449 research outputs found
Descrição de uma Nova Espécie de Cyrtoneuropsis Malloch, 1925 (Diptera, Muscidae) e Primeiro Registro do Gênero no Estado do Maranhão, Brasil
Cyrtoneuropsis maranhensis sp.nov. from the State of Maranhão, Brazil, is described with illustrations of male and female terminalia. The genus is recorded for the first time from the State of Maranhão, Brazil.Cyrtoneuropsis maranhensis sp.nov. do Estado do Maranhão, Brasil, é descrita com ilustrações da terminália do macho e da fêmea. O gênero é assinalado pela primeira vez no Estado do Maranhão, Brasil
Astaxanthin Restrains Nitrative-Oxidative Peroxidation in Mitochondrial-Mimetic Liposomes: A Pre-Apoptosis Model
Astaxanthin (ASTA) is a ketocarotenoid found in many marine organisms and that affords many benefits to human health. ASTA is particularly effective against radical-mediated lipid peroxidation, and recent findings hypothesize a "mitochondrial-targeted" action of ASTA in cells. Therefore, we examined the protective effects of ASTA against lipid peroxidation in zwitterionic phosphatidylcholine liposomes (PCLs) and anionic phosphatidylcholine: phosphatidylglycerol liposomes (PCPGLs), at different pHs (6.2 to 8.0), which were challenged by oxidizing/nitrating conditions that mimic the regular and preapoptotic redox environment of active mitochondria. Pre-apoptotic conditions were created by oxidized/nitr(osyl) ated cytochrome c and resulted in the highest levels of lipoperoxidation in both PCL and PCPGLs (pH 7.4). ASTA was less protective at acidic conditions, especially in anionic PCPGLs. Our data demonstrated the ability of ASTA to hamper oxidative and nitrative events that lead to cytochrome c-peroxidase apoptosis and lipid peroxidation, although its efficiency changes with pH and lipid composition of membranes.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESPBPE fellowship)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (Bolsa Produtividade em Pesquisa, Nivel 2, CNPq, Brazil)Programa Iberoamericano de Ciencia y Tecnologia para el Desarollo (CYTEDRed iberoamericana para el estudio de nuevos carotenoides bioactivos como ingredientes de alimentos, Spain)Univ Sao Paulo IQUSP, Inst Quim, Dept Bioquim, BR-05508000 Sao Paulo, SP, BrazilUniv Cruzeiro Sul, ICAFE, BR-01506000 Sao Paulo, SP, BrazilSuperintendencia Policia Tecn Cient, BR-05507060 Sao Paulo, SP, BrazilLychnoflora Pesquisa & Dev Prod Nat LTDA, BR-14030090 Ribeirao Preto, SP, BrazilGrp Fleury, BR-04344070 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Ciencias Exatas & Terra, UNIFESP, BR-09972270 Diadema, SP, BrazilUniv Sao Paulo IQUSP, Inst Quim, Dept Quim Fundamental, BR-05508000 Sao Paulo, SP, BrazilCSIC, IATA, Dept Ciencia Alimentos, Calle Catedrat Agustin Escardino 7, Paterna 46980, SpainUniv Fed Sao Paulo, Dept Ciencias Exatas & Terra, UNIFESP, BR-09972270 Diadema, SP, BrazilFAPESP: 017/06032-2CNPq: 304663/2015-8RIENCBI: 112RT0445Web of Scienc
Supra-physiological doses of testosterone affect membrane oxidation of human neutrophils monitored by the fluorescent probe C11-BODIPY581/591
The purpose of this study was to determine the effects of supra-physiological doses of testosterone (TES) on membrane oxidation of activated human neutrophils in vitro using an innovative and sensitive technique: the real-time detection with the fluorescence probe C11-BODIPY581/591. Methodological controls were performed with the lipid-soluble and powerful antioxidant astaxanthin at different neutrophil density cultures. Neutrophils from nine healthy young men (23.4 ± 2.5 years, 174.4 ± 7.0 cm height, and 78.3 ± 7.0 kg weight) were isolated and treated with 0.1 or 10 μM TES for 24 h and subsequently labeled with the free radical-sensitive probe C11-BODIPY581/591 for monitoring membrane oxidation after neutrophil activation with phorbol-12-myristate-13-acetate (PMA). First-order exponential decay kinetic indicated that both 0.1 and 10 μM TES severely increased baseline membrane oxidation in non-activated human neutrophils (compared to control). However, similar kinetics of membrane oxidation were observed in control and 0.1 μM TES-treated neutrophils after PMA activation, whereas chemical activation did not alter the baseline higher rates of membrane oxidation in 10 μM TES-treated neutrophils. The data presented here support the hypothesis that TES exerts distinct effects on the membrane oxidation of human neutrophils, depending on its dose (here, 102 to 104-fold higher than physiological levels in men) and on PMA activation of the oxidative burst. Furthermore, this paper also presents an innovative application of the free radical-sensitive probe C11-BODIPY581/591 for monitoring (auto-induced) membrane oxidation as an important parameter of viability and, thus, responsiveness of immune cells in inflammatory processes
Supra-physiological doses of testosterone affect membrane oxidation of human neutrophils monitored by the fluorescent probe C11-BODIPY581/591
The purpose of this study was to determine the effects of supra-physiological doses of testosterone (TES) on membrane oxidation of activated human neutrophils in vitro using an innovative and sensitive technique: the real-time detection with the fluorescence probe C11-BODIPY581/591. Methodological controls were performed with the lipid-soluble and powerful antioxidant astaxanthin at different neutrophil density cultures. Neutrophils from nine healthy young men (23.4 ± 2.5 years, 174.4 ± 7.0 cm height, and 78.3 ± 7.0 kg weight) were isolated and treated with 0.1 or 10 μM TES for 24 h and subsequently labeled with the free radical-sensitive probe C11-BODIPY581/591 for monitoring membrane oxidation after neutrophil activation with phorbol-12-myristate-13-acetate (PMA). First-order exponential decay kinetic indicated that both 0.1 and 10 μM TES severely increased baseline membrane oxidation in non-activated human neutrophils (compared to control). However, similar kinetics of membrane oxidation were observed in control and 0.1 μM TES-treated neutrophils after PMA activation, whereas chemical activation did not alter the baseline higher rates of membrane oxidation in 10 μM TES-treated neutrophils. The data presented here support the hypothesis that TES exerts distinct effects on the membrane oxidation of human neutrophils, depending on its dose (here, 102 to 104-fold higher than physiological levels in men) and on PMA activation of the oxidative burst. Furthermore, this paper also presents an innovative application of the free radical-sensitive probe C11-BODIPY581/591 for monitoring (auto-induced) membrane oxidation as an important parameter of viability and, thus, responsiveness of immune cells in inflammatory processes
Protective Response Mechanisms to Heat Stress in Interaction with High [CO2] Conditions in Coffea spp.
This work was supported by national funds from Fundacao para a Ciencia e a Tecnologia through the projects PTDC/AGRPRO/3386/2012, the research units UID/AGR/04129/2013 (LEAF) and UID/GEO/04035/2013 (GeoBioTcc), as well through the grant SFRH/BPD/47563/2008 (AT) co-financed through the POPH program subsidized by the European Social Fund. Brazilian funding from CAPES (grams PDSE: 000427/2014-04, W.P. Rodrigues; 0343/2014-05, MM; 12226/12-2, LM), CNPq and Fapemig (fellowships to FDM, FP, and EC) are also greatly acknowledged.Modeling studies have predicted that coffee crop will be endangered by future global warming, but recent reports highlighted that high [CO2] can mitigate heat impacts on coffee. This work aimed at identifying heat protective mechanisms promoted by CO2 in Coffea arabica (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown at 25/20 degrees C (day/night), under 380 or 700 mu L CO2 L-1, and then gradually submitted to 31/25, 37/30, and 42/34 degrees C. Relevant heat tolerance up to 37/30 degrees C for both [CO2] and all coffee genotypes was observed, likely supported by the maintenance or increase of the pools of several protective molecules (neoxanthin, lutein, carotenes, ohtocopherol, HSP70, raffinose), activities of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT), and the upregulated expression of some genes (ELIP, Chaperonin 20). However, at 42/34 degrees C a tolerance threshold was reached, mostly in the 380 -plants and Icatu. Adjustments in raffinose, lutein, beta-carotene, alpha-tocopherol and HSP70 pools, and the upregulated expression of genes related to protective (FLIPS, HSP70, Chape 20, and 60) and antioxidant (CAT, CuSOD2, APX Cyt, APX ChI) proteins were largely driven by temperature. However, enhanced [CO2] maintained higher activities of GR (Icatu) and CAT (Icatu and IPR108), kept (or even increased) the Cu,Zn-SOD, APX, and CAT activities, and promoted a greater upregulation of those enzyme genes, as well as those related to HSP70, ELIPs, Chaperonins in CL153, and Icatu. These changes likely favored the maintenance of reactive oxygen species (ROS) at controlled levels and contributed to mitigate of photosystem II photoinhibition at the highest temperature. Overall, our results highlighted the important role of enhanced [CO2] on the coffee crop acclimation and sustainability under predicted future global warming scenarios.publishersversionpublishe
Lipid profile adjustments may contribute to warming acclimation and to heat impact mitigation by elevated [CO2] in Coffea spp
This work was supported by European Union, Program Horizon 2020, call H2020-SFS-2016-2, action RIA, and Portuguese national funds from Fundacao para a Ciencia e a Tecnologia (project PTDC/ASP-AGR/31257/2017;
Funding from CNPq (fellowships to E. Campostrini, F.L. Partelli, and F.M. DaMatta) is also acknowledged.An unexpected heat resilience, and the mitigation of heat impacts by elevated [CO2] were recently reported in Coffea spp. Plants must maintain membrane fluidity and integrity to cope with temperature changes, which requires an adequate lipid dynamics. This work provides the lipid profile (galactolipids, GL; phospholipids, PL; sulfolipids, SL) of chloroplast membranes, and the expression of a set of genes related to lipid metabolism in Coffea arabica L. (cv. Icatu and IPR108) and C. canephora cv. Conilon CL153, under elevated [CO2] (380 or 700 μL L−1), heat (25/20, 31/25, 37/30 and 42/34 °C, day/night) and their interaction. Major membrane lipids alterations, different among genotypes, included: A) responsiveness of total fatty acids (TFAs) synthesis to [CO2] (except IPR108) and heat (except CL153); stronger remodeling (unsaturation degree) in the 700-plants from 37/30 °C to 42/34 °C, coordinated at transcriptional level with the down-regulation of fatty acid desaturase FAD3 gene (C. arabica) and up-regulation of lipoxygenase genes LOX5A (CL153 and Icatu) and LOX5B (Icatu) at the highest temperature; B) quantitative and qualitative modifications in GL (monogalactosyldiacylglycerol, MGDG; digalactosyldiacylglycerol, DGDG), PL (phosphatidylcholine, PC; phosphatidylglycerol, PG), and SL (sulfoquinovosyldiacylglycerol, SQDG) classes, prompted by heat, elevated [CO2], and, especially, the interaction, in CL153 and Icatu. Overall membrane enrichment with MGDG and DGDG as a result of heat and [CO2] interaction in these genotypes, but at the highest temperature only in Icatu the high [CO2] maintained greater contents and unsaturation values of these GLs than in the 380-plants. C) Among PL classes, PG seems to play an active role in heat acclimation of C. arabica genotypes, increasing in 700-plants at 42/34 °C. Globally, Icatu often showed changes closer to those of heat tolerant cv. CL153 than to cv. IPR108. Overall, lipid profile adjustments in chloroplast membranes, from TFAs bulk until FA unsaturation within each class, are expected to contribute to long-term acclimation to climate changes in coffee plant.publishersversionpublishe
- …