50 research outputs found
Evaluation of serum galactomannan detection for diagnosis of feline upper respiratory tract aspergillosis
Measurement of serum galactomannan (GM), a polysaccharide fungal cell-wall component, is a non-invasive test for early diagnosis of invasive aspergillosis in humans. Feline upper respiratory tract (URT) aspergillosis is an emerging infectious disease in cats. Diagnosis requires biopsy for procurement of tissue specimens for cytological or histological detection of fungal hyphae and for fungal culture. The aim of this study was to evaluate serum GM measurement as a non-invasive diagnostic test for URT aspergillosis in cats. A one-stage, immunoenzymatic sandwich ELISA was used to detect serum GM in 4 groups of cats; Group 1 (URT aspergillosis) – confirmed URT aspergillosis (n=13, sinonasal aspergillosis (SNA) n=6, sino-orbital aspergillosis (SOA) n=7), Group 2 (URT other) – other URT diseases (n=15), Group 3 (β-lactam) – cats treated with β-lactam antibiotics for non-respiratory tract disease (n=14), Group 4a – healthy young cats (≤ 1y of age, n=28), Group 4b – healthy adult cats (>1 y of age, n=16). One cat with SNA and two cats with SOA caused by an Aspergillus fumigatus-mimetic species, tested positive for serum GM. For a cut-off optical density index of 1.5, the overall sensitivity and specificity of the assay was 23% and 78% respectively. False positive results occurred in 29 % of cats in Group 3 and 32% of cats in Group 4a. Specificity increased to 90% when Groups 3 and 4a were excluded from the analysis. Overall, serum GM measurement has a poor sensitivity but is a moderately specific, non-invasive screening test to rule out infection in patients with suspected feline upper respiratory tract aspergillosis.Feline Health Research Fund (FHRF
Evolutionary relationships between Rhynchosporium lolii sp. nov. and other Rhynchosporium species on grass.
Copyright: 2013 King et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThe fungal genus Rhynchosporium (causative agent of leaf blotch) contains several host-specialised species, including R. commune (colonising barley and brome-grass), R. agropyri (couch-grass), R. secalis (rye and triticale) and the more distantly related R. orthosporum (cocksfoot). This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.Peer reviewedFinal Published versio
Molecular evidence of Rickettsia felis infection in dogs from northern territory, Australia
The prevalence of spotted fever group rickettsial infection in dogs from a remote indigenous community in the Northern Territory (NT) was determined using molecular tools. Blood samples collected from 130 dogs in the community of Maningrida were subjected to a spotted fever group (SFG)-specific PCR targeting the ompB gene followed by a Rickettsia felis-specific PCR targeting the gltA gene of R. felis. Rickettsia felis ompB and gltA genes were amplified from the blood of 3 dogs. This study is the first report of R. felis infection in indigenous community dogs in NT
Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy
AbstractSARS-CoV-2 originated in animals and is now easily transmitted between people. Sporadic detection of natural cases in animals alongside successful experimental infections of pets, such as cats, ferrets and dogs, raises questions about the susceptibility of animals under natural conditions of pet ownership. Here we report a large-scale study to assess SARS-CoV-2 infection in 817 companion animals living in northern Italy, sampled at a time of frequent human infection. No animals tested PCR positive. However, 3.4% of dogs and 3.9% of cats had measurable SARS-CoV-2 neutralizing antibody titers, with dogs from COVID-19 positive households being significantly more likely to test positive than those from COVID-19 negative households. Understanding risk factors associated with this and their potential to infect other species requires urgent investigation.One Sentence SummarySARS-CoV-2 antibodies in pets from Italy.</jats:sec
Twenty two cases of canine neural angiostronglyosis in eastern Australia (2002-2005) and a review of the literature
Cases of canine neural angiostrongylosis (NA) with cerebrospinal fluid (CSF) evaluations in the peer-reviewed literature were tabulated. All cases were from Australia. A retrospective cohort of 59 dogs was contrasted with a series of 22 new cases where NA was diagnosed by the presence of both eosinophilic pleocytosis and anti-Angiostrongylus cantonensis immunloglobulins (IgG) in CSF, determined by ELISA or Western blot. Both cohorts were drawn from south east Queensland and Sydney. The retrospective cohort comprised mostly pups presented for hind limb weakness with hyperaesthesia, a mixture of upper motor neurone (UMN) and lower motor neurone (LMN) signs in the hind limbs and urinary incontinence. Signs were attributed to larval migration through peripheral nerves, nerve roots, spinal cord and brain associated with an ascending eosinophilic meningo-encephomyelitis. The contemporary cohort consisted of a mixture of pups, young adult and mature dogs, with a wider range of signs including (i) paraparesis/proprioceptive ataxia (ii) lumbar and tail base hyperaesthesia, (iii) multi-focal central nervous system dysfunction, or (iv) focal disease with neck pain, cranial neuropathy and altered mentation. Cases were seen throughout the year, most between April and July (inclusive). There was a preponderance of large breeds. Often littermates, or multiple animals from the same kennel, were affected simultaneously or sequentially. A presumptive diagnosis was based on consistent signs, proximity to rats, ingestion/chewing of slugs or snails and eosinophilic pleocytosis. NA was diagnosed by demonstrating anti-A. cantonensis IgG in CSF. Detecting anti-A. cantonensis IgG in serum was unhelpful because many normal dogs (20/21 lb dogs; 8/22 of a hospital population) had such antibodies, often at substantial titres. Most NA cases in the contemporary series (19/22) and many pups (16/38) in the retrospective cohort were managed successfully using high doses of prednisolone and opioids. Treatment often included antibiotics administered in case protozoan encephalomyelitis or translocated bacterial meningitis was present. Supportive measures included bladder care and physiotherapy. Several dogs were left with permanent neural deficits. Dogs are an important sentinel species for NA. Human cases and numerous cases in tawny frogmouths were reported from the same regions as affected dogs over the study period
Detection of vector-borne pathogens in cats and their ectoparasites in southern Italy
BACKGROUND: Vector-borne pathogens are the subject of several investigations due to the zoonotic concern of some of them. However, limited data are available about the simultaneous presence of these pathogens in cats and their ectoparasites. The aim of the present study was to define the species of ectoparasites found on cats as well as to investigate vector-borne pathogens in cats and their ectoparasites in southern Italy. METHODS: Blood from 42 cats and fleas or flea pools (n = 28) and ticks (n = 73) collected from them were investigated by quantitative PCR for the detection of vector-borne pathogens. Feline serum samples were tested by IFAT to detect IgG antibodies against Leishmania infantum, Bartonella henselae, Rickettsia conorii, Rickettsia felis, Rickettsia typhi, Babesia microti, Ehrlichia canis and Anaplasma phagocytophilum antigens. RESULTS: Only one flea species (Ctenocephalides felis) and four tick species belonging to the genera Rhipicephalus and Ixodes were identified on cats from southern Italy. Molecular evidence of Bartonella spp., Rickettsia spp., hemoplasmas, Babesia vogeli and L. infantum was found in ectoparasites (fleas and/or ticks) while DNA from Hepatozoon felis and Ehrlichia/Anaplasma spp. was not detected. Likewise, DNAs from Bartonella, hemoplasma and Leishmania were the only pathogens amplified from feline blood samples. Cats had also antibodies against all the investigated pathogens with the exception of Rickettsia typhi. Agreement between serological and molecular results in individual cats and their ectoparasites was not found. The only exception was for Bartonella with a fair to moderate agreement between individual cats and their ectoparasites. Bartonella clarridgeiae was the species most frequently found in cats and their fleas followed by B. henselae. CONCLUSIONS: In conclusion, cats harboring ticks and fleas are frequently exposed to vector-borne pathogens. Furthermore, ticks and fleas harbored by cats frequently carry pathogens of zoonotic concern therefore appropriate feline ectoparasiticide preventative treatments should be used in cats
Feline low-grade alimentary lymphoma: an emerging entity and a potential animal model for human disease
Background: Low-grade alimentary lymphoma (LGAL) is characterised by the infiltration of neoplastic T-lymphocytes, typically in the small intestine. The incidence of LGAL has increased over the last ten years and it is now the most frequent digestive neoplasia in cats and comprises 60 to 75% of gastrointestinal lymphoma cases. Given that LGAL shares common clinical, paraclinical and ultrasonographic features with inflammatory bowel diseases, establishing a diagnosis is challenging. A review was designed to summarise current knowledge of the pathogenesis, diagnosis, prognosis and treatment of feline LGAL. Electronic searches of PubMed and Science Direct were carried out without date or language restrictions. Results: A total of 176 peer-reviewed documents were identified and most of which were published in the last twenty years. 130 studies were found from the veterinary literature and 46 from the human medicine literature. Heterogeneity of study designs and outcome measures made meta-analysis inappropriate. The pathophysiology of feline LGAL still needs to be elucidated, not least the putative roles of infectious agents, environmental factors as well as genetic events. The most common therapeutic strategy is combination treatment with prednisolone and chlorambucil, and prolonged remission can often be achieved. Developments in immunohistochemical analysis and clonality testing have improved the confidence of clinicians in obtaining a correct diagnosis between LGAL and IBD. The condition shares similarities with some diseases in humans, especially human indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. Conclusions: The pathophysiology of feline LGAL still needs to be elucidated and prospective studies as well as standardisation of therapeutic strategies are needed. A combination of conventional histopathology and immunohistochemistry remains the current gold-standard test, but clinicians should be cautious about reclassifying cats previously diagnosed with IBD to lymphoma on the basis of clonality testing. Importantly, feline LGAL could be considered to be a potential animal model for indolent digestive T-cell lymphoproliferative disorder, a rare condition in human medicine
Pharmacokinetics of caspofungin acetate to guide optimal dosing in cats
© 2017 Leshinsky et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Cats are the most common mammal to develop invasive fungal rhinosinusitis caused by cryptic species in Aspergillus section Fumigati that are resistant to azoles but susceptible to caspofungin. In this study nonlinear mixed-effects pharmacokinetic modeling and simulation was used to investigate caspofungin pharmacokinetics and explore dosing regimens in cats using caspofungin minimum effective concentrations (MECs). Plasma concentrations in healthy cats were determined using HPLC-MS/MS after administration of a single and seven consecutive daily intravenous doses of 1 mg/kg caspofungin. In the final pharmacokinetic model an optimum maximum concentration (Cmax): MEC ratio of 10-20 was used to guide caspofungin efficacy. Simulations were performed for dosing regimens (doses 0.25-2 mg/kg and 6-72 h dosing intervals) with and without inclusion of a loading dose. Using a 1 mg/kg dose Cmaxfirst dose was 14.8 μg/mL, Cmaxat steady state was 19.8 μg/mL, Cminwas 5 μg/mL and Cmax: MEC was >20 in 42.6% of cats after multiple doses. An optimal Cmax: MEC ratio was achieved in caspofungin simulations using 0.75 mg/kg q 24 h or 1 mg/kg q 72h. However, at 1 mg/kg q 72h, Cminwas 2.5 μg/mL for 98% of the population. Based on the modeling data this dosing regimen is likely to achieve target therapeutic concentrations, meet the proposed Cmax: MEC window and provide consistent exposure between doses