. mojavensis and D. grimshawi F elements show greater Tm than
those of D. melanogaster and D. erecta. Comparing the F element and D
element genes within a given species, we find that those of D. grimshawi
show the smallest difference in the melting temperature profiles.

Figure 7 Distance–Distance Plots of
robust distance (RD) vs. Mahalanobis
distance (MD) show both common
and species-specific outliers. The hor-
izontal and vertical lines correspond to
the cutoff values for outliers (97.5%
quantile of the x2 distribution, see File
S1). Values greater than the cutoff val-
ues identify outliers. Triangles in the
upper right quadrant are outliers
based on both RD and MD. Triangles
in the upper left quadrant are outliers
only based on RD. The dashed line
corresponds to points with equal RD
and MD values. F element genes that
reside in a Polycomb domain in D.
melanogaster are highlighted in gray.

Volume 5 May 2015 | Evolution of Drosophila F Element | 729

http://www.g3journal.org/content/suppl/2015/03/04/g3.114.015966.DC1/FileS1.docx
http://www.g3journal.org/content/suppl/2015/03/04/g3.114.015966.DC1/FileS1.docx
http://www.g3journal.org/content/suppl/2015/03/04/g3.114.015966.DC1/FileS1.docx


F element gene rearrangements and gene movements

Changes in F element gene order: Previous studies have estimated
that approximately 95% of the genes in D. melanogaster remain on the
same Muller element across the 12 Drosophila species (Bhutkar et al.
2008). To ascertain whether the low rate of recombination would
affect the rate of rearrangements and gene movements on the F ele-
ment, we analyzed the placement of D. melanogaster F element genes
in the other Drosophila species.

Of the 79 D. melanogaster F element genes annotated by Fly-
Base, two of the genes were omitted from the gene movement analysis
because they are either a partial gene (JYalpha) or a possible misan-
notation (CG11231). (See File S1 for details.) Of the remaining 77 D.
melanogaster F element genes, all 77 genes (100.0%) are found on the
D. erecta F element, 72 (93.5%) are found on the D. mojavensis F
element and 73 (94.8%) are found on the D. grimshawi F element.

Except for CG11231, the D. erecta F element is completely
syntenic with respect to the D. melanogaster F element. GRIMM
(Tesler 2002) estimates that a minimum of 31 inversions are required
to transform the D. melanogaster F element gene order and orienta-
tion to that observed in the D. mojavensis F element (72 genes in
common). Similarly, at least 33 inversions are required to transform
the D. melanogaster F element gene order to that observed in D.
grimshawi (73 genes in common). There are 78 genes that are found
on both the D. mojavensis and D. grimshawi F elements, and GRIMM
estimates a minimum of seven inversions are required to transform
the gene order in D. mojavensis to that observed in D. grimshawi. (See
possible rearrangement scenarios estimated by GRIMM in Figure S8.)

Analysis of the number of genes per syntenic block (i.e., syn-
tenic block sizes) shows that the F elements have smaller syntenic
blocks than the previously reported genome averages (Bhutkar et al.
2008). The D. mojavensis F element has an average syntenic block size
of 3.4 genes compared to an average of 8.8 genes per syntenic block
for the whole genome. The corresponding numbers for D. grimshawi
are 3.6 and 8.4 genes per syntenic block for the F and D elements,
respectively. Thus inversions are common on the F element despite its
low rate of recombination.

Identifying a wanderer gene hotspot: Movement of genes between
different chromosomes typically results from gene duplications (via

ectopic recombination or retrotransposition) followed by the loss of
the original copy of the gene (Meisel et al. 2009). There are 12 genes
that are found on the F element in one Drosophila species, but on
another Muller element in a different Drosophila species (“wanderer
genes”; Figure 9A). One of these wanderer genes is a putative paralog
of Cyp1 (Cyp1_alpha) that is found on the D. mojavensis F element
and the D. grimshawi B element but is not found in either D. mela-
nogaster or D. erecta.

To further analyze the distribution of wanderer genes on the F
elements, we compared the genome assemblies of six Drosophila spe-
cies (D. melanogaster, D. yakuba, D. erecta, D. virilis, D. mojavensis,
and D. grimshawi) using the UCSC Chain and Net protocol (Kent
et al. 2003). Examination of the Net alignment tracks shows there is
a single region (i.e., hotspot) in both the D. mojavensis and D. grim-
shawi F elements where most of the wanderer genes are found (Figure
S9). The D. mojavensis F element hotspot contains five of the six
wanderer genes relative to D. melanogaster (Figure 9B, top). The
hotspot on the D. grimshawi F element contains three of the four
wanderer genes relative to D. melanogaster and one of the wanderer
genes (yellow-h) relative to D. mojavensis (Figure 9B, bottom).

Because three of the wanderer genes (CG5262, rho-5, and CG4038)
are found in the wanderer gene hotspots of both the D. mojavensis
and D. grimshawi F elements (relative to D. melanogaster), we can use
them to infer the direction of gene movements of the rest of the
wanderer genes in the hotspot. The yellow-h gene likely moved from
the F element to the A element in D. mojavensis. In contrast, both the
PRY and Or13a genes likely moved from other chromosomes (the Y
chromosome and the A element, respectively) to the D. mojavensis F
element. Hence our analysis indicates that gene movement occurs in
both directions on the F element and that the cumulative effect of
these gene movements is that there are a similar number of genes
(~80) on the F element in all four species.

DISCUSSION

F elements exhibit distinct characteristics in Drosophila

The D. melanogaster F element is unusual in that it appears to be
predominantly heterochromatic, but in the distal 1.3 Mb has a gene
density similar to the euchromatic chromosome arms (Sun et al. 2004;
Riddle et al. 2011, 2012). Immunofluorescent staining of the polytene

Figure 8 Metagene analyses show that F element
genes have a lower median 9-bp melting temperature
(Tm) than genes at the base of the D element. The 9-bp
Tm was calculated using a sliding-window of 9 bp and
a step size of 1 bp. The Tm for each coding span was
subsequently normalized to 3 kb to create the meta-
gene profile (see File S1).
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chromosomes shows that the D. melanogaster, D. erecta, D. mojavensis,
and D. grimshawi F elements are enriched in H3K9me2 (Figure 1),
which suggests that the F element is generally packaged as heterochro-
matin in these four species. In order to elucidate the impact of these
unusual characteristics on the evolution of the F element and its genes,
we performed a comparative analysis of the F elements and euchromatic
regions near the base of the D elements (coordinates listed in Table S1).

To increase the accuracy of our analysis, we improved the assemblies
of the D. mojavensis and D. grimshawi F elements and the base of the
D. mojavensis D element, closing 72 of 86 gaps and adding 44,468 bases
to these assemblies (Figure 2 and Table S2). Restriction digests and
consistent mate pairs provide strong experimental support for the final
assemblies. We also produced gene annotations for the regions under
study in D. erecta, D. mojavensis, and D. grimshawi (878 genes, 1619
isoforms). Each gene was annotated at least twice independently and
reconciled by a third investigator, giving increased confidence in the
results. We find substantial differences between our manually curated
gene models and the GLEAN-R gene predictions, with only 32–58% of
the GLEAN-R gene models showing complete congruence in the cases
of D. mojavensis and D. grimshawi (Table S3). These results illustrate
the benefits of manual sequence improvement and gene annotations for
regions with moderate repeat density.

Our analysis shows that the F element has generally maintained its
distinct characteristics compared with the other autosomes in species
that diverged from D. melanogaster 40–60 million years ago. Compared
with the euchromatic reference regions within each species, we find that
F elements have higher repeat density (Figure 3 and Figure 4), and the
genes are larger, have larger introns, more coding exons (Figure 5),
lower codon bias (Figure 6), and lower melting temperatures (Figure
8). Most F element genes exhibit similar characteristics within each
species but there are also species-specific and common outliers among
the four Drosophila species (Figure 7). Analysis of gene movements
shows that the F elements have smaller syntenic blocks than the genome
average and that there is a single hotspot in both the D. mojavensis and

D. grimshawi F elements where most of the wanderer genes are found
(Figure 9). We also identified genes that have moved both on and off of
the F element, maintaining approximately the same number of genes in
the four species. It is striking that these gene movements (presumably
due to transposition) occur at a rate similar to that seen for the other
autosomes, and inversions are more frequent, while recombination is
reduced. This suggests that the frequency of such events is not dictated
solely by DNA accessibility, as such a simple model of the consequences
of heterochromatin packaging might have been thought to impact all
three types of events equally.

Although the F elements generally show similar characteristics, we
also find some differences among the four Drosophila species (partic-
ularly between the species in the Drosophila clade vs. the species in the
melanogaster subgroup of the Sophophora clade). These differences
could provide insights into the impact of low recombination rate on
the evolution of the genomic landscape (e.g., repeats and gene char-
acteristics) of the F element.

F elements have different repeat compositions
One of the prominent characteristics of heterochromatin is its high
repeat density. Previous studies have shown that the difference in total
repeat density is one of the major contributors to the changes in
genome size among the different Drosophila species (Bosco et al.
2007). A critical consideration here is that some classes of transposons
and tandem repeats have been implicated in gene silencing and
heterochromatin formation (Martienssen 2003; Riddle et al. 2008;
Sentmanat and Elgin 2012).

In concordance with previous reports for many eukaryotes (Tóth
et al. 2000), our dinucleotide repeat analysis shows a lack of CG di-
nucleotide repeats on both the F and D elements in all four Drosophila
species (Figure 4B). Previous studies have shown that there is a strong
mutational bias in Drosophila toward A/T, whereas codon bias tends
to favor G/C at synonymous sites (Moriyama and Powell 1997;
Vicario et al. 2007). Hence the lack of CG dinucleotide repeats on

Figure 9 F element gene movements
in the four Drosophila species analyzed
in this study. (A) Placement of the 12 F
element wanderer genes [five on the F
element in D. melanogaster and D.
erecta (top left), and seven on the F el-
ement in D. mojavensis (top right)]. (B)
Schematic representations of the wan-
derer gene hotspots on theD. mojaven-
sis and D. grimshawi F elements where
most of the wanderer genes are found.
The genes PRY and Or13a (blue boxes)
have moved from other Muller elements
to the D. mojavensis F element. The
gene yellow-h (purple box) has moved
from the F element to the A element in
D. mojavensis. Assignment of the D. vir-
ilis ortholog of Or13a to the A element
(denoted by an asterisk) is based on the
placement of the other seven genes
found in that scaffold (13050) (see File
S1). Placement of PRY on the Y chromo-
some is based on Koerich et al. (2008).
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the F element could be explained by its low recombination rate. How-
ever, this mutational bias does not explain the lack of CG dinucleotide
repeats on the D elements. Previous studies have shown that methyl-
ated CpG sequences have a greater rate of mutation because they are
susceptible to spontaneous deamination, and the low frequency of CG
repeats has been attributed to this (Duncan and Miller 1980). Hence,
the lack of CG dinucleotide repeats on the D element is striking given
the low levels (if any) of DNA methylation in Drosophila (Raddatz
et al. 2013; Takayama et al. 2014). Another explanation for the lack of
CG repeats is clearly needed.

Previous in situ hybridization analyses by Pardue et al. (1987) have
shown that CA/GT dinucleotide repeats are highly enriched on the D.
melanogaster X chromosome but are depleted in the F element and
b-heterochromatin (i.e., heterochromatin that is replicated during
polytenization). In contrast, the D. virilis F element is enriched in
CA/GT dinucleotide repeats (Pardue et al. 1987). Our analysis shows
that, similar to D. virilis, the D. mojavensis and D. grimshawi F ele-
ments have long CA and AG dinucleotide repeats, whereas the D.
melanogaster F element is notably depleted in these dinucleotide
repeats (Figure 4B). However, the significance of these differences in
the distribution of dinucleotide repeats is unclear.

Our analysis also shows that the D. mojavensis and D. grimshawi F
elements contain longer AT dinucleotide repeats than D. melanogaster
and D. erecta (Figure 4B). Previous analyses have shown that long AT
dinucleotide repeats inhibit the formation of nucleosomes (reviewed
in (Struhl and Segal 2013)). Hence, this difference in the frequency of
long AT dinucleotide repeats suggests that the D. mojavensis and D.
grimshawi F elements might not be as densely packaged as the D.
melanogaster and the D. erecta F elements.

Estimates of the total repeat content with WindowMasker show
that the D. mojavensis and D. grimshawi F elements have similar
repeat density and both species have a higher repeat density than
the D. melanogaster and D. erecta F elements (Figure 3A). However,
the D. mojavensis and D. grimshawi F elements have different repeat
compositions: most of the repeats in the D. mojavensis F element
(~75%) are transposons whereas more of the repeats (~39%) in the
D. grimshawi F element are simple and low complexity repeats.

Among the four species, D. mojavensis has the greatest F element
transposon density (50%), whereas D. grimshawi has the lowest (20%).
The differences in transposon density can primarily be attributed to
changes in the density of the DINE-1 element (27% in D. mojavensis
vs. 2% in D. grimshawi) (Figure 3D). The DINE-1 element was first
characterized in D. melanogaster and this transposon is primarily
found on the F element and in pericentric heterochromatin (Locke
et al. 1999). Subsequent studies have classified the DINE-1 as a heli-
tron, and have shown that there has been a more recent transposition
and expansion of DINE-1 elements in D. yakuba and D. mojavensis,
which results in the higher density of DINE-1 elements in these
species. In contrast, the D. grimshawi genome has the lowest density
of DINE-1 elements among the 12 Drosophila species, possibly be-
cause it is geographically isolated (on the Hawaiian islands) and might
not have experienced the same transpositional burst of the DINE-1
elements seen in many of the other Drosophila species (Yang et al.
2006; Yang and Barbash 2008).

In concordance with previous reports (Kuhn and Heslop-Harrison
2011), comparison of the overlap between the DINE-1 fragments iden-
tified by the species-specific transposon library and the Drosophila
RepBase library indicates that there are at least two major subfamilies
of DINE-1 elements in D. mojavensis (Table S5). We found that 67% of
the DINE-1 fragments in the species-specific library overlap with the
Homo6 transposon whereas 22% overlap with the Helitron1_Dmoj

transposon (File S5). Analysis of the D. mojavensis RNA-Seq data
(Graveley et al. 2011) identified a scaffold that contains a conserved
Helitron_like_N (Pfam accession: PF14214) domain (Figure S5), indi-
cating that some of the DINE-1 elements may still be active. A trans-
posable element present at a high density, in a genome that expresses
that transposable element, could well be a target for silencing, promot-
ing heterochromatin formation.

The horizontal transfer and subsequent amplification of helitrons
occur in many organisms, including mammals, reptiles, and insects
(Thomas et al. 2010). Helitrons can capture adjacent gene fragments
during transposition and can affect the evolution of the host species
[reviewed in (Kapitonov and Jurka 2007)]. Previous analysis of 12
Drosophila species shows that DINE-1 fragments often are found in
introns or within 1 kb of the coding regions (Yang and Barbash 2008).
Hence the DINE-1 element may play an important role in shaping the
genomic landscape of the F elements and their genes.

The high repeat density of the F element has a direct impact on
gene characteristics. One of the factors that contributes to the
significantly larger coding span of F element genes compared to D
element genes is that F element genes have significantly larger introns in
all of the species examined here except for D. grimshawi (Figure 5, lower
right). This difference in intron size can partly be attributed to the
differences in intron repeat density (Figure 5, top center). However, this
does not a priori explain the other factor contributing to the larger
coding span of F element genes — the larger number of coding exons.

The D. grimshawi F element genes exhibit different
patterns of codon bias
A salient characteristic of the F element is its low rate of recombination
(Arguello et al. 2010; Wang et al. 2002). Codon bias is correlated with
the recombination rate because of the Hill-Robertson effect (Hill and
Robertson 1966; Kliman and Hey 1993). In agreement with this effect,
we find that F element genes exhibit lower codon bias than D element
genes based on both the Nc and the CAI metric (Figure 6).

Although F element genes for all four species exhibit smaller
deviations from uniform codon usage (i.e., low Nc) than D element
genes, we find that D. mojavensis andD. grimshawi genes show a more
optimal pattern of codon usage (i.e., greater CAI) than D. melanogaster
and D. erecta genes in both the F and D elements. The greater CAIs in
the D. mojavensis and D. grimshawi analysis regions are in congruence
with the results from previous whole genome analysis of CAIs in 12
Drosophila species, which shows that the distribution of CAIs for species
in the Drosophila subgroup are shifted to the right (i.e., greater CAI)
compared with the melanogaster subgroup (Heger and Ponting 2007).

In concordance with the hypothesis that greater CAI reflects
stronger selection because of greater transfer RNA abundance
(Moriyama and Powell 1997) and greater expression levels (Duret
and Mouchiroud 1999), we find that the F element genes ATPsyn-
beta and RpS3A exhibit strong codon bias in all four Drosophila
species (Figure S7). ATPsyn-beta is an ATPase (Peña and Garesse
1993) and RpS3A is a ribosomal protein (Van Beest et al. 1998). Both
genes are very highly expressed in all developmental stages in D.
melanogaster (Graveley et al. 2011).

Scatterplots of Nc vs. CAI can indicate whether the codon bias
observed in each region can primarily be attributed to mutational bias
or selection (Vicario et al. 2007). Unlike those of the other F elements,
the D. grimshawi F element genes show a negative correlation between
Nc and CAI, similar to the D element genes (Figure 6). Thus, in
contrast to the other F elements, more of the codon bias in D. grim-
shawi F element genes can be attributed to selection rather than
mutational biases.
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The results of the repeat density and codon bias analyses
suggest that the D. grimshawi F element has a greater rate of re-
combination. This might be a consequence of the lower transposon
density, given that transposons can be targets for heterochromatin
formation (Lippman and Martienssen 2004; Sentmanat et al.
2013). Furthermore, the low density of DINE-1 elements on the
D. grimshawi F element compared with the other species suggests
that this transposon might play an important role in promoting
heterochromatin assembly. However, the transposon families pres-
ent vary in the different species, and there may well be other trans-
posable elements, present in other species but absent from D.
grimshawi [e.g., 1360 and Galileo, (Marzo et al. 2008)] that could
contribute substantially to silencing.

Lower melting temperatures may facilitate transcription
of F element genes
Previous analysis has shown that a much smaller fraction of the D.
melanogaster F element genes exhibit polymerase pausing (1.6%)
compared with genes found in pericentric heterochromatin
(12.5%) or euchromatin (15.0%). F element genes also show a lower
melting temperature near the transcription start site than genes in
the other D. melanogaster Muller elements, irrespective of whether
the genes exhibit polymerase pausing (Riddle et al. 2012). Our
metagene analysis of melting temperature profiles shows that F
element genes in all four Drosophila species exhibit lower melting
temperatures across the entire span of the metagene than D ele-
ment genes (Figure 8). The lower melting temperature suggests
that, similar to D. melanogaster, only a small fraction of the D.
erecta, D. mojavensis, and D. grimshawi F element genes will ex-
hibit polymerase pausing.

The elongation rate of RNA Polymerase II can affect the total
mRNA level (Danko et al. 2013) and previous studies have found
that the rate of elongation is negatively correlated with GC con-
tent within the gene body, and with exon density (Jonkers et al.
2014). Although F element genes are larger and have more coding
exons than euchromatic genes (Figure 5), the metagene has a sub-
stantially lower melting temperature (Figure 8), presumably be-
cause of the high AT content within introns and the low codon
bias. The high AT content in the genes could be a consequence of
the less effective selection for codon bias (because of the low rate
of recombination on the F elements) coupled with the A/T muta-
tional bias in Drosophila. The lower GC content within the gene
body could facilitate transcription and hence help explain how F
element genes can have expression levels that are similar to genes
in euchromatic regions, despite residing in a domain with hetero-
chromatic properties.

This study provides an initial survey of the evolution of the F
element and its genes in four Drosophila species. Our results show that
the F element has maintained its distinct characteristics in both the
Sophophora and Drosophila subgenera. The unusual mixture of a het-
erochromatic domain with a euchromatin-like gene density on the F
element enabled us to investigate a number of interesting questions
relating genome organization to gene function. The genomics resources
(e.g., improved assemblies, gene annotations, genome browsers)
produced in this study provide a foundation for future investigations
into the factors that impact chromatin packaging and gene expres-
sion in a heterochromatic domain.
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