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Abstract (50 words) 
 
 
M. tuberculosis is a facultative anaerobe and its characteristic pathological hallmark, 

the granuloma, exhibits hypoxia in humans and in most experimental models. Thus 

the host and bacillary adaptation to hypoxia is of central importance in understanding 

pathogenesis and thereby to derive new drug treatments and vaccines.  
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1. Introduction 

Since tuberculosis (TB) was declared a global health emergency in 1993 (1) a number 

of important control efforts have led to a fall of TB-associated mortality and the 

saving of 45 million lives (2). However, up to a third of the world's population is 

estimated latently infected with Mycobacterium tuberculosis (Mtb), serving as a 

reservoir for many of the estimated 9·6 million people who developed TB worldwide 

in 2014, leading to 1·5 million deaths. Thus, TB now ranks alongside HIV as a 

leading cause of death worldwide, and the rate of HIV-TB co-infection worldwide in 

2014 was 12% (2).  

 

Mtb is transmitted by the cough of an infected person (aerosolized) and inhaled into 

the alveoli of a new host. This process can lead to three possible outcomes: i) a 

minority develop active primary progressive TB disease and develop a detectable but 

ineffective acquired immune response (immune sensitization), ii) the majority develop 

latent TB infection that is contained throughout their life by an effective acquired 

immune response, and iii) a small proportion of those latently infected develop post-

primary TB as a result of reactivation of their latent infection, which can be triggered 

by immune suppression such as HIV-1 infection (3). Latent Mtb infection (LTBI) is 

defined solely by evidence of immune sensitization by mycobacterial proteins: a 

positive result in either the tuberculin skin test (TST) or an in vitro interferon gamma 

release assay (IGRA), in the absence of clinical signs and symptoms of active disease 

(4). However, TST and IGRA do not distinguish latent TB from active disease, and 

neither have high accuracy to predict subsequent active tuberculosis (5). Better 

understanding of the biology of Mtb and of LTBI is necessary in order to develop 
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better diagnostic methods and treatment options. However, the interplay between Mtb 

and the human host is incompletely understood.  

 

Conventionally, LTBI is conceived as Mtb remaining in an inactive, stationary phase 

in the granuloma as a stable latent population of bacilli capable of surviving under 

stressful conditions generated by the host (6). Alternatively, viable non-replicating 

persistent Mtb reside within alveolar epithelial cells in the lung, with reactivation 

being associated with the upregulation of resuscitation promoting factors within MTB 

and the escape of newly dividing microorganisms into alveoli and bronchi (7). Recent 

advances in imaging technologies such as computed tomography (CT) combined with 

positron emission tomography (PET) have aided the evolution of a concept that LTBI 

encompasses a diverse range of individual states extending from sterilizing immunity 

in those who have completely cleared the infection via an effective acquired immune 

response, to subclinical active disease in those who harbor actively replicating 

bacteria in the absence of clinical symptoms, through to active TB disease with 

clinical symptoms (8, 9). Thus, it has been proposed that Mtb infection may be better 

viewed as a continuous spectrum of immune responses, mycobacterial metabolic 

activity, and bacillary numbers. In this model the impact of HIV infection can be 

conceptualized as a shift towards poor immune control, higher mycobacterial 

metabolic activity, and greater organism load, with subsequently increased risk of 

progression to active disease (3, 8-11).  

 

Direct measurement of lesional oxygen tension in rabbits (12), and indirect 

measurements in non-human primates and humans using hypoxia-sensitive probes 

demonstrate many TB lesions in vivo are hypoxic (13). Hypoxia is only one of the 
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many different stresses Mtb encounters in the granuloma and in vitro and animal 

models are limited in the extent to which they recapitulate the multifactorial 

environment created by the host to arrest mycobacterial growth. Nonetheless, many 

conceptual advances have been achieved in recent years in our understanding of 

mycobacterial physiology under low oxygen conditions, particularly in the areas of 

gene regulation, metabolism, and energy homeostasis. 

 

2. M. tuberculosis and hypoxia: in vitro studies of bacterial response and 

adaptation 

The existence of a coordinated and inducible response of Mtb to low oxygen 

conditions was initially revealed by Wayne and colleagues, culminating in the now 

widely employed in vitro “Wayne” model of hypoxia-induced dormancy (14). In this 

system, bacteria grown in liquid medium in sealed tubes with limited head space 

gradually deplete oxygen supplies, leading to a non-replicating state of persistence 

(NRP) characterized by reduced metabolism and increased drug tolerance. In this state 

cellular viability can remain unchanged for weeks to months, with synchronized 

replication resuming following culture reaeration. The inferred similarities between 

bacteria grown in vitro under hypoxic conditions and clinical cases of latent infection 

have made the Wayne model a key tool for investigating the molecular basis of 

mycobacterial dormancy. A key caveat is that many of these studies were performed 

using laboratory strains of Mtb that have been passaged aerobically over many years, 

these findings therefore need to be revisited using recent clinical isolates. 

 

2.1 Gene regulation, hypoxia sensing 
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Early work on gene expression analysis of Mtb undergoing hypoxic challenge 

identified a suite of almost 50 genes that were significantly and consistently 

upregulated relative to aerobic controls. Further work identified that this regulon was 

controlled by a transcription factor subsequently named DosR (Dormancy Survival 

Regulator), the activation of which was mediated through two classic two-component 

system-type transmembrane sensor histidine kinases, DosS and DosT (15). Activation 

of DosS and DosT in turn is still the subject of some debate, however strong evidence 

suggests they sense cellular redox status and dissolved oxygen concentration, 

respectively, via their heme prosthetic groups (16). Genes within the DosR regulon 

are involved in multiple processes including central metabolism, energy generation 

and gene regulation; however the majority are of unknown function. Interestingly, 

despite its dominance of gene expression under hypoxia, multiple studies have 

demonstrated that genetic inactivation of dosR results in a relatively mild loss of 

viability under hypoxia in vitro (2-3 logs decrease in CFUs after 30-50 days 

incubation) (17-19) and varying responses in vivo in multiple animal models (20). 

Further evidence suggests these effects may be dependent on the exact hypoxia 

model, strain, animal model, and growth media used (17, 18, 20, 21). Furthermore, 

upregulation of the DosR regulon is not specific to hypoxic challenge (it is also 

activated by NO and CO (22, 23); nor is it uniquely controlled by DosST sensing 

(there is significant cross-talk with other TCS regulons (24).  Nonetheless, DosR and 

its regulon are modestly upregulated in sputum from active TB cases (25), supporting 

a role for the dormancy survival response in infection.  

 

Outside of the DosR response, other transcriptional regulators have been identified as 

playing significant roles under hypoxic conditions, although precise functions have 
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not been determined (25, 26). Galagan and colleagues used ChIP-Seq data from 

strains overexpressing various transcription factors to develop a detailed map of 

regulatory interactions in Mtb under hypoxia (26). They identified Rv0081, itself part 

of the DosR regulon, as a major regulatory hub controlling multiple hypoxia-relevant 

processes. Interestingly, the M. smegmatis homologue of the Rv0079 - a gene within 

the same operon as Rv0081 - has also been shown to have functional importance in 

this bacterium during hypoxia in stabilizing ribosomes in the 70S form, in contrast to 

the higher order structures seen in many enteric bacteria grown under similar 

conditions (27). It is yet to be determined if the same effect is observed in virulent 

Mycobacteria. Meanwhile, other studies have found that while the DosR regulon is 

strongly induced at the initiation of anaerobiosis, this level is not maintained 

throughout longer, sustained periods of hypoxia and upregulation of a separate set of 

genes, termed the enduring hypoxia response (EHR), appears to dominate at these 

time points (18, 28); however both responses appear to interact at the regulatory level 

(26). The relevance of the EHR in overall bacterial adaptation to hypoxic conditions 

has yet to be determined.  

 

The roles of gene regulation at the posttranslational level have also been assessed in 

hypoxic Mtb, and both proteases and Serine/Threonine Protein Kinases (STPKs) have 

been found to play functional and essential roles (29, 30). For example, a regulator of 

the Mtb Clp protease, Rv2745c, was identified as being required for re-adaptation of 

hypoxia-challenged Mtb to normoxic conditions: while viability under hypoxia of an 

Rv2745c null mutant was identical to wild-type, much lower viability of the mutant 

strain was observed upon reaeration (30). This data complements other studies 
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showing an enrichment of protease and chaperone related genes during reaeration, 

relative to those observed under hypoxic conditions (31, 32). 

 

2.2 Metabolism 

A reduction in net carbon flux is a hallmark of hypoxia-induced dormancy in Mtb, 

suggesting a need to conserve carbon and energy sources for prolonged survival and 

later resumption of growth when conditions improve. Consistent with the 

dormancy/hibernation programs of other organisms, Mtb accumulates intracellular 

triacylglycerides (TAGs) under hypoxia, which correlates with increased expression 

of the DosR-regulated TAG biosynthetic gene tgs (33). Switching metabolism 

towards lipid storage may be a major regulator of metabolic slowdown by forcing 

acetyl-coA flux away from the energy generating catabolic TCA cycle and into 

anabolic lipid biosynthesis, as evidenced by enhanced metabolic and replication rates 

of tgs mutants in the initial stages of hypoxia relative to wild-type bacteria (34). Also, 

as previously observed in Mtb grown in vivo, upregulation of the isocitrate lyase (icl) 

transcript, protein, and activity levels are also observed under hypoxia (32, 33). The 

canonical metabolic role of Icl is to allow growth on fatty acids as the sole carbon 

source, suggesting a role for Icl in metabolism of stored TAGs as a carbon and energy 

source under these conditions. This is supported by upregulation of methylcitrate 

cycle and methylmalonyl CoA pathway genes, enzyme levels, and metabolic 

intermediates, and the mixed upregulation/essentiality of the gluconeogenic PfkA/B 

genes during hypoxia and reaeration, consistent with a predominantly fatty acid-based 

diet (21, 26, 32, 33). However, under hypoxia Icl appears to have multiple roles, as Icl 

null mutants grown on glycolytic carbon sources are significantly growth impaired at 

low oxygen concentrations relative to WT strains (35). Icl may be involved in 
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conservation of carbon units and/or maintaining optimal NADH/NAD+ ratios under 

the reducing conditions of hypoxia by bypassing the two oxidative and CO2 releasing 

TCA cycle steps, or alternatively in the maintenance of the membrane potential and/or 

the proton motive force (PMF) via secretion of Icl-produced succinate through a 

succinate/H+ symport system (35, 36). Indeed, large amounts of succinate are found to 

accumulate extracellularly in Mtb grown anaerobically and Icl contributes 

significantly to this effect (35-37). Elsewhere, upregulation of other fatty-acid 

biosynthetic and catabolic genes have been observed in Mtb grown under hypoxia 

(fas, kasA, cholesterol catabolism regulation, gluconeogenic pckA) (26, 33, 37). 

Interestingly, like Icl, many of these genes are also induced upon NO stimulation and 

in vivo, in mouse lung infection, suggesting that a metabolic shift towards lipid 

metabolism is a general stress response rather than being specific to hypoxia or due to 

the nature of the provided/available carbon source (33). 

 

Hypoxia-challenged Mtb also substantially down regulate many genes involved in the 

oxidative direction of the TCA cycle (malate dehydrogenase, citrate synthase, 

aconitase, putative α-ketoglutarate decarboxylase (33, 37)) and upregulate expression 

of several members of the reductive direction (fumarate reductase, FR;, PEP 

carboxykinase and malic enzyme (37)). This suggests a role for the reductive TCA 

cycle under hypoxia, with fumarate reduction as a fermentative endpoint, and 

provides an alternative explanation for the observed accumulation of succinate under 

these conditions (37). The relative contributions of Icl and fumarate reduction to the 

production of succinate under hypoxia is debated, but is likely influenced by the 

available carbon source (i.e. glycolytic vs fatty acid (35-37)).  
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Icl catalysis also releases glyoxylate, a metabolite toxic to Mtb cells if left to 

accumulate. The canonical metabolic fate of glycoxylate is condensation with acetyl-

CoA to form malate catalyzed by GlcB, however GlcB activity is down-regulated in 

hypoxic Mtb (33). Instead, glycine levels are seen to increase in an Icl-dependent 

manner (35, 36), inferring subsequent reduction of glyoxylate to glycine as an 

alternative detoxification step under these conditions. Consistent with this hypothesis, 

expression and activity of glycine dehydrogenase increases substantially in hypoxic 

Mtb (14). Glyoxylate reduction is also a possible fermentative mechanism of 

regenerating oxidized cofactors during the reductive stress of hypoxia.  

 

Less is known about peripheral metabolic pathways and biosynthesis of other 

essential compounds and macromolecules under hypoxia. There appears to be 

growing evidence for shifts in nitrogen metabolism, particularly influenced by the 

large amount of nitrogen syphoned into the sequestration of glyoxylate (as glycine), 

changes in glutamine biosynthesis (33), observations of aspartate secretion (36), 

polyglutamate/glutamine biosynthesis (38), as well as a possible assimilatory role for 

the DosR-regulated nitrite reductase (39). 

 

 

2.3 Energy generation 

Upon entry into hypoxia mycobacteria experience significant decreases in ATP levels 

and increases in their NADH/NAD+ ratio, indicative of a blocked electron transport 

system (ETS) and consistent with depleted stores of terminal electron acceptors 

(TEAs) (40). However, ATP levels remain non-zero throughout hypoxic challenge, 

and de novo ATP synthesis via the ETS (as opposed to via substrate level 
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phosphorylation) is a strict requirement for bacterial survival under these conditions 

(40). This suggests that, despite cessation of replication, Mtb maintains both an 

energized membrane and constitutive ATP production even in the absence of 

molecular oxygen. Interestingly, transcriptional changes under hypoxia demonstrate a 

functional switch to the use of less energy efficient respiratory complexes, including 

upregulation of the non-proton-translocating type II NADH dehydrogenase (ndh; 

essential for survival under hypoxia (40)) and cytochrome bd oxidase (cydAB) and 

down regulation of the proton-pumping type I NADH dehydrogenase (nuo (32)). The 

survival benefit in uncoupling electron transport from generation of the proton motive 

force (PMF) suggests that cofactor recycling is more important than ATP generation 

under these conditions, and/or that the PMF is already sufficiently maintained by 

alternative measures (e.g. succinate, aspartate secretion, nitrate reduction; see 

previous and later sections).  

 

Succinate dehydrogenase, which physically links the TCA cycle and ETS, has 

recently been shown to play a key but enigmatic role in mycobacterial adaptation to 

hypoxic conditions. Genetic deletion of succinate dehydrogenase (SDH) 1 (sdh-1; 

Rv0247c-0249c), the major aerobic SDH, abolishes the ability of bacteria to regulate 

oxygen consumption (continual high respiratory rates, significantly higher membrane 

potential relative to wild-type) when approaching hypoxia which subsequently led to 

increased bacterial death at later stages of anaerobiosis (41). However, other evidence 

suggests that Sdh-2 (a homologue of sdh-1; Rv3316-3319) may have a key role 

during hypoxia, either as a canonical succinate dehydrogenase/fumarate reductase 

(34, 37) and/or in maintenance of the PMF (protonophore treatment of an sdh-2 null 

mutant under hypoxia is lethal (41)). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 12

 

2.4 Quinones 

While certain proteinaceous modules of the ETS appear to differ between hypo- and 

normoxia, quinone electron carriers are indispensable across all conditions. 

Accordingly, inhibition of menaquinone (MQ) biosynthesis is cidal to anaerobic 

bacteria (16, 42). Intriguingly, menaquinone:menaquinol (MQ:MQH2) homeostasis 

under hypoxia may also play a larger regulatory role in addition to electron transport, 

including in activation of the DosS sensor kinase of the DosR system (16) and 

regulation of SDH-1 catalytic activity (41). Also, total MQ pool sizes are reduced 

under hypoxia, and addition of exogenous MQs lowers cell viability (16), while the 

degree of saturation of the MQ isoprenyl tail also changes under low oxygen 

conditions (16, 43). Deletion of the gene that reduces the MQ isoprenoid side chain 

results in reduction of efficiency of electron transport and compromised survival in 

macrophages. The reduced isoprenoid side chain seems highly unlikely to affect the 

intrinsic redox behavior of this cofactor suggesting that this modification tunes the 

two forms of MQ to interact with different redox partners and that these therefore 

have discrete biological functions (44). Recently, a polyketide synthase (PKS) 

biosynthetic gene cluster was identified in M. smegmatis that was upregulated under 

hypoxia and coded for the production of novel benzoquinoid compounds. Genetic 

deletion led to lower viability under hypoxic conditions, which could be rescued upon 

addition of exogenous synthetic benzoquinones. It is unknown whether Mtb carries 

the same biosynthetic capabilities. The benefit of such alternative electron carriers 

under hypoxic conditions is unknown, but may be related to the lower potential 

difference between oxidized and reduced forms of the benzoquinone moiety relative 

to the napthoquinone bicyclic ring system of menaquinones (45). 
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In the absence of molecular oxygen many facultative anaerobes can switch to 

alternative external TEAs to sustain respiration. Mtb contains all the genetic elements 

necessary for reduction of nitrate and nitrite, and both of these activities have been 

detected in growing cells (39, 46). Nitrite production increases significantly in 

anaerobically grown Mtb, even though neither expression of the NarGHJI (nitrate 

reductase) operon nor corresponding catalytic activity in whole cell extracts is 

significantly different between bacteria grown aerobically or anaerobically. The 

nitrate import/nitrite export NarK2X operon, however, is part of the DosR regulon 

and is strongly upregulated under hypoxia (32, 46), suggesting that NarGHJI activity 

is modified post-translationally following activation of the nitrate import machinery 

(or directly following oxygen depletion). Interestingly, NarG null mutants display no 

fitness or viability cost compared to wild-type strains when grown under hypoxic 

conditions (46, 47), casting doubt on the functional importance of nitrate reduction 

within the context of the ETS under low oxygen conditions. Similarly, the nitrite 

reductase NirBD only appears to be expressed and have physiological importance 

when nitrate or nitrite is supplied as the sole nitrogen source, whether under aerobic 

or anaerobic conditions (39, 47). However, adding exogenous nitrate to the growth 

medium of anaerobic bacteria abolishes the aforementioned succinate secretion, 

restores ATP levels, lowers the NADH/NAD+ ratio, and also buffers against the -

cidal effects of mild acid challenge, but only in the presence of an intact NarGHJI 

operon (35, 47). Therefore, nitrate reduction may occupy a non-essential but 

conditionally important role, independent of nitrogen assimilation, in mycobacterial 

survival of hypoxic challenge by aiding in maintenance of both the PMF (in a similar 

role to succinate secretion) and ATP levels.  
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3. The host response to hypoxia 

3.1 Macrophage immune mechanisms during hypoxia 

Macrophages undergo substantial phenotypic change when exposed to reduced 

oxygen tension and several lines of evidence suggest that hypoxia modulates central 

effector functions of this key innate immune cell. The restriction of local oxygen 

supply was shown to lead to an increased formation of cytokines, chemokines (48, 49) 

proangiogenic factors (50) and eicosanoids (51). Human mononuclear cells and 

macrophages facing hypoxic conditions secrete significantly enhanced amounts of the 

major pro-inflammatory cytokines IL-1β and TNF (52, 53). Various studies have 

shown that there is a hypoxia-mediated increase in innate immune cell migration into 

tumor tissue (54) and other hypoxia-related disease settings such as rheumatoid 

arthritis (55) and atherosclerosis (56). During migration into inflammatory tissue, 

monocytes/macrophages encounter a gradual decrease in oxygen availability. The 

increased migration may be due to a hypoxia-induced chemokine gradient or due to 

recently observed HIF-1α dependent, chemokine independent accelerated migratory 

capacity of macrophages, when oxygen tension drops below a certain value (57). 

 

HIF-1α plays a key role for macrophages to adapt to low oxygen tension. Cell-

specific deletion of HIF-1α or transient gene silencing in macrophages reduces 

inflammatory responses with regard to macrophage motility and invasiveness, 

phagocytic capacity and most importantly bacterial killing (58, 59). However also 

under normoxic conditions HIF-1α is induced upon bacterial infection (60). It plays 

an important role for the production of key immune effector molecules, including 

granule proteases, antimicrobial peptides, TNF and nitric oxide (NO). The latter is of 
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major importance since antibacterial immunity critically depends on NO production 

through Nitric Oxide Synthase-2 (NOS2) in macrophages of infected mice (60). The 

importance of HIF-1α for bacteria induced NOS2 expression has been also 

demonstrated in studies using macrophages stimulated with lipopolysaccharide (LPS) 

(61), lipoteichoic acid (62) and mycobacteria derived trehalose dimycolate (TDM) 

(63). Notably, Mi et al showed that pattern recognition receptor dependent stimulation 

of murine macrophages under hypoxia leads to enhanced NOS2 expression when 

compared to normoxic conditions (64), indicating that cell activation by conserved 

microbial structures is augmented under hypoxic conditions. Indeed, there is a close 

relationship between HIF-1α and a central transcriptional regulator for innate 

immunity and inflammatory processes (65) the transcription factor NF-kappaB (NF-

kB) (66-68). It was shown that hypoxia itself activates NF-kB through decreased 

Prolyl hydroxylase-1-dependent hydroxylation of IkappaB kinase-beta (69). In 

addition TLR4 activation enhances HIF-1α transcript levels and thus promotes the 

expression of NF-kB -regulated cytokines in macrophages (70). The key role of HIF-

1α for the production of central immune effector molecules is directly linked to 

reduction of cellular ATP levels (58). Under hypoxic conditions HIF-1α promotes the 

switch to glycolysis so that these cells can continue to produce ATP when oxygen is 

limited (71). This change in cellular energy metabolism (72, 73) is also observed in 

LPS-stimulated macrophages, similar to hypoxic conditions: leading to a metabolic 

shift towards glycolysis away from oxidative phosphorylation (72, 74). 

 

This phenomenon of aerobic glycolysis in immune cells, resembling the Warburg 

effect in tumors (75), seems to be necessary for a vigorous and robust response upon 

classical activation of macrophages (also referred to as M1), though this metabolic 
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transition results in an abating Krebs cycle which is coupled to a less efficient energy 

production. Moreover, this metabolic reprogramming affects the production of critical 

metabolites such as succinate, itaconic acid and nitric oxide (NO), all of which have 

key effector functions during infections (76-79). During activation macrophages use 

other metabolic pathways to satisfy their need for precursor molecules. For example, 

murine macrophages use an aspartate-arginosuccinate shunt to maintain Interleukin-6 

and NO production during M1 activation (79). Huang et al showed that cell-intrinsic 

lysosomal lipolysis is essential for alternative activation (M2) of macrophages (73), 

further substantiating the link between inflammatory activation and metabolic 

reprogramming. These studies not only show that inflammatory activation modulates 

cellular metabolism, but also suggest that the metabolic pathways themselves alter 

macrophage effector functions dramatically (73, 79). Intriguingly, the Krebs cycle 

metabolite succinate serves as an inflammatory signal in macrophages, enhancing IL-

1β production by stabilizing HIF-1α (76). This study, and also the work of Haschemi 

et al. implicating the carbohydrate kinase-like protein CARKL as an immune 

modulator in macrophages, shows that metabolic reprogramming is required for full 

macrophage effector function (80). However, it also suggests that a manipulation of 

biosynthetic pathways or changes in metabolite levels may affect immune cell 

function, as has been shown for certain fatty acids in dendritic cells (81). 

 

3.2 The Macrophage/Mtb interaction in hypoxia 

Mtb infects macrophages, dendritic cells and neutrophils, with macrophages most 

extensively studied. Infection with Mtb leads to a wide array of cellular responses, 

most of which have been studied under normoxia. The evolutionary success of 

virulent mycobacteria likely depends on cross-species-conserved mechanisms 
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operative in infected cells (82), which allow bacillary replication and persistence by 

fine-tuning pro- and anti-inflammatory activity (83). Limited inflammation results in 

improper activation of macrophages, defective antimicrobial activity, and intracellular 

survival of the bacilli. Excessive inflammation promotes recruitment of additional 

Mtb-permissive cells, cell death, and extracellular replication of the bacilli (84). Most 

studies indicate that reduced tissue oxygen promotes innate immune cell functions. 

From a host perspective, by affecting the fine-tuned inflammatory balance within 

granulomas, hypoxia could do both, either improve the immunity against Mtb, or lead 

to an impaired growth restriction by causing excessive inflammation and 

immunopathology. 

 

Human monocyte derived macrophages cultured in 5% oxygen, corresponding to the 

physiological tissue concentration, permitted significantly less growth than those 

cultured at the 20% oxygen levels of ambient air (85). Meylan et al. concluded that 

macrophages cultured at low oxygen tension may differ from their counterparts 

cultured at a higher oxygen level in that their intracellular milieu is less supportive of 

mycobacterial growth. A low pO2, which is closer to tissue conditions, did not affect 

the growth of free-living bacteria but strikingly reduced the growth of intracellular 

mycobacteria. The growth inhibitory effect was not due to a putative differential 

response to IFN-γ or TNF-α at low oxygen conditions, but was associated with a shift 

from oxidative toward glycolytic metabolism, consistent with earlier work in which 

macrophages cultured at low pO2 showed a metabolic shift toward glycolysis (86). 

This was an early hint that metabolic changes contribute to Mtb growth control in 

macrophages. Recent data now show that glycolysis is involved in Mtb growth 

control in human and murine primary macrophages (87). A third study also clearly 
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demonstrated significantly decreased growth of Mtb under hypoxia (1% O2), when 

compared to human macrophages kept at 20% (88). Importantly, macrophage 

viability, phagocytosis of live Mtb bacteria and Mtb-induced cytokine release were 

not affected. It has been shown that hypoxia also leads to the induction of autophagy 

(89), an important mechanism known to limit the growth of intracellular pathogens 

including Mtb (90). However there are no data that imply a functional role for this 

anti mycobacterial effector mechanism under hypoxic conditions. Thus the molecular 

mechanisms limiting Mtb growth under hypoxic conditions are still incompletely 

understood. At the same time Mtb is thought to adapt to an intracellular lifestyle of 

non-replicating persistence (NRP) in which it is largely resistant to known 

bactericidal mechanisms of macrophages and many antimicrobials (91).  

 

This hypoxia-mediated control of Mtb replication is at the same time associated with 

a significant metabolic reprogramming of its host cell. Human macrophages cultured 

for 24 h under hypoxia (1% O2) accumulate triacylglycerols (TAG) in lipid droplets 

(92). The authors observed increased mRNA and protein levels of adipocyte 

differentiation-related protein (ADRP) also known adipophilin/perilipin 2, a key 

factor of lipid droplet formation (92). Exposure to hypoxia but also to conserved 

microbial structures decreased the rate of beta-oxidation, whereas the accumulation of 

triglycerides increased inside the host cell. This phenomenon has recently been 

attributed to a metabolic switch towards glycolysis (76) by simultaneously decreasing 

lipolysis and fatty acid oxidation (73). It appears this metabolic shift leading to lipid 

droplet formation is exploited by Mtb. Daniel et al. observed that human peripheral 

blood monocyte-derived macrophages and THP-1 derived macrophages incubated 

under hypoxia accumulate Oil Red O-stained lipid droplets containing TAG (93). The 
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authors were the first to study this effect in the context of Mtb infection. They 

demonstrated that inside hypoxic, lipid-laden macrophages, nearly half the Mtb 

population developed phenotypic tolerance to isoniazid, lost acid-fast staining and 

accumulated intracellular lipid droplets. The fatty acid composition of host and Mtb 

TAG were nearly identical suggesting that Mtb utilizes host TAG to accumulate 

intracellular TAG. Other groups suggested that Mtb actively induces this type of 

lipid-laden phenotype via targeted manipulation of host cellular metabolism resulting 

in the accumulation of lipid droplets in the macrophage (94). Mtb oxygenated mycolic 

acids (MA) trigger the differentiation of human monocyte-derived macrophages into 

foamy macrophages (95). Interestingly it has been observed that inhibition of 

autophagy leads to increased levels of TAG and lipid droplets, and pharmacological 

induction of autophagy leads to decreased levels of lipid droplets (96). This may be of 

functional relevance, since it was shown that Mtb uses a miRNA circuit to inhibit 

autophagy and promote fatty acid stores in lipid droplets to ensure its own 

intracellular survival (97). Lipid-loaded macrophages are found inside the hypoxic 

environment of the granuloma. They contain abundant stores of TAG and are thought 

to provide a lipid-rich microenvironment for Mtb (95, 98). Numerous studies have 

demonstrated that Mtb relies on fatty acids and also cholesterol as important nutrients 

during infection, which are used for energy synthesis, virulence factor expression, cell 

wall and outer membrane construction; and to limit metabolic stress (99-103). 

Moreover, the development of the lipid-rich caseum in the human TB granuloma has 

been shown to correlate with a realignment in host lipid metabolism within the 

granuloma, suggesting a pathogen-driven response leading to the pathology necessary 

for Mtb transmission (104). 
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3.3 The TB granuloma and hypoxia 

The formation of lung granulomas is the hallmark of Mtb infection. A granuloma can 

be defined as an inflammatory mononuclear cell infiltrate that, while capable of 

limiting growth of Mtb, also provides a survival niche from which the bacteria may 

disseminate. The tuberculosis lesion is highly dynamic and shaped by both, immune 

response elements and the pathogen (105). During disease the formation of necrotic 

(caseous) granuloma may occur. Necrotic granulomas have an outer lymphocyte cuff 

dominated by T and B cells and a macrophage-rich mid region that surrounds an 

amorphous center of caseous necrosis (106). In these characteristic lesions, 

mycobacteria often reside within necrotic tissue that has no obvious supply of oxygen 

(91). Indirect evidence links changes in oxygen tension with varying TB disease (28). 

Intriguingly tuberculosis infections preferentially occur in with the most oxygen-rich 

sites in the human body (107). In line with these data is the observation that within the 

lungs of patients failing TB chemotherapy, histological examination of different lung 

lesions revealed heterogeneous morphology and distribution of acid-fast bacilli (108). 

Both studies suggest that reduced levels of O2 may limit Mtb growth in vivo. It is 

presumed that Mtb resides in these regions in a slow growing or non-replicating form, 

due to limited availability and supply of oxygen and nutrients (109). 

 

A number of animal model systems including mice, guinea pigs, rabbits, zebrafish 

and non-human primates are used to research aspects of granuloma immunopathology 

in mycobacterial infections. The low dose aerosol model of experimental TB infection 

in mice has been valuable to define immunological mechanisms of protection against 

infection, the virulence of mycobacterial strains, or validating novel chemotherapeutic 

strategies against TB (110, 111). However mice infected with Mtb fail to produce 
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highly organized caseous or necrotic lesions and do not develop hypoxic regions 

within their infected lungs (12, 112) suggesting that standard mouse models of 

persistent tuberculosis may not be suitable for the study of the hypoxic response in  

Mtb infection. In contrast to mice tuberculous granulomas in guinea pigs, rabbits, 

nonhuman primates (12), and zebrafish (113) are hypoxic and are appropriate models 

to study the effect of low oxygen tension in Mtb infection. However three 

independent, recently developed mouse models may offer new opportunities to study 

these effects also in TB infected mice. Dermal TB infection of NOS-deficient mice 

results in development of classic human granuloma pathology when IFN-γ or TNF-α 

activity is blocked in vivo (114). Unlike BALB/c and C57Bl6 mice, C3HeB/FeJ mice 

infected with Mtb showed evidence of lesion hypoxia, fibrosis, liquefactive necrosis, 

and occasional cavity formation (115). Very recently aerosol Mtb infection of IL-13 

overexpressing mice resulted in pulmonary centrally necrotizing granulomas with 

multinucleated giant cells, a hypoxic rim and a perinecrotic collagen capsule, with an 

adjacent zone of lipid-rich, acid-fast bacilli-containing foamy macrophages, thus 

strongly resembling the pathology in human post-primary TB (116). Thus the use of 

human tissues or an appropriate animal model to study the host granulomatous 

response to Mtb is of ultimate importance.  

 

What are the characteristic features of macrophages in hypoxic conditions within the 

granulomatous lesion? Macrophages in granulomas are both antimycobacterial 

effector but also the host cell for Mtb. Detailed immunohistochemical analysis of 

granulomatous lesions from Mtb infected cynomolgus macaques, a non-human 

primate, using a combination of phenotypic and functional markers suggests that 

macrophages with anti-inflammatory phenotypes localized to outer regions of 
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granulomas, whereas the inner regions were more likely to contain macrophages with 

proinflammatory, presumably bactericidal, phenotypes. Active lesions display a 

gradient of anti- and pro-inflammatory phenotypes, with anti-inflammatory CD163+ 

iNOS+ Arg1 high macrophages on outer margins and proinflammatory CD11c+ 

CD68+ CD163dim iNOS+ eNOS+ Arg1low macrophages toward the center, thus making 

it possible to mount antibacterial responses safely away from uninvolved tissue. These 

data support the concept that granulomas have organized microenvironments that 

balance antimicrobial and anti-inflammatory responses to limit pathology in the lungs 

(106). This is consistent with a recent study demonstrating that inflammatory 

signaling in human tuberculosis granulomas is spatially organized (117). The authors 

applied laser-capture microdissection, mass spectrometry and confocal microscopy, to 

generate detailed molecular maps of human granulomas. It was observed that the 

centers of granulomas have a pro-inflammatory environment that is characterized by 

the presence of antimicrobial peptides, reactive oxygen species and proinflammatory 

eicosanoids. Conversely, the tissue surrounding the caseum has a comparatively anti-

inflammatory signature. If one relates these data to the spatial distribution of local 

oxgen tension within TB granuloma, there is a nearly perfect concordance between 

areas of hypoxia, necrosis, and a high degree of proinflammatory activities. In other 

words the highly hypoxic center is the focus of greatest antimicrobial activity, which 

is surrounded by an area of reduced proinflammatory activity and gradually 

increasing oxygen tension. It is of particular interest that foamy macrophages, which 

are key participants in both sustaining persistent bacteria and contributing to tissue 

pathology are located mainly in the interface region surrounding central necrosis (95). 

As a result of the complex host pathogen interplay foamy macrophages in the 
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interface region may reflect the perfect niche and prime location for Mtb to initiate a 

new round of infection. 

 

The development of hypoxia is also known to be a stimulus for vascularization (118). 

In TB it has been observed that cavitary TB patients presented patterns of low 

vascularization in the areas of peripheral infiltration, whereas tuberculoma lesions 

were always surrounded by highly vascularized tissue (119). This is consistent with 

the finding that progression to necrosis and caseation is associated with the formation 

of vascular epithelial growth factor (VEGF) by activated macrophages (120, 121). 

Indeed VEGF, a primary mediator of host vascularization, has been found to be 

induced in human tuberculosis patients (122). In another smaller study VEGF was 

postulated as a host marker to differentiate active TB from latent TB infection (123). 

A recent study showed that vascularization of zebrafish granulomas was accompanied 

by macrophage expression of VEGF. Most importantly, treatment of infected animals 

with a VEGFR antagonist led to dramatic reductions in vascularization and bacterial 

burdens, demonstrating that a granuloma-induced VEGF-mediated angiogenic 

program is beneficial to mycobacteria (113). Taken together, while hypoxia seems 

host protective at first sight, Mtb may exploit the hypoxia-induced host response to 

ensure its survival and transmission.  

 
 
4. The acquired immune response to hypoxia-inducible Mtb targets 
 
4.1 MTB antigen discovery 
 
Understanding the host immune responses following infection with MTB is essential 

to help design effective vaccines and identify diagnostic and prognostic immune 

biomarkers. Antigen discovery efforts have been a core activity in mycobacterial 
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research for several decades, facilitated by the availability of the genome sequence 

(124). Antigen discovery approaches include i) the use of algorithms for genome-

based prediction of immunodominant epitopes, ii) evaluation of candidate 

antigens/epitopes for T cell recognition, and iii) understanding the relationship 

between epitope specificity and the phenotype of the responding T cells. All these 

approaches rely on the assumption that the antigens of interest are expressed, 

translated and presented by infected cells, where they are recognised by T cells. While 

the MTB genome consists of close to 4000 genes, little is known about the MTB 

antigen repertoire that is actually expressed by the bacilli during infection of human 

cells. Sequencing the genomes of 21 strains, representative of the global diversity of 

the MTB complex showed, that the majority of the experimentally confirmed human 

T cell epitopes had little sequence variation, suggesting they are evolutionarily 

hyperconserved, implying that MTB might benefit from recognition by human T cells 

(125).  

 

However, this knowledge is biased by the methods used to experimentally confirm the 

human T cell epitopes: using IFN-gamma production as a read-out. IFN-gamma is the 

most established readout of cell mediated immune response assays and a hallmark of 

the Th1 type cellular immunity (126). The importance of the Th1 type immunity in 

controlling MTB infection has been established both in mice and humans (127). 

However, it may be an incomplete representation of the cytokine repertoire and 

functional response of T cells to MTB antigens, and we still do not have a validated 

immune correlate of protection from TB disease to aid antigen discovery and 

identification of vaccine candidates. Thus, antigens activating immune cells other than 

CD4+ and/or CD8+ T cells, producing cytokines other than IFN-gamma are less 
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widely explored (128). While a number of cytokines and chemokines are being 

evaluated as alternatives to IFN-gamma, data are still preliminary (129). Additionally, 

broadening antigen selection strategies is necessary, such as screening subdominant 

(cryptic) epitopes, which are not, or only weakly, recognised during natural immunity, 

but are able to induce immunity and protection against MTB challenge, as 

demonstrated in mouse models (130).  

 

4.2. Mtb biology driven antigen discovery leading to potentially infection stage 

specific antigens 

As indicated above, Mtb can adapt transcriptionally to a wide variety of 

environmental conditions, such as nutrient depletion, shifts in pH and hypoxia in vivo. 

The hypothesis that genes highly induced under such conditions may also be 

expressed and available as potential T cell targets has led to the derivation of what are 

termed infection stage specific MTB genes and thus their cognate antigens.  

 

Amongst the first antigens to be investigated were those of the heat shock response: 

proteins induced under stress conditions, such as elevations of temperature causing 

denaturation of proteins during infection (131). Heat shock proteins assist the survival 

of MTB but also provide a signal to the immune response. The gene Rv0251c is 

induced most strongly by heat shock in MTB. It encodes Acr2, a member of the 

alpha-crystallin family of molecular chaperones. The expression of Acr2 increases 

within 1 h after infection of monocytes or macrophages, reaching a peak of 18- to 55-

fold increase by 24 hours of infection in vitro. However, a deletion mutant (∆acr2) 

was unimpaired in log phase growth and persisted in IFN-gamma-activated human 

macrophages, suggesting that Rv0251c is dispensable. The protein Acr2 is strongly 
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recognized by cattle with early primary Mycobacterium bovis infection and also by 

healthy MTB-sensitized people (LTBI). Interestingly, within the latter group, those 

with recent exposure to infectious tuberculosis had higher frequencies of Acr2-

specific IFN-gamma-secreting T cells than those with more remote exposure, 

suggesting infection stage-specific immunity to tuberculosis (132).  

 

4.3 Infection stage specific T cell responses to TB 

Several studies evaluated the above candidate genes, and many were found to encode 

MTB antigens that induce strong immune responses. One of the most abundant 

upregulated proteins during hypoxia is the 16kDa (α-crystallin/Acr, Rv2031c, HspX) 

protein (133), also a DosR regulated antigen. Attributes of immunodominance, 

predominant expression during mycobacterial dormancy and species specificity made 

it a highly attractive candidate for the study of the immune response in humans. 

Further studies demonstrated it to be immunodominant in both the murine and human 

systems (134, 135). The most permissively recognised region was found to be 

between amino acids 91-110, possibly due to its ability to bind multiple HLA-DR 

alleles (136).  

 

The finding that the IFN-gamma response to Rv2031c was higher in healthy BCG-

vaccinated controls compared to those with extensive untreated tuberculosis led to the 

speculation that prolonged containment (LTBI) in humans may be contributed to by 

long-lived Rv2031c-specific cells, able to divide on re-challenge, and thus limit 

dissemination (137). This was further investigated by comparing T-cell responses 

against Rv2031c and the secreted MTB protein Ag85B (Rv1886c) in TB patients and 

various controls. Gamma interferon responses to Rv2031c were higher in MTB-
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exposed individuals, with no such differences found against the secreted Ag85B. The 

term ‘latency antigens’ was coined and suggested that subunit vaccines incorporating 

latency antigens, as well as recombinant BCG strains expressing latency antigens 

should be considered as new vaccines against TB (138).  

 

These findings prompted the investigation of the human immune response to other 

DosR regulon encoded genes, summarized in (139). Overall, DosR encoded 

immunodominant antigens have been termed ‘latency antigens’ due to preferential 

recognition shown by those with LTBI in terms of a higher IFN-γ response, when 

compared to those with active tuberculosis (140). In particular Rv1733c, Rv2029c, 

Rv2627c and Rv2628c induced strong IFN-gamma responses in skin test positive 

individuals, suggesting that immune responses against these antigens may contribute 

to the control of LTBI. The immunogenicity of these (and additional) promising DosR 

regulon-encoded antigens by plasmid DNA vaccination was also assessed in mice. 

Strong immune responses could be induced against most, the strongest being Rv2031c 

and Rv2626c, providing proof-of-concept for studies in mice mimicking LTBI models 

and their extrapolation to humans for potential new vaccination strategies against TB 

(141). A number of comprehensive studies followed, partially summarised in the 

Table, which is however by no means exhaustive.  

 

4.4 The T cell response to antigens encoded by the genes of the Enduring Hypoxic 

Response  (EHR) of MTB 

A detailed analysis of MTB genes that are upregulated during the latent stage of 

infection was considered a priority to identify new antigenic targets for vaccination 

strategies (139, 142). Transcriptional analysis of the hypoxic response at later 
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timepoints led to the identification of 230 genes induced between 4 and 7 days of 

hypoxia, that were named the enduring hypoxic response (EHR) genes (18). Analysis 

of EHR encoded proteins could provide novel T cell targets, with the hypothesis that 

these genes may be expressed in vivo and thereby could be targets of the immune 

response (28).  

 

In order to relate what is expressed by the bacilli in vivo or in vitro, to what is 

recognized by human T cells as antigens, a combined bioinformatic and empirical 

approach was employed as a novel genome based strategy, to guide the discovery of 

potential antigens. The fold induction of the top 100 highly induced genes at 7 days of 

hypoxia, their transcript abundance, population specific MHC class II-peptide binding 

prediction (ProPred), and a literature search was combined, leading to the selection of 

26 candidate genes. Overlapping peptides were used in combination with two readout 

systems, ELISpot for IFN-γ as well as IL-2. Five novel immunodominant proteins: 

Rv1957, Rv1954c, Rv1955, Rv2022c and Rv1471, showed responses similar to the 

immunodominant antigens CFP-10 and ESAT-6 in both magnitude and frequency. 

These findings revealed that a number of hypoxia-induced genes are potent T-cell 

targets and therefore offers general support to the important role of hypoxia in the 

natural course of TB infection. Importantly however, only moderate evidence of 

infection stage specific recognition of antigens was observed. (143). 

 

In light of the above findings, the hypoxia inducible MTB specific proteins absent 

from the BCG vaccine strains were also evaluated. One region of difference (RD) 2 

and two RD11 encoded proteins were identified, that are absent from the commonly 

used BCG strains (Rv1986) and all M. bovis strains including BCG (Rv2658c and 
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Rv2659c), respectively. When compared to the immunodominant molecules ESAT-6 

and CFP-10, IFN-gamma responses to the RD11 proteins were inferior in both aTB 

and LTBI groups. A strong IL-2 recall response to Rv1986 was found in LTBI, 

targeted at two epitopic regions, containing residues 61-80 and 161-180 (144). These 

studies confirmed that genomic knowledge does aide antigen discovery, especially 

when it is complemented with population specific MHC-class II-peptide prediction 

analysis, as also shown in a different study later (145).  Additionally, these studies 

also confirmed that a number of EHR genes are expressed in vivo and are potent T-

cell targets of the immune response. The results further our understanding of the 

biology of latent infection and offer general support to the hypoxia hypothesis and its 

relationship to the natural infection of MTB. While some of these findings did not 

provide support to the hypothesis of infection stage specific antigen recognition, they 

support an overlapping immunological spectrum between those with latent and active 

TB disease as suggested (3, 8). Whilst hypoxia does characterize granulomas in 

tuberculosis infection, but it is increasingly appreciated and accepted that even those 

with active TB disease have a spectrum of lesions, similar to those of the latently 

infected and it is likely that the hypoxic lesions are present in both clinical states (9-

11). This has been shown in the cynomolgus macaque model: the fate of individual 

lesions varies substantially within the same host, suggesting that critical responses 

occur at the level of each individual lesion, to ultimately determine the clinical 

outcome of infection in the infected host (146). 
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Figure legends 

1. The M. tuberculosis  response to hypoxia 

2. The cellular response to hypoxia 
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Table 

First author 
and year 
published 

Antigens evaluated Antigen formulations tested Numbers studied 
(human/mouse) 

Main findings 

Leyten et al, 
2006 (140) 

DosR induced: 25 (selected the most 
strongly expressed proteins of the DosR 
regulon; first reference to ‘latency 
antigens’) 
Immunodominant: 1 (CFP-10) 

Recombinant proteins 
 
Peptide pools for CFP-10 
 

TB patients on treatment (n=11), 
after treatment (cured TB, n=9), 
TST+ LTBI n=23, uninfected 
healthy controls n=21, all 
recruited in The Netherlands. 

Latently infected individuals recognized 
more latency antigens (specifically 
Rv1733c, Rv2029c, Rv2627c and Rv2628), 
compared to TB patients, who responded 
more strongly to CFP-10. These data 
suggest immune responses against latency 
antigens may contribute to controlling latent 
Mtb infection. 

Schuck et al, 
2009 (147) 

Immunodominant: 7 
DosR induced: 21 
Reactivation-associated: 2  
Resuscitation promoting factors (Rpf): 4 
Resuscitation-associated: 1 (Rv3407) 

Recombinant proteins 
 
Overlapping synthetic 
peptides also for Rv3407 
 

Patients with active TB (aTB, 
n=20) and controls with LTBI 
(n=22), recruited in Germany 

Significantly higher T-cell responses to 7 
/35 antigens tested in LTBI. T cells specific 
for Rv3407 were exclusively detected in 
LTBI.  
Data support the hypothesis that the 
latency-associated antigens can be exploited 
as biomarkers for LTBI. 

Black et al, 
2009 (148) 

Immunodominant: 7 
DosR induced: 51 

Recombinant proteins 
 

Healthy household contacts 
(n=131) recruited from 3 sites 
(South Africa, Uganda, The 
Gambia) 

Rv1733c was the most commonly 
recognized DosR regulated antigen.  
 

Gideon et al, 
2010 (144) 

Immunodominant: 3 
EHR induced: 3 species specific (RD11 
encoded Rv2568c and Rv2659c; and 
RD2 encoded Rv1986) 

Overlapping synthetic 
peptides in pools of max 13 
peptides per pool. Individual 
peptides for Rv1986. 

Patients with active TB (n=20), 
LTBI (n=29), HIV infected 
LTBI (n=19, sampled 
longitudinally after starting 
ART), recruited in South Africa. 

This study evaluated the antigen specific 
IL-2 response in parallel with the IFN-
gamma response. IFN-gamma responses to 
the RD11 proteins were inferior compared 
to the immunodominant molecules, in both 
aTB and LTBI groups. A strong IL-2 recall 
response to Rv1986 was found in LTBI.    

Reece et al, 
2011 (149) 

Rv2659c, Rv3407 and Rv1733c, 
expressed by the recombinant 
rBCG∆ureC::hly vaccine 

N/A (Recombinant vaccines 
were tested) 

Mice vaccinated and challenged 
with MTB Beijing/W isolate 

Latency associated antigens expressed in a 
recombinant vaccine can improve long-term 
protection against 
MTB challenge.  
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Chegou et al, 
2012 (150) 

118 infection stage specific antigens, 
including: immunodominant: 8 
DosR: 51  
Reactivation-associated: 23 
Rpf: 5 
Starvation-induced: 7 
Other stress conditions: 24 

Recombinant proteins 
(n=112) and Synthetic 
peptide pools (n=8, with 6-13 
peptides per pool) 

TB patients (n=23) and healthy 
household controls (HHC, 
n=101), recruited in South 
Africa 

The rpfs (Rv0867c, Rv2389c, Rv2450c, 
Rv1009, Rv1884c) elicited higher IFN-
gamma responses in HHCs compared to TB 
patients, and could differentiate TB from 
non-TB with area under the curve (AUC) 
ranging between 0.72-0.8. 

Gideon et al, 
2012 (143) 

Immunodominant: 3 
EHR induced: 26 

Overlapping synthetic 
peptides in pools of 7-14 
peptides per pool. 

Patients with active TB (n=37), 
LTBI (n=40), recruited in South 
Africa. 

Only moderate evidence of infection-stage 
specific antigen recognition was observed 
using IFN-gamma and IL-2 ELISpot as 
readout. Data suggest antigens are similarly 
targets of the immune response in active TB 
and LTBI, consistent with the view of TB 
being a spectrum of infection.  

Commandeur 
et al, 2013 
(151) 

2170 MTB genes investigated in an 
unbiased Ag discovery approach for in 
vivo expression (IVE) during MTB 
infection in the lungs of mice. 16 
antigens selected, expressed during in 
vivo infection (termed IVE-TB) of all 
four mouse strains, tested in humans. 

Recombinant proteins 4 mouse strains, n=133 skin test 
positive control persons and n=7 
TB patients, recruited in The 
Netherlands and Norway. 

The 16 IVE-TB antigens identified were 
also immunogenic in skin test positive 
controls, representing TB vaccine 
candidates and/or TB biomarker antigens. 

Sutherland et 
al, 2013 (152) 

21 antigens selected based on the Black 
et al 2009 and Chegou et al 2012 
studies, including 
immunodominant: 4 
reactivation-induced: 6 
DosR induced: 9 
Starvation-induced: 2 

Recombinant proteins for 19 
antigens, and synthetic 
peptide pools for 2 antigens 
(Rv2659c and Rv2660).  

N=1247 persons, including 262 
HIV-TB+, 454 HIV-LTBI+ and 
204 HIV-LTBI-, as well as 77 
HIV+TB+, 250 HIV+LTBI+ 
recruited from 5 sites (South 
Africa, Uganda, The Gambia, 
Ethiopia, Malawi) 

Results combined from all sites indicated 
HIV uninfected TB patients showed lower 
responses to latency antigens (Rv0569, 
Rv1733, Rv1735, Rv1737) and the rpf 
Rv0867, compared to LTBI persons. 

Serra-Vidal et 
al, 2014 (153) 

60 recombinant antigens:  
DosR induced: 6 
Reactivation-induced: 12 
Rpf: 1 
Starvation-induced: 1 
Other stress conditions: 6 
IVE-TB (based on Commandeur et al): 

Recombinant proteins Patients with TB n=102, LTBI 
n=306, healthy controls n=97, 
recruited in Spain. 

The DosR induced Rv1733 was the most 
immunogenic and strongly recognised by 
LTBI compared to TB patients. The Rpf 
antigen Rv2389 and Rv2435n from the 
IVE-TB antigens, were also promising 
LTBI biomarkers in both short term and 
long term incubation cultures. 
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34 
Torres et al, 
2015 (154) 

12 antigens: 
immunodominant: 2 
EHR induced: 10 
DosR: Rv1737 

Recombinant protein Rv1737 
and synthetic peptides for 
ESAT-6, CFP-10, Rv0081, 
Rv0569, Rv2031, Rv0288c, 
Rv3019c, Rv0826, Rv0849, 
Rv1986, Rv2659c, Rv2693c, 
Rv1986.  

TST+ LTBI with documented 
TB contact (n=26) and non-
documented TB contact (n=34), 
followed up longitudinally on 
INH treatment, recruited in 
Mexico. 

They show an increase in the proportion of 
IFN-gamma responders to Rv2031, 
Rv0849, Rv1986, Rv2659c, Rv2693c and 
the recombinant Rv1737 protein during 
IPT, which may represent useful markers to 
evaluate changes associated with treatment 
of LTBI. 

Coppola et al, 
2015 (155) 

Evaluation of Rv1733c (as the most 
promising candidate from the above 
studies) as a potential vaccine candidate 

Recombinant protein Rv1733 
and synthetic peptides (p57-
84 and HLA-DR3 restricted 
p63-77) 

HLA-DR3 transgenic mice 
immunized, and infected with 
H37Rv.  

Strong T cell and antibody responses 
detected, Rv1733 a promising vaccine 
candidate, even in the form of synthetic 
peptides. 

Arroyo et al, 
2016 (156) 

6 antigens: 
immunodominant: fusion protein of  
ESAT-6 and CFP-10 
DosR: 3 (Rv1737, Rv2029, Rv2628) 
Rpf: 2 (RpfA, RpfD) 

Recombinant proteins Contacts of recently diagnosed 
TB patients (n=31), and n=30 
long term LTBI (followed for 5-
7 years), recruited in Colombia. 

Found significant T cell response to the 
DosR and Rpf antigens in the long term 
LTBI, indicating a persistent immune 
response. 
 

LTBI: latent tuberculosis infection; ART: antiretroviral treatment; TST: tuberculin skin test; RD11: region of deletion 11; IVE: in vivo expressed; EHR: 
Extended hypoxic response; INH: isoniazid 
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