82 research outputs found

    Weissella halotolerans W22 combines arginine deiminase and ornithine decarboxylation pathways and converts arginine to putrescine

    Get PDF
    Aims: To demonstrate that the meat food strain Weissella halotolerans combines an ornithine decarboxylation pathway and an arginine deiminase (ADI) pathway and is able to produce putrescine, a biogenic amine. Evidence is shown that these two pathways produce a proton motive force (PMF). Methods and Results: Internal pH in W. halotolerans was measured with the sensitive probe 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein. Membrane potential was measured with the fluorescent probe 3,3'-dipropylthiocarbocyanine iodine. Arginine and ornithine transport studies were made under several conditions, using cells loaded or not loaded with the biogenic amine putrescine. ADI pathway caused an increase in Delta pH dependent on the activity of F(0)F(1)ATPase. Ornithine decarboxylation pathway generates both a Delta pH and a Delta Psi. Both these pathways lead to the generation of a PMF. Conclusions: Weissella halotolerans W22 combines an ADI pathway and an ornithine decarboxylation pathway, conducing to the production of the biogenic amine putrescine and of a PMF. Transport studies suggest the existence of a unique antiporter arginine/putrescine in this lactic acid bacteria strain. Significance and Impact of the Study: The coexistence of two different types of amino acid catabolic pathways, leading to the formation of a PMF, is shown for a Weissella strain for the first time. Moreover, a unique antiport arginine/putrescine is hypothesized to be present in this food strain

    Cork stoppers industry: defining appropriate mould colonization

    Get PDF
    Aims: The main aims of this work were the study of cork slabs moulds colonization and the evaluation of the moulds diversity during cork processing steps, in different cork stoppers factories. Simultaneously, it was envisaged to perform an evaluation of the air quality. Methods and Results: Moulds were isolated and identified from cork slabs and cork samples in four cork stoppers factories. The identification was based on morphological characters and microscopic observation of the reproductive structures. Airborne spore dispersion was assessed using a two stage Andersen sampler. It was observed that Chrysonilia sitophila was always present on cork slabs during the maturing period, but mould diversity appeared to be associated to the different factory configurations and processing steps. Conclusions: Spatial separation of the different steps of the process, including physical separation of the maturation step, is essential to guarantee high air quality and appropriate cork slabs colonization, i.e. C. sitophila dominance. The sorting and cutting of the edges of cork slabs after boiling and before the maturing step is also recommended. Significance and Impact of the Study: This study is very important for the cork stopper industry as it gives clear indications on how to keep high quality manufacturing standards and how to avoid occupational health problems.Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa, Apt. 12, 2781-901 OEIRAS. Portugal 2 Estação Agronómica Nacional, 2784-505 OEIRAS. Portugal 3 Estação Vitivinícola Nacional, 2565-191 DOIS PORTOS. Portugal. Program PEDIP II, M 4.8, IAPMEI, Ministério da Economia, Portugal

    Assessing gastro-intestinal related quality of life in cystic fibrosis: Validation of PedsQL GI in children and their parents

    Get PDF
    Background: Most patients with cystic fibrosis (CF) suffer from pancreatic insufficiency, leading to fat malabsorption, malnutrition and abdominal discomfort. Until recently, no specific tool was available for assessing gastro-intestinal related quality of life (GI QOL) in patients with CF. As the Horizon2020 project MyCyFAPP aims to improve GI QOL by using a newly designed mobile application, a sensitive and reliable outcome measure was needed. We aimed to study the applicability of the existing child-specific Pediatric Quality of Life Inventory, Gastrointestinal Symptoms Scales and Module (PedsQL GI) in children with CF. Methods: A multicenter, prospective observational study was performed in 6 European centers to validate the PedsQL GI in children with CF during 3 months. Results: In total, 248 children and their parents were included. Within-patient variability of PedsQL GI was low (24.11), and there was reasonable agreement between children and parents (ICC 0.681). Nine of 14 subscales were informative (no ceiling effect). The PedsQL GI and the median scores for 4 subscales were significantly lower in patients compared to healthy controls. Positive associations were found between PedsQL GI and age (OR = 1.044, p = 0.004) and between PedsQL GI and BMI z-score (OR = 1.127, p = 0.036). PedsQL GI correlated with most CFQ-R subscales (r 0.268 to 0.623) and with a Visual Analogue Scale (r = 0.20). Conclusions: PedsQL GI is a valid and applicable instrument to assess GI QOL in children with CF. Future research efforts should examine the responsiveness of the CF PedsQL GI to change in the context of clinical interventions and trials

    Assessing gastro-intestinal related quality of life in cystic fibrosis: Validation of PedsQL GI in children and their parents

    Get PDF
    Background: Most patients with cystic fibrosis (CF) suffer from pancreatic insufficiency, leading to fat malabsorption, malnutrition and abdominal discomfort. Until recently, no specific tool was available for assessing gastro-intestinal related quality of life (GI QOL) in patients with CF. As the Horizon2020 project MyCyFAPP aims to improve GI QOL by using a newly designed mobile application, a sensitive and reliable outcome measure was needed. We aimed to study the applicability of the existing child-specific Pediatric Quality of Life Inventory, Gastrointestinal Symptoms Scales and Module (PedsQL GI) in children with CF. Methods: A multicenter, prospective observational study was performed in 6 European centers to validate the PedsQL GI in children with CF during 3 months. Results: In total, 248 children and their parents were included. Within-patient variability of PedsQL GI was low (24.11), and there was reasonable agreement between children and parents (ICC 0.681). Nine of 14 subscales were informative (no ceiling effect). The PedsQL GI and the median scores for 4 subscales were significantly lower in patients compared to healthy controls. Positive associations were found between PedsQL GI and age (OR = 1.044, p = 0.004) and between PedsQL GI and BMI z-score (OR = 1.127, p = 0.036). PedsQL GI correlated with most CFQ-R subscales (r 0.268 to 0.623) and with a Visual Analogue Scale (r = 0.20). Conclusions: PedsQL GI is a valid and applicable instrument to assess GI QOL in children with CF. Future research efforts should examine the responsiveness of the CF PedsQL GI to change in the context of clinical interventions and trials

    Partial loss of Tip60 slows mid-stage neurodegeneration in a spinocerebellar ataxia type 1 (SCA1) mouse model

    Get PDF
    Spinocerebellar ataxia type 1 (SCA1) is one of nine dominantly inherited neurodegenerative diseases caused by polyglutamine tract expansion. In SCA1, the expanded polyglutamine tract is in the ataxin-1 (ATXN1) protein. ATXN1 is part of an in vivo complex with retinoid acid receptor-related orphan receptor alpha (Rora) and the acetyltransferase tat-interactive protein 60 kDa (Tip60). ATXN1 and Tip60 interact directly via the ATXN1 and HMG-box protein 1 (AXH) domain of ATXN1. Moreover, the phospho-mimicking Asp amino acid at position 776, previously shown to enhance pathogenesis, increases the ability of ATXN1 to interact with Tip60. Using a genetic approach, the biological relevance of the ATXN1/Tip60 interaction was assessed by crossing ATXN1[82Q] mice with Tip60+/−animals. Partial Tip60 loss increased Rora and Rora-mediated gene expression and delayed ATXN1[82]-mediated cerebellar degeneration during mid-stage disease progression. These results suggested a specific, temporal role for Tip60 during disease progression. We also showed that genetic background modulated ATXN1[82Q]-induced phenotypes. Of interest, these latter studies showed that some phenotypes are enhanced on a mixed background while others are suppressed

    Partial Loss of Ataxin-1 Function Contributes to Transcriptional Dysregulation in Spinocerebellar Ataxia Type 1 Pathogenesis

    Get PDF
    Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease caused by expansion of a CAG repeat that encodes a polyglutamine tract in ATAXIN1 (ATXN1). Molecular and genetic data indicate that SCA1 is mainly caused by a gain-of-function mechanism. However, deletion of wild-type ATXN1 enhances SCA1 pathogenesis, whereas increased levels of an evolutionarily conserved paralog of ATXN1, Ataxin 1-Like, ameliorate it. These data suggest that a partial loss of ATXN1 function contributes to SCA1. To address this possibility, we set out to determine if the SCA1 disease model (Atxn1154Q/+ mice) and the loss of Atxn1 function model (Atxn1−/− mice) share molecular changes that could potentially contribute to SCA1 pathogenesis. To identify transcriptional changes that might result from loss of function of ATXN1 in SCA1, we performed gene expression microarray studies on cerebellar RNA from Atxn1−/− and Atxn1154Q/+ cerebella and uncovered shared gene expression changes. We further show that mild overexpression of Ataxin-1-Like rescues several of the molecular and behavioral defects in Atxn1−/− mice. These results support a model in which Ataxin 1-Like overexpression represses SCA1 pathogenesis by compensating for a partial loss of function of Atxn1. Altogether, these data provide evidence that partial loss of Atxn1 function contributes to SCA1 pathogenesis and raise the possibility that loss-of-function mechanisms contribute to other dominantly inherited neurodegenerative diseases

    Targeting Several CAG Expansion Diseases by a Single Antisense Oligonucleotide

    Get PDF
    To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the HTT gene, which results in an expansion of a glutamine stretch at the N-terminal end of the huntingtin protein. This polyglutamine expansion plays a central role in the disease and results in the accumulation of cytoplasmic and nuclear aggregates. Here, we make use of modified 2′-O-methyl phosphorothioate (CUG)n triplet-repeat antisense oligonucleotides to effectively reduce mutant huntingtin transcript and protein levels in patient-derived Huntington's disease fibroblasts and lymphoblasts. The most effective antisense oligonucleotide, (CUG)7, also reduced mutant ataxin-1 and ataxin-3 mRNA levels in spinocerebellar ataxia 1 and 3, respectively, and atrophin-1 in dentatorubral-pallidoluysian atrophy patient derived fibroblasts. This antisense oligonucleotide is not only a promising therapeutic tool to reduce mutant huntingtin levels in Huntington's disease but our results in spinocerebellar ataxia and dentatorubral-pallidoluysian atrophy cells suggest that this could also be applicable to other polyglutamine expansion disorders as well

    Clinical validation of an evidence-based method to adjust Pancreatic Enzyme Replacement Therapy through a prospective interventional study in paediatric patients with Cystic Fibrosis

    Get PDF
    Background A method to adjust Pancreatic Enzyme Replacement Therapy in Cystic Fibrosis is not currently available. Objectives To assess the in vivo efficacy of a method to adjust the dose of enzymatic supplement in CF extrapolated from previous in vitro digestion studies (theoretical optimal dose, TOD). Secondly, to assess how individual patient characteristics influence the expected coefficient of fat absorption (CFA) and thus to identify an individual correction factor to improve TOD. Methods A prospective interventional study in 43 paediatric patients with CF from 5 European centres. They followed a 24h fixed diet with the theoretical optimal dose for each meal. Faecal collection was carried out between colorimetric markers in order to include all the faeces corresponding to the fixed diet. Beta regression models were applied to assess the associations of individual patient characteristics with the CFA. Results Median CFA was 90% (84, 94% 1st, 3rd Q.) with no significant differences among centres. Intestinal transit time was positively associated with CFA (p = 0.007), but no statistical associations were found with and age, gender, phenotype or BMI. Regression model showed no improvement of the in vitro predicted theoretical optimal dose when taking individual patient characteristics into account. Conclusion Strict adherence to the theoretical optimal dose of enzymatic supplement for a prescribed meal, led to median CFA levels at the clinical target of 90% with a low variability between patients. The proposed method can be considered as a first approach for an evidencebased method in PERT dosing based on food characteristics. Results have to be confirmed in free dietary settings

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore