31 research outputs found
Conserved Mechanisms of Tumorigenesis in the Drosophila Adult Midgut
<div><p>Whereas the series of genetic events leading to colorectal cancer (CRC) have been well established, the precise functions that these alterations play in tumor progression and how they disrupt intestinal homeostasis remain poorly characterized. Activation of the Wnt/Wg signaling pathway by a mutation in the gene APC is the most common trigger for CRC, inducing benign lesions that progress to carcinomas due to the accumulation of other genetic alterations. Among those, Ras mutations drive tumour progression in CRC, as well as in most epithelial cancers. As mammalian and <i>Drosophila</i>'s intestines share many similarities, we decided to explore the alterations induced in the <i>Drosophila</i> midgut by the combined activation of the Wnt signaling pathway with gain of function of Ras signaling in the intestinal stem cells. Here we show that compound Apc-Ras clones, but not clones bearing the individual mutations, expand as aggressive intestinal tumor-like outgrowths. These lesions reproduce many of the human CRC hallmarks such as increased proliferation, blockade of cell differentiation and cell polarity and disrupted organ architecture. This process is followed by expression of tumoral markers present in human lesions. Finally, a metabolic behavioral assay shows that these flies suffer a progressive deterioration in intestinal homeostasis, providing a simple readout that could be used in screens for tumor modifiers or therapeutic compounds. Taken together, our results illustrate the conservation of the mechanisms of CRC tumorigenesis in <i>Drosophila</i>, providing an excellent model system to unravel the events that, upon mutation in Apc and Ras, lead to CRC initiation and progression.</p></div
Post-transcriptional control of a stemness signature by RNA-binding protein MEX3A regulates murine adult neurogenesis
Neural stem cells (NSCs) in the adult murine subependymal zone balance their self-renewal capacity and glial identity with the potential to generate neurons during the lifetime. Adult NSCs exhibit lineage priming via pro-neurogenic fate determinants. However, the protein levels of the neural fate determinants are not sufficient to drive direct differentiation of adult NSCs, which raises the question of how cells along the neurogenic lineage avoid different conflicting fate choices, such as self-renewal and differentiation. Here, we identify RNA-binding protein MEX3A as a post-transcriptional regulator of a set of stemness associated transcripts at critical transitions in the subependymal neurogenic lineage. MEX3A regulates a quiescence-related RNA signature in activated NSCs that is needed for their return to quiescence, playing a role in the long-term maintenance of the NSC pool. Furthermore, it is required for the repression of the same program at the onset of neuronal differentiation. Our data indicate that MEX3A is a pivotal regulator of adult murine neurogenesis acting as a translational remodeller.© 2023. The Author(s)
A single-cell survey of the small intestinal epithelium
Intestinal epithelial cells (IECs) absorb nutrients, respond to microbes, provide barrier function and help coordinate immune responses. We profiled 53,193 individual epithelial cells from mouse small intestine and organoids, and characterized novel subtypes and their gene signatures. We showed unexpected diversity of hormone-secreting enteroendocrine cells and constructed their novel taxonomy. We distinguished between two tuft cell subtypes, one of which expresses the epithelial cytokine TSLP and CD45 (Ptprc), the pan-immune marker not previously associated with non-hematopoietic cells. We also characterized how cell-intrinsic states and cell proportions respond to bacterial and helminth infections. Salmonella infection caused an increase in Paneth cells and enterocytes abundance, and broad activation of an antimicrobial program. In contrast, Heligmosomoides polygyrus caused an expansion of goblet and tuft cell populations. Our survey highlights new markers and programs, associates sensory molecules to cell types, and uncovers principles of gut homeostasis and response to pathogens
Post-transcriptional control of a stemness signature by RNA-binding protein MEX3A regulates murine adult neurogenesis
Neural stem cells (NSCs) in the adult murine subependymal zone balance their self-renewal capacity and glial identity with the potential to generate neurons during the lifetime. Adult NSCs exhibit lineage priming via pro-neurogenic fate determinants. However, the protein levels of the neural fate determinants are not sufficient to drive direct differentiation of adult NSCs, which raises the question of how cells along the neurogenic lineage avoid different conflicting fate choices, such as self-renewal and differentiation. Here, we identify RNA-binding protein MEX3A as a post-transcriptional regulator of a set of stemness associated transcripts at critical transitions in the subependymal neurogenic lineage. MEX3A regulates a quiescence-related RNA signature in activated NSCs that is needed for their return to quiescence, playing a role in the long-term maintenance of the NSC pool. Furthermore, it is required for the repression of the same program at the onset of neuronal differentiation. Our data indicate that MEX3A is a pivotal regulator of adult murine neurogenesis acting as a translational remodeller
Prevalence and factors associated with a higher risk of neck and back pain among permanent wheelchair users: a cross-sectional study.
STUDY DESIGN: Cross-sectional study. OBJECTIVES: To determine the prevalence of, and factors associated with, spinal pain among wheelchair users. SETTING: Four Spanish hospitals specialized in providing care for wheelchair users. METHODS: Persons who had used a wheelchair for a median (IRQ) of 10 (5;19) years, 27% of them due to reasons other than spinal cord injury, were recruited consecutively (n = 750). Data on 43 demographic, psychosocial, ergonomic, and clinical variables were collected, and analyzed. Main outcome measures were: point prevalence of neck (NP), thoracic (TP), low back pain (LBP), and pain at any spinal level (PASL); and factors associated with them. RESULTS: Point prevalence was 56% for NP, 54% for TP, 45% for LBP, and 76% for PSAL. PASL was associated with a lower quality of life (OR (95% CI) 0.91 (0.86; 0.97)). Multivariable regression models showed that the main factors associated with significant pain (≥1.5 VAS points) were: (a) For NP: cervical spinal injury and wheelchair seat cushion thickness, (b) For TP: thoracic spinal injury and sagittal index, (c) For LBP: thoracic or lumbar spinal injury, with some sensitivity remaining, (d) For PASL: being female, living alone, and using a non-power wheelchair. Discrimination (AUC) of these models ranged between 0.638 and 0.818. p-values in the Hosmer-Lemeshow test ranged between 0.420 and 0.701. CONCLUSIONS: Prevalence of spinal pain among wheelchair users is high. It is associated with a lower quality of life. Future studies should assess whether using a power wheelchair affects PASL, and if the thickness of seat cushion affects NP. SPONSORSHIP: Spanish Back Pain Research Network.Spanish Back Pain Research Network (SBPRN