1,269 research outputs found

    The implications of a changing climate on agricultural land classification in England and Wales

    Get PDF
    The agricultural land classification (ALC) of England and Wales is a formal method of assessing the quality of agricultural land and guiding future land use. It assesses several soil, site and climate criteria and classifies land according to whichever is the most limiting. A common approach is required for calculating the necessary agroclimatic parameters over time in order to determine the effects of changes in the climate on land grading. In the present paper, climatic parameters required by the ALC classification have been re-calculated from a range of primary climate data, available from the Meteorological Office's UKCP09 historical dataset, provided as 5 km rasters for every month from 1914 to 2000. Thirty-year averages of the various agroclimatic properties were created for 1921–50, 1931–60, 1941–70, 1951–80, 1961–90 and 1971–2000. Soil records from the National Soil Inventory on a 5 km grid across England and Wales were used to determine the required soil and site parameters for determining ALC grade. Over the 80-year period it was shown that the overall climate was coolest during 1951–80. However, the area of land estimated in retrospect as ‘best and most versatile (BMV) land’ (Grades 1, 2 and 3a) probably peaked in the 1951–80 period as the cooler climate resulted in fewer droughty soils, more than offsetting the land which was downgraded by the climate being too cold. Overall there has been little change in the proportions of ALC grades among the six periods once all 10 factors (climate, gradient, flooding, texture, depth, stoniness, chemical, soil wetness, droughtiness and erosion) are taken into account. This is because it is rare for changes in climate variables all to point in the same direction in terms of ALC. Thus, a reduction in rainfall could result in higher grades in wetter areas but lead to lower classification in drier areas

    Habitability of known exoplanetary systems based on measured stellar properties

    Full text link
    At present, because of observational selection effects, we know of no exoplanetary systems with any planetary masses close to that of the Earth. We have therefore used computer models to see whether such planets could be dynamically stable in the presence of the more massive planets known to be present, and in particular whether planets with roughly an Earth mass could remain confined to the classical habitable zone (HZ) for long enough for life to have emerged. Measured stellar properties have been used to determine for each system the present location of the HZ. We have also determined the critical distances from the orbit of each giant planet within which an Earth-mass planet would suffer large orbital changes. We then evaluated the present habitability of each and every exoplanetary system by examining the penetration of these critical distances into the HZ. The critical distances can be obtained by extensive computer modelling of an exoplanetary system. This is far too time consuming to apply to all of the 150 or so systems already known, and to keep up with the latest discoveries. Therefore, in earlier work we studied a few systems in great detail, and developed a speedier means of obtaining the critical distances. We summarize this comparatively quick method here. We can then evaluate comparatively quickly the present habitability of each exoplanetary system by examining the penetration of the critical distance(s) into the HZ. The results are encouraging for astrobiology.Comment: Accepted for publication by The Astrophysical Journal. A few revisions have been made following suggestions by the refere

    Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada

    Get PDF
    Concentrations of 7Be and 210Pb in 2 years of weekly high-volume aerosol samples collected at Alert, Northwest Territories, Canada, showed pronounced seasonal variations. We observed a broad winter peak in 210Pb concentration and a spring peak in 7Be. These peaks were similar in magnitude and duration to previously reported results for a number of stations in the Arctic Basin. Beryllium 10 concentrations (determined only during the first year of this study) were well correlated with those of 7Be; the atom ratio 10Be/7Be was nearly constant at 2.2 throughout the year. This relatively high value of 10Be/7Be indicates that the stratosphere must constitute an important source of both Be isotopes in the Arctic troposphere throughout the year. A simple mixing model based on the small seasonal variations of 10Be/7Be indicates an approximately twofold increase of stratospheric influence in the free troposphere in late summer. The spring maxima in concentrations of both Be isotopes at the surface apparently reflect vertical mixing in rather than stratospheric injections into the troposphere. We have merged the results of the Be-based mixing model with weekly O3 soundings to assess Arctic stratospheric impact on the surface O3 budget at Alert. The resulting estimates indicate that stratospheric inputs can account for a maximum of 10-15% of the 03 at the surface in spring and for less during the rest of the year. These estimates are most uncertain during the winter. The combination of Be isotopic measurements and O3 vertical profiles could allow quantification of the contributions of O3 from the Arctic stratosphere and lower latitude regions to the O3 budget in the Arctic troposphere. Although at present the lack of a quantitative understanding of the temporal variation of O3 lifetime in the Arctic troposphere precludes making definitive calculations, qualitative examples of the power of this approach are given

    Interactive 3D Visualization Of Optimization For Water Distribution Systems

    Full text link
    This project investigates the use of modern 3D visualisation techniques to enable the interactive analysis of water distribution systems with the aim of providing the engineer with a clear picture of the problem and thus aid the overall design process. Water distribution systems are complex entities that are difficult to model and optimise as they consist of many interacting components each with a set of considerations to address, hence it is important for the engineer to understand and assess the behaviour of the system to enable its effective design and optimisation. This paper presents a new three-dimensional representation of pipe based water systems and demonstrates a range of innovative methods to convey information to the user resulting in the ability to simultaneously display more useful information than traditional two-dimensional plan view network representations. The interactive visualisation system presented not only allows the engineer to visualise the various parameters of a network but also allows the user to observe the behaviour and progress of an iterative optimisation method. This paper contains examples of the combination of the interactive visualisation system and an evolutionary algorithm enabling the user to track and visualise the actions of the algorithm down to an individual pipe diameter change. The visualisation will aggregate changes to the network over an evolutionary algorithm run and ‘lift the lid’ on the operations of an EA as it is optimising a network. In addition, the method allows the engineer to view other important optimisation-related information such as the extent to which constraints have been violated in the current design. It is proposed that this interactive visualisation system will provide engineers an unprecedented view of the way in which optimisation algorithms interact with a network model and may pave the way for greater interaction between engineer, network and optimiser in the future

    Multi-Objective Pipe Smoothing Genetic Algorithm For Water Distribution Network Design

    Full text link
    This paper describes the formulation of a Multi-objective Pipe Smoothing Genetic Algorithm (MOPSGA) and its application to the least cost water distribution network design problem. Evolutionary Algorithms have been widely utilised for the optimisation of both theoretical and real-world non-linear optimisation problems, including water system design and maintenance problems. In this work we present a pipe smoothing based approach to the creation and mutation of chromosomes which utilises engineering expertise with the view to increasing the performance of the algorithm whilst promoting engineering feasibility within the population of solutions. MOPSGA is based upon the standard Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and incorporates a modified population initialiser and mutation operator which directly targets elements of a network with the aim to increase network smoothness (in terms of progression from one diameter to the next) using network element awareness and an elementary heuristic. The pipe smoothing heuristic used in this algorithm is based upon a fundamental principle employed by water system engineers when designing water distribution pipe networks where the diameter of any pipe is never greater than the sum of the diameters of the pipes directly upstream resulting in the transition from large to small diameters from source to the extremities of the network. MOPSGA is assessed on a number of water distribution network benchmarks from the literature including some real-world based, large scale systems. The performance of MOPSGA is directly compared to that of NSGA-II with regard to solution quality, engineering feasibility (network smoothness) and computational efficiency. MOPSGA is shown to promote both engineering and hydraulic feasibility whilst attaining good infrastructure costs compared to NSGA-II

    Health and welfare profile of Australian baby boomers who live in rented accommodation – implications for the future

    Get PDF
    Incorrect spelling of Helen Barrie on the publication, left Statement of responsibility to reflect incorrect pdf.Baby boomers who rent are often overlooked as an important sub-group. We aimed to assess the chronic conditions, risk factors, socio-economic factors and other health-related factors associated with renting in private or public housing. Data from telephone interviews conducted each month in South Australia between and were combined. Prevalence estimates were assessed for each risk factor and chronic condition by housing status. The association between housing status and variables of interest were analysed using logistic regression models adjusting for multiple covariates (age, gender, income, smoking, physical activity, area and year of data collection). Overall, per cent of the baby boomers interviewed were renting, either privately or using government-subsided housing. The health profile of renters (both private and public) was poorer overall, with renters more likely to have all of the chronic conditions and ten risk factors assessed. For public renters the relationships were maintained even after controlling for socio-economic and risk factor variables for all chronic diseases except osteoporosis. This research has provided empirical evidence of the considerable differences in health, socio-economic indicators and risk factors between baby boomers who rent and those who own, or are buying, their own homes.Anne W. Taylor, Rhiannon Pilkington, Eleonora Dal Grande, Constance Kourbelis and Helen Barr

    Examining the efficacy of six published time-lapse imaging embryo selection algorithms to predict implantation to demonstrate the need for the development of specific, in-house morphokinetic selection algorithms.

    Get PDF
    OBJECTIVE: To study the efficacy of six embryo-selection algorithms (ESAs) when applied to a large, exclusive set of known implantation embryos. DESIGN: Retrospective, observational analysis. SETTING: Fertility treatment center. PATIENT(S): Women undergoing a total of 884 in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) treatment cycles (977 embryos) between September 2014 and September 2015 with embryos cultured using G-TL (Vitrolife) at 5% O2, 89% N2, 6% CO2, at 37°C in EmbryoScope instruments. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Efficacy of each ESA to predict implantation defined using specificity, sensitivity, positive predictive value (PPV), negative predictive value (NPV), area under the receiver operating characteristic curve (AUC), and likelihood ratio (LR), with differences in implantation rates (IR) in the categories outlined by each ESA statistically analyzed (Fisher's exact and Kruskal-Wallis tests). RESULT(S): When applied to an exclusive cohort of known implantation embryos, the PPVs of each ESA were 42.57%, 41.52%, 44.28%, 38.91%, 38.29%, and 40.45%. The NPVs were 62.12%, 68.26%, 71.35%, 76.19%, 61.10%, and 64.14%. The sensitivity was 16.70%, 75.33%, 72.94%, 98.67%, 51.19%, and 62.33% and the specificity was 85.83%, 33.33%, 42.33%, 2.67%, 48.17%, and 42.33%, The AUC were 0.584, 0.558, 0.573, 0.612, 0.543, and 0.629. Two of the ESAs resulted in statistically significant differences in the embryo classifications in terms of IR. CONCLUSION(S): These results highlight the need for the development of in-house ESAs that are specific to the patient, treatment, and environment. These data suggest that currently available ESAs may not be clinically applicable and lose their diagnostic value when externally applied

    Preliminary investigation of the prevalence and implantation potential of abnormal embryonic phenotypes assessed using time-lapse imaging.

    Get PDF
    This retrospective, single site observational study aimed to delineate five abnormal embryonic developmental phenotypes, assessing their prevalence, development potential and suitability for inclusion in embryo selection models for IVF. In total, 15,819 embryos from 4559 treatment cycles cultured in EmbryoScope® incubators between January 2014 and January 2016 were included. Time-lapse images were assessed retrospectively for five abnormal embryo phenotypes: direct cleavage, reverse cleavage, absent cleavage, chaotic cleavage and cell lysis. The prevalence of each abnormal phenotype was assessed. Final embryo disposition, embryo quality and implantation rate were determined and compared with a control embryo cohort. The collective prevalence for the five abnormal phenotypes was 11.4%; chaotic cleavage and direct cleavage together constituted 9.7%. Implantation rates were 17.4%, 0%, 25%, 2.1% and 0% for direct, reverse, absent, chaotic cleavage and cell lysis, respectively. The overall implantation rate for all abnormal embryos with known implantation status was significantly lower compared with the control population (6.9% versus 38.7%, P < 0.0001). The proportion of good quality embryos in each category of abnormal cleavage remained below 25%. Embryos exhibiting an abnormal phenotype may have reduced developmental capability, manifested in both embryo quality and implantation potential, when compared with embryos of normal phenotype

    Fast Plasma Investigation for MMS: Simulation of the Burst Triggering System

    Get PDF
    The Magnetospheric Multiscale (MMS) mission will study small-scale reconnection structures and their rapid motions from closely spaced platforms using instruments capable of high angular, energy, and time resolution measurements. To meet these requirements, the Fast Plasma Instrument (FPI) consists of eight (8) identical half top-hat electron sensors and eight (8) identical ion sensors and an Instrument Data Processing Unit (IDPU). The sensors (electron or ion) are grouped into pairs whose 6 degree x 180 degree fields-of-view (FOV) are set 90 degrees apart. Each sensor is equipped with electrostatic aperture steering to allow the sensor to scan a 45 degree x 180 degree fan about the its nominal viewing (0 deflection) direction. Each pair of sensors, known as the Dual Electron Spectrometer (DES) and the Dual Ion Spectrometer (DIS), occupies a quadrant on the MMS spacecraft and the combination of the eight electron/ion sensors, employing aperture steering, image the full-sky every 30-ms (electrons) and 150-ms (ions), respectively. To probe the diffusion regions of reconnection, the highest temporal/spatial resolution mode of FPI results in the DES complement of a given spacecraft generating 6.5-Mb (raised dot) per second of electron data while the DIS generates 1.1-Mb (raised dot) per second of ion data yielding an FPI total data rate of 6.6-Mb (raised dot) per second. The FPI electron/ion data is collected by the IDPU then transmitted to the Central Data Instrument Processor (CIDP) on the spacecraft for science interest ranking. Only data sequences that contain the greatest amount of temporal/spatial structure will be intelligently down-linked by the spacecraft. This requires a data ranking process known as the burst trigger system. The burst trigger system uses pseudo physical quantities to approximate the local plasma environments. As each pseudo quantity will have a different value, a set of two scaling factors is employed for each pseudo term. These pseudo quantities are then combined at the instrument, spacecraft, and observatory level leading to a final ranking of data based on expected scientific interest. Here, we present simulations of the fixed point burst trigger system for the FPI. A variety of data sets based on previous mission data as well as analytical formulations are tested. Comparisons of floating point calculations versus the fixed point hardware simulation are shown. Analysis of the potential sources of error from overflows, quantization, etc. are examined and mitigation methods are presented. Finally a series of calibration curves are presented, showing the expected error in pseudo quantities based solely on the scale parameters chosen and the expected data range. We conclude with a presentation of the current base-lined FPI burst trigger approach
    • …
    corecore