93 research outputs found

    Diseases of winter linseed : occurrence, effects and importance

    Get PDF
    In 1998, a survey of the incidence and severity of diseases was carried out on 30 crops of winter linseed at early flowering and again at crop maturity. Five crops each were selected in south west, east, east Midlands, west Midlands and north of England and from Scotland. Crops were predominantly cv. Oliver (90% crops), grown from certified seed (83%) and sown in September (97%). Pasmo (Mycosphaerella) was the most important disease, affecting leaves of 73% crops at early flowering and 90% crops at maturity. Powdery mildew (70% crops), Alternaria (30% crops) on leaves and Botrytis on capsules (70% crops) were also common. Regional differences were apparent for powdery mildew, which was present in all regions except the southwest, whilst Alternaria predominated in the Midlands. Half of the crops surveyed had received fungicide sprays, but this appeared to have made limited impact on disease severity. Pasmo is a new threat to UK linseed crops and this raises concerns about the threat it poses to spring linsee

    Neutron Stars in a Varying Speed of Light Theory

    Full text link
    We study neutron stars in a varying speed of light (VSL) theory of gravity in which the local speed of light depends upon the value of a scalar field ϕ\phi. We find that the masses and radii of the stars are strongly dependent on the strength of the coupling between ϕ\phi and the matter field and that for certain choices of coupling parameters, the maximum neutron star mass can be arbitrarily small. We also discuss the phenomenon of cosmological evolution of VSL stars (analogous to the gravitational evolution in scalar-tensor theories) and we derive a relation showing how the fractional change in the energy of a star is related to the change in the cosmological value of the scalar field.Comment: 15 pages, 2 figures. Added solutions with a more realistic equation of state. To be published in PR

    Can induced gravity isotropize Bianchi I, V, or IX Universes?

    Get PDF
    We analyze if Bianchi I, V, and IX models in the Induced Gravity (IG) theory can evolve to a Friedmann--Roberson--Walker (FRW) expansion due to the non--minimal coupling of gravity and the scalar field. The analytical results that we found for the Brans-Dicke (BD) theory are now applied to the IG theory which has ω1\omega \ll 1 (ω\omega being the square ratio of the Higgs to Planck mass) in a cosmological era in which the IG--potential is not significant. We find that the isotropization mechanism crucially depends on the value of ω\omega. Its smallness also permits inflationary solutions. For the Bianch V model inflation due to the Higgs potential takes place afterwads, and subsequently the spontaneous symmetry breaking (SSB) ends with an effective FRW evolution. The ordinary tests of successful cosmology are well satisfied.Comment: 24 pages, 5 figures, to be published in Phys. Rev. D1

    Volume averaging in the quasispherical Szekeres model

    Full text link
    This paper considers the volume averaging in the quasispherical Szekeres model. The volume averaging became of considerable interest after it was shown that the volume acceleration calculated within the averaging framework can be positive even though the local expansion rate is always decelerating. This issue was intensively studied within spherically symmetric models. However, since our Universe is not spherically symmetric similar analysis is needed in non symmetrical models. This papers presents the averaging analysis within the quasispherical Szekeres model which is a non-symmetrical generalisation of the spherically symmetric Lema\^itre--Tolman family of models. Density distribution in the quasispherical Szekeres has a structure of a time-dependent mass dipole superposed on a monopole. This paper shows that when calculating the volume acceleration, a¨\ddot{a}, within the Szekeres model, the dipole does not contribute to the final result, hence a¨\ddot{a} only depends on a monopole configuration. Thus, the volume averaging within the Szekeres model leads to literally the same solutions as obtained within the Lema\^itre--Tolman model.Comment: 8 pages; calculation of the spatial Ricci scalar added; accepted for publication in Gen. Rel. Gra

    Nonlinear multidimensional cosmological models with form fields: stabilization of extra dimensions and the cosmological constant problem

    Full text link
    We consider multidimensional gravitational models with a nonlinear scalar curvature term and form fields in the action functional. In our scenario it is assumed that the higher dimensional spacetime undergoes a spontaneous compactification to a warped product manifold. Particular attention is paid to models with quadratic scalar curvature terms and a Freund-Rubin-like ansatz for solitonic form fields. It is shown that for certain parameter ranges the extra dimensions are stabilized. In particular, stabilization is possible for any sign of the internal space curvature, the bulk cosmological constant and of the effective four-dimensional cosmological constant. Moreover, the effective cosmological constant can satisfy the observable limit on the dark energy density. Finally, we discuss the restrictions on the parameters of the considered nonlinear models and how they follow from the connection between the D-dimensional and the four-dimensional fundamental mass scales.Comment: 21 pages, LaTeX2e, minor changes, improved references, fonts include

    Cations extraction of sandy-clay soils from Cavado valley, Portugal, using sodium salts solutions

    Get PDF
    Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were subjected to clay dissolution tests, using sodium salts of different ionic forces, to detect the relationship between certain physico-chemical parameters of water, such as pH, nitrate, chloride and sulphate content, in the dissolution of clay and the subsequent extraction of such cations as Al, Fe and K. In acidic sandy clay soils, the mineralogical composition of which was characterised by a predominance of quartz, micas, kaolinite and K-feldspars, decreases of the clay material/water pH ratio increases dissolution of the micaceous and K-feldspars phases. The presence of nitrates in the aqueous solution apparently advanced the extraction of all three cations Al, Fe and K. The specific surface area of the clay material showed a significant correlation with the main kinetic parameters of cation extraction.Têm ocorrido casos de contaminações de águas de poços, por metais, no vale do Rio Cávado, região noroeste de Portugal. A princípio, poderiam ser explicáveis pela elevada lixiviação dos solos arenoargilosos da região, quando da prática de adubações intensivas de nitrogênio em áreas agrícolas. Assim, estudaram-se as características do intemperismo natural dos solos, particularmente da fração argila, característica da margem norte do rio Cávado. Coletaram-se amostras de vários locais, que foram submetidas, após caracterização físico-química, a ensaios de dissolução a partir de soluções de sais de sódio com diferentes forças iônicas. O objetivo foi observar as relações de determinados parâmetros físico-químicos da água, tais como: pH, nitratos, cloretos e sulfatos na dissolução das argilas e a conseqüente extração de espécies químicas tais como Al, K e Fe. Para solos areno-argilosos, ácidos, cuja composição mineralógica se caracteriza por um predomínio de quartzo, micas, caulinita e feldspato-K, o abaixamento do pH da suspensão solo/água promove a solubilização das fases micáceas e feldspáticas. A presença do nitrato nas soluções aquosas promoveu aparentemente a extração de todos os três cátions: Al, K e Fe. O efeito da área superfícial específica das partículas dos solos condicionou fortemente vários dos parâmetros cinéticos estudados relativos à extração dos cátions.(undefined

    Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics

    Get PDF
    A framework is introduced which explains the existence and similarities of most exact solutions of the Einstein equations with a wide range of sources for the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian formulation. This class includes the spatially homogeneous cosmological models and the astrophysically interesting static spherically symmetric models as well as the stationary cylindrically symmetric models. The framework involves methods for finding and exploiting hidden symmetries and invariant submanifolds of the Hamiltonian formulation of the field equations. It unifies, simplifies and extends most known work on hypersurface-homogeneous exact solutions. It is shown that the same framework is also relevant to gravitational theories with a similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for publication in Phys. Rev.

    Dark Energy from structure: a status report

    Full text link
    The effective evolution of an inhomogeneous universe model in any theory of gravitation may be described in terms of spatially averaged variables. In Einstein's theory, restricting attention to scalar variables, this evolution can be modeled by solutions of a set of Friedmann equations for an effective volume scale factor, with matter and backreaction source terms. The latter can be represented by an effective scalar field (`morphon field') modeling Dark Energy. The present work provides an overview over the Dark Energy debate in connection with the impact of inhomogeneities, and formulates strategies for a comprehensive quantitative evaluation of backreaction effects both in theoretical and observational cosmology. We recall the basic steps of a description of backreaction effects in relativistic cosmology that lead to refurnishing the standard cosmological equations, but also lay down a number of challenges and unresolved issues in connection with their observational interpretation. The present status of this subject is intermediate: we have a good qualitative understanding of backreaction effects pointing to a global instability of the standard model of cosmology; exact solutions and perturbative results modeling this instability lie in the right sector to explain Dark Energy from inhomogeneities. It is fair to say that, even if backreaction effects turn out to be less important than anticipated by some researchers, the concordance high-precision cosmology, the architecture of current N-body simulations, as well as standard perturbative approaches may all fall short in correctly describing the Late Universe.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy, 59 pages, 2 figures; matches published versio

    Some remarks on the angular momenta of galaxies, their clusters and superclusters

    Full text link
    We discuss the relation between angular momenta and masses of galaxy structures base on the Li model of the universe with global rotation. In our previous paper (God{\l}owski et al 2002) it was shown that the model predicts the presence of a minimum in this relation. In the present paper we discuss observational evidence allowing us to verify this relation. We find null angular momentum J=0 for the masses corresponding to mass of galaxy grups and non-vanishing angular momenta for other galactic structures. We check these theoretical predictions analysing Tully's galaxy grups. The existing data comparing alignment in different galactic structure are consistent with obtained theoretical relation J(M)J(M) if we interpret the groving alignment as the galactic increasing angular momenta in the galactic structure.Comment: 20 pages 1 figure. GRG accepte

    A rapid rate of sex-chromosome turnover and non-random transitions in true frogs.

    Get PDF
    The canonical model of sex-chromosome evolution predicts that, as recombination is suppressed along sex chromosomes, gametologs will progressively differentiate, eventually becoming heteromorphic. However, there are numerous examples of homomorphic sex chromosomes across the tree of life. This homomorphy has been suggested to result from frequent sex-chromosome turnovers, yet we know little about which forces drive them. Here, we describe an extremely fast rate of turnover among 28 species of Ranidae. Transitions are not random, but converge on several chromosomes, potentially due to genes they harbour. Transitions also preserve the ancestral pattern of male heterogamety, in line with the 'hot-potato' model of sex-chromosome transitions, suggesting a key role for mutation-load accumulation in non-recombining genomic regions. The importance of mutation-load selection in frogs might result from the extreme heterochiasmy they exhibit, making frog sex chromosomes differentiate immediately from emergence and across their entire length
    corecore