55 research outputs found

    The bacillary and macrophage response to hypoxia in tuberculosis and the consequences for T cell antigen recognition

    Get PDF
    M. tuberculosis is a facultative anaerobe and its characteristic pathological hallmark, the granuloma, exhibits hypoxia in humans and in most experimental models. Thus the host and bacillary adaptation to hypoxia is of central importance in understanding pathogenesis and thereby to derive new drug treatments and vaccines

    Using biomarkers to predict TB treatment duration (Predict TB): a prospective, randomized, noninferiority, treatment shortening clinical trial

    Get PDF
    Background : By the early 1980s, tuberculosis treatment was shortened from 24 to 6 months, maintaining relapse rates of 1-2%. Subsequent trials attempting shorter durations have failed, with 4-month arms consistently having relapse rates of 15-20%. One trial shortened treatment only among those without baseline cavity on chest x-ray and whose month 2 sputum culture converted to negative. The 4-month arm relapse rate decreased to 7% but was still significantly worse than the 6-month arm (1.6%, P<0.01).  We hypothesize that PET/CT characteristics at baseline, PET/CT changes at one month, and markers of residual bacterial load will identify patients with tuberculosis who can be cured with 4 months (16 weeks) of standard treatment.Methods: This is a prospective, multicenter, randomized, phase 2b, noninferiority clinical trial of pulmonary tuberculosis participants. Those eligible start standard of care treatment. PET/CT scans are done at weeks 0, 4, and 16 or 24. Participants who do not meet early treatment completion criteria (baseline radiologic severity, radiologic response at one month, and GeneXpert-detectable bacilli at four months) are placed in Arm A (24 weeks of standard therapy). Those who meet the early treatment completion criteria are randomized at week 16 to continue treatment to week 24 (Arm B) or complete treatment at week 16 (Arm C). The primary endpoint compares the treatment success rate at 18 months between Arms B and C.Discussion: Multiple biomarkers have been assessed to predict TB treatment outcomes. This study uses PET/CT scans and GeneXpert (Xpert) cycle threshold to risk stratify participants. PET/CT scans are not applicable to global public health but could be used in clinical trials to stratify participants and possibly become a surrogate endpoint. If the Predict TB trial is successful, other immunological biomarkers or transcriptional signatures that correlate with treatment outcome may be identified. TRIAL REGISTRATION: NCT02821832

    Long-acting formulations for the treatment of latent tuberculous infection: opportunities and challenges

    Get PDF
    Long-acting/extended-release drug formulations have proved very successful in diverse areas of medicine, including contraception, psychiatry and, most recently, human immunodeficiency virus (HIV) disease. Though challenging, application of this technology to anti-tuberculosis treatment could have substantial impact. The duration of treatment required for all forms of tuberculosis (TB) put existing regimens at risk of failure because of early discontinuations and treatment loss to follow-up. Long-acting injections, for example, administered every month, could improve patient adherence and treatment outcomes. We review the state of the science for potential long-acting formulations of existing tuberculosis drugs, and propose a target product profile for new formulations to treat latent tuberculous infection (LTBI). The physicochemical properties of some anti-tuberculosis drugs make them unsuitable for long-acting formulation, but there are promising candidates that have been identified through modeling and simulation, as well as other novel agents and formulations in preclinical testing. An efficacious long-acting treatment for LTBI, particularly for those co-infected with HIV, and if coupled with a biomarker to target those at highest risk for disease progression, would be an important tool to accelerate progress towards TB elimination

    Mycobacterium tuberculosis Growth following Aerobic Expression of the DosR Regulon

    Get PDF
    The Mycobacterium tuberculosis regulator DosR is induced by multiple stimuli including hypoxia, nitric oxide and redox stress. Overlap of these stimuli with conditions thought to promote latency in infected patients fuels a model in which DosR regulon expression is correlated with bacteriostasis in vitro and a proxy for latency in vivo. Here, we find that inducing the DosR regulon to wildtype levels in aerobic, replicating M. tuberculosis does not alter bacterial growth kinetics. We conclude that DosR regulon expression alone is insufficient for bacterial latency, but rather is expressed during a range of growth states in a dynamic environment

    Ultralong C100 Mycolic Acids Support the Assignment of Segniliparus as a New Bacterial Genus

    Get PDF
    Mycolic acid-producing bacteria isolated from the respiratory tract of human and non-human mammals were recently assigned as a distinct genus, Segniliparus, because they diverge from rhodococci and mycobacteria in genetic and chemical features. Using high accuracy mass spectrometry, we determined the chemical composition of 65 homologous mycolic acids in two Segniliparus species and separately analyzed the three subclasses to measure relative chain length, number and stereochemistry of unsaturations and cyclopropyl groups within each class. Whereas mycobacterial mycolate subclasses are distinguished from one another by R groups on the meromycolate chain, Segniliparus species synthesize solely non-oxygenated α-mycolates with high levels of cis unsaturation. Unexpectedly Segniliparus α-mycolates diverge into three subclasses based on large differences in carbon chain length with one bacterial culture producing mycolates that range from C58 to C100. Both the overall chain length (C100) and the chain length diversity (C42) are larger than previously seen for mycolic acid-producing organisms and provide direct chemical evidence for assignment of Segniliparus as a distinct genus. Yet, electron microscopy shows that the long and diverse mycolates pack into a typical appearing membrane. Therefore, these new and unexpected extremes of mycolic acid chemical structure raise questions about the modes of mycolic acid packing and folding into a membrane

    Healthcare-associated viral and bacterial infections in dentistry

    Get PDF
    Infection prevention in dentistry is an important topic that has gained more interest in recent years and guidelines for the prevention of cross-transmission are common practice in many countries. However, little is known about the real risks of cross-transmission, specifically in the dental healthcare setting. This paper evaluated the literature to determine the risk of cross-transmission and infection of viruses and bacteria that are of particular relevance in the dental practice environment. Facts from the literature on HSV, VZV, HIV, Hepatitis B, C and D viruses, Mycobacterium spp., Pseudomonas spp., Legionella spp. and multi-resistant bacteria are presented. There is evidence that Hepatitis B virus is a real threat for cross-infection in dentistry. Data for the transmission of, and infection with, other viruses or bacteria in dental practice are scarce. However, a number of cases are probably not acknowledged by patients, healthcare workers and authorities. Furthermore, cross-transmission in dentistry is under-reported in the literature. For the above reasons, the real risks of cross-transmission are likely to be higher. There is therefore a need for prospective longitudinal research in this area, to determine the real risks of cross-infection in dentistry. This will assist the adoption of effective hygiene procedures in dental practice

    Methylated HBHA Produced in M. smegmatis Discriminates between Active and Non-Active Tuberculosis Disease among RD1-Responders

    Get PDF
    A challenge in tuberculosis (TB) research is to develop a new immunological test that can help distinguish, among subjects responsive to QuantiFERON TB Gold In tube (QFT-IT), those who are able to control Mtb replication (remote LTBI, recent infection and past TB) from those who cannot (active TB disease). IFN-\u3b3 response to the Heparin-binding-hemagglutinin (HBHA) of Mtb has been associated with LTBI, but the cumbersome procedures of purifying the methylated and immunological active form of the protein from Mtb or M. bovis Bacillus Calmette et Guerin (BCG) have prevented its implementation in a diagnostic test. Therefore, the aim of the present study was to evaluate the IFN-\u3b3 response to methylated HBHA of Mtb produced in M. smegmatis (rHBHAms) in individuals at different stages of TB who scored positive to QFT-IT

    An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis

    Get PDF
    Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M. tuberculosis), is a major cause of morbidity and mortality worldwide and efforts to control TB are hampered by difficulties with diagnosis, prevention and treatment 1,2. Most people infected with M. tuberculosis remain asymptomatic, termed latent TB, with a 10% lifetime risk of developing active TB disease, but current tests cannot identify which individuals will develop disease 3. The immune response to M. tuberculosis is complex and incompletely characterized, hindering development of new diagnostics, therapies and vaccines 4,5. We identified a whole blood 393 transcript signature for active TB in intermediate and high burden settings, correlating with radiological extent of disease and reverting to that of healthy controls following treatment. A subset of latent TB patients had signatures similar to those in active TB patients. We also identified a specific 86-transcript signature that discriminated active TB from other inflammatory and infectious diseases. Modular and pathway analysis revealed that the TB signature was dominated by a neutrophil-driven interferon (IFN)-inducible gene profile, consisting of both IFN-γ and Type I IFNαβ signalling. Comparison with transcriptional signatures in purified cells and flow cytometric analysis, suggest that this TB signature reflects both changes in cellular composition and altered gene expression. Although an IFN signature was also observed in whole blood of patients with Systemic Lupus Erythematosus (SLE), their complete modular signature differed from TB with increased abundance of plasma cell transcripts. Our studies demonstrate a hitherto under-appreciated role of Type I IFNαβ signalling in TB pathogenesis, which has implications for vaccine and therapeutic development. Our study also provides a broad range of transcriptional biomarkers with potential as diagnostic and prognostic tools to combat the TB epidemic

    Fexinidazole – A New Oral Nitroimidazole Drug Candidate Entering Clinical Development for the Treatment of Sleeping Sickness

    Get PDF
    This article describes the preclinical profile of fexinidazole, a new drug candidate with the potential to become a novel, oral, safe and effective short-course treatment for curing both stage 1 and 2 human African trypanosomiasis and replace the old and highly problematic treatment modalities available today. Fexinidazole is orally available and rapidly metabolized in two metabolites having equivalent biological activity to the parent and contributing significantly to the in vivo efficacy in animal models of both stage 1 and 2 HAT. Animal toxicology studies indicate that fexinidazole has an excellent safety profile, with no particular issues identified. Fexinidazole is a 5-nitroimidazole and, whilst it is Ames-positive, it is devoid of any genetic toxicity in mammalian cells and therefore does not pose a genotoxic risk for use in man. Fexinidazole, which was rediscovered through a process of compound mining, is the first new drug candidate for stage 2 HAT having entered clinical trials in thirty years, and has the potential to revolutionize therapy of this fatal disease at a cost that is acceptable in the endemic regions

    Metabolome Based Reaction Graphs of M. tuberculosis and M. leprae: A Comparative Network Analysis

    Get PDF
    BACKGROUND: Several types of networks, such as transcriptional, metabolic or protein-protein interaction networks of various organisms have been constructed, that have provided a variety of insights into metabolism and regulation. Here, we seek to exploit the reaction-based networks of three organisms for comparative genomics. We use concepts from spectral graph theory to systematically determine how differences in basic metabolism of organisms are reflected at the systems level and in the overall topological structures of their metabolic networks. METHODOLOGY/PRINCIPAL FINDINGS: Metabolome-based reaction networks of Mycobacterium tuberculosis, Mycobacterium leprae and Escherichia coli have been constructed based on the KEGG LIGAND database, followed by graph spectral analysis of the network to identify hubs as well as the sub-clustering of reactions. The shortest and alternate paths in the reaction networks have also been examined. Sub-cluster profiling demonstrates that reactions of the mycolic acid pathway in mycobacteria form a tightly connected sub-cluster. Identification of hubs reveals reactions involving glutamate to be central to mycobacterial metabolism, and pyruvate to be at the centre of the E. coli metabolome. The analysis of shortest paths between reactions has revealed several paths that are shorter than well established pathways. CONCLUSIONS: We conclude that severe downsizing of the leprae genome has not significantly altered the global structure of its reaction network but has reduced the total number of alternate paths between its reactions while keeping the shortest paths between them intact. The hubs in the mycobacterial networks that are absent in the human metabolome can be explored as potential drug targets. This work demonstrates the usefulness of constructing metabolome based networks of organisms and the feasibility of their analyses through graph spectral methods. The insights obtained from such studies provide a broad overview of the similarities and differences between organisms, taking comparative genomics studies to a higher dimension
    corecore