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ORIGINAL ARTICLE
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Introduction

The catabolism of amino acids by lactic acid bacteria

(LAB) has implications for the quality and safety of

fermented foods (Silla Santos 1996; Vergés et al. 1999).

Amino acids are the precursors of compounds that signifi-

cantly contribute to the characteristic flavour of some

foodstuffs (Fernandez and Zúñiga 2006). But amino acids

can also be converted to biogenic amines, by deiminase

and decarboxylation pathways present in LAB that colonize

the food product (Pereira et al. 2001). Biogenic amines can

compromise the health of the consumer being responsible

for several food-poisoning incidents causing headaches,

palpitations, flushing, hypertension or vomiting (van de

Vossenberg et al. 1998; Lonvaud-Funel 2006; Alberto et al.

2007; Lucas et al. 2007).

Biogenic amine production is a beneficial physiological

process for those strains that have acquired the capacity to

produce them and amino acid decarboxylation pathways

can lead to the production of a proton motive force (PMF)

by a secondary mechanism (Konings 2002) in which pro-

tons are consumed in the cytoplasmic decarboxylation

reaction and membrane potential by coupling uptake of

amino acid with the extrusion of biogenic amine.

Arginine is one of the amino acids most commonly

found in fermented meat products (Vergés et al. 1999).

The main arginine catabolic pathway performed by LAB

is the arginine deiminase (ADI) pathway, which has been
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Abstract

Aims: To demonstrate that the meat food strain Weissella halotolerans com-

bines an ornithine decarboxylation pathway and an arginine deiminase (ADI)

pathway and is able to produce putrescine, a biogenic amine. Evidence is

shown that these two pathways produce a proton motive force (PMF).

Methods and Results: Internal pH in W. halotolerans was measured with the

sensitive probe 2¢,7¢–bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein. Mem-

brane potential was measured with the fluorescent probe 3,3¢-dipropylthio-

carbocyanine iodine. Arginine and ornithine transport studies were made

under several conditions, using cells loaded or not loaded with the biogenic

amine putrescine. ADI pathway caused an increase in DpH dependent on the

activity of F0F1ATPase. Ornithine decarboxylation pathway generates both a

DpH and a DW. Both these pathways lead to the generation of a PMF.

Conclusions: Weissella halotolerans W22 combines an ADI pathway and an

ornithine decarboxylation pathway, conducing to the production of the bio-

genic amine putrescine and of a PMF. Transport studies suggest the existence

of a unique antiporter arginine ⁄ putrescine in this lactic acid bacteria strain.

Significance and Impact of the Study: The coexistence of two different types of

amino acid catabolic pathways, leading to the formation of a PMF, is shown

for a Weissella strain for the first time. Moreover, a unique antiport argi-

nine ⁄ putrescine is hypothesized to be present in this food strain.
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described in strains belonging to genera Enterococcus,

Lactobacillus, Lactococcus, Leuconostoc, Oenococcus, Strep-

tococcus and Weissella (Ammor and Mayo 2007). The

ADI pathway comprises three sequential reactions cataly-

sed by ADI (EC 3.5.3.6), ornithine carbamoyl-transferase

(OTC; EC 2.1.3.3) and carbamate kinase (CK; EC 2.7.2.2)

and leads to the conversion of arginine into ornithine,

ammonia and CO2, with the concomitant production of

1 mol of ATP per mol of arginine consumed (Fig. 1). In

the first step, ADI converts arginine to citrulline and

ammonia. The product citrulline is cleaved by OTC into

ornithine and carbamoyl-phosphate in the second step,

after which the latter is used by CK to convert ADP to

ATP followed by the spontaneous decomposition of car-

bamate into ammonia and CO2. Importantly, a secondary

transporter catalysing electroneutral arginine ⁄ ornithine

exchange is responsible for the coupled uptake of the pre-

cursor and the excretion of the product of the pathway

(Christensen et al. 1999). Because the ADI pathway pro-

vides energy (ATP), it is believed to have an important

role in obtaining energy in nutrient-limited environments.

This is confirmed by the fact that in most bacteria, energy

depletion seems to be a key triggering factor for the

induction of the ADI pathway. Additionally, the ADI

pathway is also believed to play a role in the protection

against an acidic environment, through the production of

ammonia. Deiminase pathways have been described only

for arginine and agmatine (Driessen et al. 1988; Lucas

et al. 2007). Many amino acids can be decarboxylated in

a single step by a cytoplasmic decarboxylase, which

together with a transporter is responsible for the coupled

uptake of the amino acid and excretion of the produced

biogenic amine, and form an autonomous metabolic

pathway, as is exemplified for the pathway in Fig. 1.

Examples would be the conversion of histidine into his-

tamine, tyrosine into tyramine, lysine into cadaverine and,

also, ornithine into putrescine (Kashigwagi et al. 1992;

Konings et al. 1997; Marcobal et al. 2004). The decarboxyl-

ation reaction consumes a proton, resulting in cytoplasm

alkalinization. Additionally, it introduces a charge differ-

ence across the membrane between the precursor and the

product, i.e. monovalent ornithine is converted to divalent

putrescine, which results in the generation of a membrane

potential of physiological polarity when the two are

exchanged by the (ornithine ⁄ putrescine) transporter.

Taken together, alkalinization of the cytoplasm and mem-

brane potential generation are equivalent to pumping

protons outside the cell resulting in PMF formation

(Wolken et al. 2006; Lucas et al. 2007).

Previous studies identified the genes coding for the

enzymes of ADI pathway in Weissella halotolerans W22

(C.I. Pereira, A.T. Pires, H. Silva, C. Leitao, M.V. San

Romao and M.T.B. Crespo, unpublished data). Interest-

ingly, in the same study, the strain W22 was also found

to be able to decarboxylate ornithine (Poolman et al.

1987) into the corresponding biogenic amine putrescine,

and the gene coding for ornithine decarboxylase (OTC)

was also identified. This is surprising because ornithine is

a metabolite common to both pathways, and the activity

of the OTC in the cytoplasm would interfere with the

completion of the ADI pathway (Fig. 1). In this study, we

demonstrate that in the same cells of W. halotolerans

W22, both the ADI and ornithine decarboxylation path-

ways can operate independently and produce ATP and

PMF respectively. Transport studies suggest the presence

of an arginine ⁄ putrescine exchanger in the membrane of

W. halotolerans.

ADI pathway

ODC pathway
Weissella halotolerans

out in

ADI

ATP, NH3, CO2

NH3

H+

CO2

OTC

ODC

Cit

Arg+Arg+

Orn+

Orn+ Orn+

Put2+ Put2+

Orn+

Figure 1 Proposed model for combined arginine deiminase (ADI)

pathway and ornithine decarboxylation pathway in strain Weissella

halotolerans W22. The ADI pathway comprises three sequential reac-

tions: in the first step, ADI converts arginine to citrulline, ammonia

and carbon dioxide. Then, the product citrulline is cleaved by OTC

into ornithine and carbamoyl-phosphate in the second step, after

which the latter is used by carbamate kinase (CK) to convert ADP to

ATP followed by the spontaneous decomposition of carbamate into

ammonia and CO2. Importanly, a secondary transporter catalyzing

electroneutral arginine ⁄ ornithine exchange is responsible for the cou-

ple uptake of the precursor and the excretion of the product of the

pathway. ADI, ADI pathway; ATP, adenosine triphosphate; Arg, argi-

nine; Cit, citruline; CO2, carbon dioxide; H+, hydrogen ion; NH3,

ammonium; ODC, ornithine decarboxylase; Orn, ornithine; OTC, orni-

thine transcarbamilase; Put, putrescine.

C.I. Pereira et al. Arginine ⁄ ornithine ⁄ putrescine decarboxylation pathways in Weisella W22

ª 2009 The Authors

Journal compilation ª 2009 The Society for Applied Microbiology, Journal of Applied Microbiology 107 (2009) 1894–1902 1895



Materials and methods

Materials

L-[U-14C]Arginine and L-[U-14C]Ornithine were pur-

chased from GE Healthcare Europe GmbH (Munich,

Germany). The pH-sensitive fluorescent probe 2¢,7¢–bis-

(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF)

and the fluorescent probe 3,3¢-dipropylthiocarbocyanine

iodine [DiSC3(5)] were obtained from Molecular Probes

(Eugene, OR, USA). The ATPase inhibitor N,N¢-dic-

yclohexylcarbodiimide (DCCD), putrescine, valinomycin

and nigericin were all purchased from Sigma-Aldrich.

De Man, Rogosa and Sharp broth (MRS) medium was

obtained from Merck KGaA (Darmstadt, Germany).

BCA Protein Assay kit was purchased from Pierce

(Rockford, IL, USA). All other chemicals were of reagent

grade.

Micro-organism and growth conditions

The strain W. halotolerans W22 was isolated from a tradi-

tional Portuguese fermented sausage. The strain was

grown at 30�C without agitation in modified MRS med-

ium containing (g l)1): 5, glucose (Merck); 4, yeast

extract (Oxoid, UK); 10, peptone (Merck); 2, potassium

dihydrogenphosphate (Panreac Quimica, Lyon, France);

0Æ2, magnesium sulfate heptahydrated; 0Æ1, manganesium

sulfate hydrated and 1 ml, Tween 80. When stated, the

growth medium was supplemented with 20 mmol l)1

arginine (Sigma Aldrich). The pH was adjusted to 6Æ3–

6Æ5. Growth was estimated by measuring optical density

at 600 nm (OD600) in a UV ⁄ visible spectrophotometer

(UltroSpec 2100 Pro; GE Healthcare Europe).

Acid shock experiments

Acid shock experiments were performed as described by

Iyer et al. (2003) with some modifications. Briefly, cells

were grown overnight in modified MRS medium as pre-

viously mentioned. Stationary-phase cultures were

diluted 1 : 1000 into prewarmed MRS medium at pH

2Æ5, without amino acid supplementation (control) or

supplemented with 10 mmol l)1 of arginine or

10 mmol l)1 of ornithine. The cultures were incubated

at 30�C, and after 3 h appropriate serial dilutions were

plated on MRS agar plates, in triplicate. Colony forming

units (CFUs) were counted after 24 h incubation at

30�C. Survival efficiency was defined as the percentage

of survivor colonies relative to the number of colonies

plated directly from the stationary-phase culture without

the acid shock step. Results are the mean of three inde-

pendent CFU plate countings.

Measurement of internal pH and membrane potential

An overnight culture of W. halotolerans W22 was diluted

into fresh modified MRS medium to an initial OD600 of

0Æ1. When the growth culture reached an OD600 of 0Æ6–

0Æ8, cells were harvested by centrifugation (10 000 g,

10 min, 4�C), washed with 50 mmol l)1 potassium phos-

phate buffer (pH 5Æ5) (KPi buffer) and resuspended in

1 ml of the same buffer.

The internal pH was measured with the sensitive probe

BCECF as described by Magni et al. (1999). Briefly, 1 ll of

a 10 mmol l)1 BCECF solution was added to 20 ll of a cell

suspension typically containing 50 mg ml)1 of protein, fol-

lowed by 2Æ5 ll of 0Æ5 mol l)1 HCl to shock the probe into

the cells. The suspension was left for 5 min. at room tem-

perature, after which 1 ml of KPi buffer (pH 5Æ5) was

added. The cells were spun down, resuspended in 200 ll of

KPi buffer and kept on ice until use. Reactions were carried

out in 2 ml buffer containing 10 ll of the BCECF-loaded

cells at 30�C, under constant stirring. At time intervals,

glucose, arginine and ornithine were added (10 mmol l)1

each in reaction). The fluorescent signal was sampled every

second. Fluorescence was directly correlated with the intra-

cellular pH of cells suspended in the same buffer contain-

ing Triton X and the ionophores valinomycin and

nigericin, to completely abolish PMF.

The membrane potential was measured qualitatively

with the fluorescent probe DiSC3(5). An increase in elec-

trical potential across the membrane correlates with a

decrease in fluorescence intensity. For each experiment,

10 ll of a cell suspension prepared as described was

added to 2 ml of KPi buffer at 30�C, and 4 ll of a

1 mmol l)1 solution of DiSC3(5) was subsequently added.

At time intervals, glucose, arginine and ornithine were

added (10 mmol l)1 each in reaction). The fluorescence

signal was recorded every second. In both assays, F0F1-

ATPase activity was inhibited by preincubation of the

cells with 30 mmol l)1 DCCD for 30 min at room

temperature. Valinomycin (a K+ ionophore) and nigericin

(a K+ ⁄ H+ exchanger) were used in sample reactions at

final concentrations of 0Æ75 lmol l)1.

Transport assays using whole cells

Strain W. halotolerans W22 was grown in as described

before in modified MRS medium supplemented with

20 mmol l)1 arginine. Cells from a culture grown to an

OD600 of 0Æ6–0Æ8 were harvested by centrifugation,

washed with KPi buffer and resuspended in 1 ml of the

same buffer. Three microlitres of this cell suspension were

diluted into 93 ll of the same buffer. At time 0,

L-[U-14C]arginine or L-[U-14C]ornithine was added to

achieve final concentrations of 0Æ3 lmol l)1 or 0Æ4 lmol l)1

Arginine ⁄ ornithine ⁄ putrescine decarboxylation pathways in Weisella W22 C.I. Pereira et al.
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respectively. Uptake was stopped at indicated times by

the addition of 2 ml of ice-cold 0Æ1 mol l)1 LiCl solution

immediately followed by filtering through a 0Æ45 lmol l)1

pore-sized nitrocellulose filter (BA85; Schleifer & Schuell

GmbH, Dassel, Germany). The filter was washed once

with 2 ml of ice-cold 0Æ1 mol l)1 LiCl and submerged in

Emulsifier Scintillation Plus scintillation fluid (Hewlett

Packard, CA), and the retained radioactivity was counted

in Tri-Carb 2000CA liquid scintillation counter (Packard

Instrumentation). The background was estimated by add-

ing 2 ll of the radiolabelled substrate to the cell suspen-

sion immediately after the addition of 2 ml of ice-cold

LiCl, followed by filtering. Cells were energized by incu-

bating the cell suspension with KPi buffer containing

20 mmol l)1 glucose, at room temperature for 5 min,

under conditions of constant stirring.

To load cells with putrescine, these were obtained by

incubation of the cell suspension for 1 h at 30�C with

5 mmol l)1 of putrescine and 4 lmol l)1 final concentra-

tions of valinomycin and nigericin. Reactions were initi-

ated by diluting 3 ll of this cell suspension in 97 ll of

buffer containing labelled arginine or labelled ornithine.

Valinomycin and nigericin were added to give a final

concentration of 2% (v ⁄ v). When stated, in the Results

section, not labelled putrescine was added to the reaction

buffer. Chase experiments were performed by allowing

cells to uptake labelled arginine or labelled ornithine.

After 1 min of arginine or ornithine uptake, 1 mmol l)1

cold (not labelled) ornithine or arginine respectively, or

cold putrescine, were added to the reactions mixture.

Retained radioactivity was measured as before.

Protein quantification

Total protein was quantified using the BCA Protein Assay

kit from Pierce, using bovine serum albumin as the stan-

dard for quantification. Five millilitres of a cell culture

was centrifuged (13 200 g, 8 min), and the cells were

washed with 50 mmol l)1 KPi buffer and diluted into

1 ml of the same buffer. Cells were disrupted by sonica-

tion performed on ice, at 50% potency for 30 s followed

by 30 s pause, for a total of 3 min. The total protein of

this cell suspension was then quantified.

Results

Arginine and ornithine requirement in acid shock

survival

Weissella halotolerans W22 cells were challenged with acid

shock in the presence of 10 mmol l)1 concentration of

arginine or ornithine, and survival efficiency was assessed.

Control cells (with no added amino acid) showed high

susceptibility to acid shock (35% survival), but addition

of 10 mmol l)1 arginine to the shock medium raised the

survival efficiency to 55%.

Remarkably, when 10 mmol l)1 ornithine was used to

supplement the medium instead of arginine, the survival

efficiency was even higher (95%). These results clearly

show the major role of arginine and even more of orni-

thine in the response of W. halotolerans W22, when

imposed to an acid stress, and prompted us to investigate

the role of arginine and ornithine in the energetic state of

the strain W22.

DpH generation by arginine and ornithine catabolism

in W. halotolerans W22

The bioenergetic consequences of arginine and ornithine

catabolism pathways in resting cells of W. halotolerans

W22 were investigated by monitoring the two compo-

nents of the PMF, i.e. the pH gradient (DpH) and the

membrane potential (DW) across the cytoplasmic mem-

brane. Resting cells of strain W22, when suspended in

50 mmol l)1 potassium phosphate buffer pH 5Æ5, were

able to maintain an intracellular pH (pHin) of about 6Æ5,

which corresponds to a pH gradient of 1Æ0 unit, inside

alkaline (Fig. 2). Addition of arginine (Fig. 2a) to these

cells resulted in a net alkalinization of the cytoplasm.

After a transient acidification, the pH reached a value

close to 7Æ4, corresponding to a DpH of 1Æ9. Under these

conditions, addition of valinomycin, a K+ ionophore that

converts membrane potential in DpH, resulted in a fur-

ther increase of the internal pH up to a final DpH of 2Æ1.

Addition of nigericine, which catalyses electroneutral

exchange between K+ and H+, resulted in a complete

abolishment of DpH (data not shown).

Weissella halotolerans W22 cells metabolizing arginine

through ADI pathway produce ammonia that alkalinizes

the medium. In the ADI pathway, ATP is formed, which

is used to pump protons across the cytoplasmic mem-

brane by F0F1ATPase to generate PMF. This was con-

firmed by preincubating the cells with the F0F1ATPase

inhibitor DCCD. Then, addition of arginine did not

result in the alkalinization of the cytoplasm (Fig. 2a).

Instead, an acidification of the cytoplasm by half a pH

unit was observed, suggesting that the initial acidification

in the untreated cells is related to the metabolism of argi-

nine in the cells. The results are consistent with the func-

tion of the ADI pathway in providing the cell with ATP,

which can be hydrolysed by F0F1ATPase to extrude pro-

tons from the cell cytoplasm.

The same resting cells of strain W22 were also assayed

for the cytoplasmic pH in response to the addition of

ornithine (Fig. 2b). Addition of ornithine caused an

immediate increase of internal pH to a value close to 7Æ4,
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corresponding to a DpH of 1Æ9. Nigericin addition com-

pletely dissipated the pH gradient (not shown). Addition

of valinomycin did not further increase the pH gradient,

suggesting that in this case the PMF is solely composed

of a DpH.

Contrary to the effect of arginine addition to DCCD-

treated cells, addition of ornithine resulted in an equal

increase of internal pH, as observed for the untreated

cells, indicating that F0F1ATPase does not play a role in

the alkalinization of cytoplasm during ornithine catabo-

lism in cells W22, which is consistent with an ornithine

decarboxylation pathway.

Membrane potential measurements in whole cells of

Weissella W22

The formation of a membrane potential (DW) by

Weissella W22, as a result of arginine metabolism by ADI

pathway, was also studied (Fig. 3). Addition of arginine

(Fig. 3a) to these resting cells caused an immediate

increase in membrane potential (about 10% increase),

after which a steady state was achieved.

Addition of nigericin augmented the DW to a maximal

value, as a result of conversion of DpH into DW. At this

point, PMF was constituted solely by DW. Valinomycin

also increased DW of these cells, but at a much lower rate

than nigericin. These results suggest that both ionophores,

valinomycin and nigericin, stimulate the ADI pathway,

resulting in an increase in PMF.

When the same experiments were performed with

DCCD-treated cells, they did not show any variation in

membrane potential after arginine addition. This observa-

tion indicates that ADI pathway in W22 cells is directly

coupled to F0F1ATPase activity. In parallel, when orni-

thine was added – instead of arginine – to resting cells of

strain Weissella W22 (Fig. 3b), an immediate increase in

membrane potential was observed (about 35% increase).
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However, in this case, addition of valinomycin decreased

DW by about 20%. Because valinomycin abolishes the

DW, PMF in this case is composed only of DpH. Again

this is consistent with the ornithine decarboxylation path-

way where a DpH is expected to be formed as a result of

cytoplasmic protons’ consumption during the decarboxyl-

ation reaction.

Arginine and ornithine transport in whole cells

Uptake of the basic amino acids arginine and ornithine

was studied using metabolizing cells of W. halotolerans

W22, at pH 5Æ5 and 30�C.

Cells of W. halotolerans W22 energized with glucose

were studied for the uptake of arginine and ornithine

(Fig. 4). In both cases, uptake was higher in nonenergized

cells. Ornithine was accumulated in the cells, whereas no

uptake was detected for arginine in the presence of glu-

cose. This observation suggests that uptake of arginine is

inhibited in cells with available energy. Moreover, orni-

thine uptake, although reduced, occurs even under high

cellular energy levels.

Because, in strain W22, putrescine is produced from

decarboxylation of ornithine, the existence of a transporter

mediating the extrusion of putrescine was anticipated.

Therefore, uptakes of arginine and ornithine, in cells

loaded with putrescine or not loaded but assayed in buffer

with 5 mmol l)1 putrescine, were measured. Figure 5

shows that the uptake of arginine was higher in cells loaded

with putrescine, whereas uptake of ornithine was not

dependent on the presence of putrescine inside the cells

(compared to control cells not loaded with putrescine).

However, when uptakes were measured in nonloaded cells,

but with 5 mmol l)1 putrescine in the buffer reaction, both

arginine and ornithine uptakes decreased.

In a chase experiment where arginine uptake was

chased with ornithine and putrescine (Fig. 6a), it was evi-

dent that the arginine transporter also had affinity for

ornithine and putrescine. The ornithine transporter was

also studied in a chase experiment. Figure 6(b) shows that

putrescine is also a substrate of the ornithine transporter.

In fact, when putrescine was added to the reaction buffer,

the rate of ornithine uptake was inhibited, suggesting that

putrescine is co-transported by the transporter that medi-

ates uptake of ornithine.

Discussion

In a previous work (C.I. Pereira, A.T. Pires, H. Silva,

C. Leitao, M.V. San Romao, M.T.B. Crespo, unpublished
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data), we have reported that W. halotolerans W22 pos-

sesses an active and functional ADI system. In addition,

PCR screening revealed that an ornithine decarboxylase

(odc) gene was also present in this strain. Further studies

showed that this strain produced putrescine by decarbox-

ylation of ornithine. Therefore, we firmly believe that

both ADI pathway and ornithine decarboxylation path-

way are active, simultaneously functional and sharing

ornithine as a common metabolite, in the strain W. halo-

tolerans W22. A proposed mechanism is illustrated in

Fig. 1 for the interaction between the two pathways.

The role of amino acid decarboxylations in ameliorat-

ing internal cellular pH when cells are exposed to an acid

stress has been described by several authors (Iyer et al.

2003; Richard and Foster 2004; van de Vossenberg et al.

1998). Because the cells of W. halotolerans W22 were able

to maintain high cell viability when subjected to an acid

stress when exposed to pH 2Æ5 in the presence of arginine

or ornithine, the function of both amino acids was stud-

ied deeply. Two amino acid–dependent systems were

addressed: ADI pathway depending on arginine and orni-

thine decarboxylation pathway depending on ornithine. It

was demonstrated by the bioenergetic measurements that

both ADI and OTC pathways generate a PMF in W22

cells. ADI pathway increases DpH (higher inside) which

was confirmed by DpH abolishment upon addition of the

ionophore nigericin. The DpH was maximal after valino-

mycin addition, which by converting DW (Inside nega-

tive) to DpH (inside alkaline) indicates that PMF was

solely composed of the pH gradient component. The

increase in DpH caused by ADI pathway was shown to be

dependent on the activity of F0F1ATPase, suggesting that

intracellular decrease of protons during ADI metabolism

is directly coupled to proton extrusion by F0F1ATPase.

As reported (Arena et al. 1999), arginine catabolism by

ADI pathway produces 1 mol of ATP that can be hydro-

lysed by F0F1ATPase to extrude protons out of the cell.

The ADI pathway requires two transport steps across the

cytoplasmic membrane: the uptake of arginine and the

excretion of the end-product ornithine. When each of

these transport steps would require energy in the form of

a PMF or ATP, the contribution to metabolic energy by

arginine metabolism would not be significant. LAB and

other bacteria (Poolman et al. 1987; Driessen et al. 1988)

have cleverly solved this problem by coupling the uptake

of arginine with the excretion of ornithine.

On the contrary, ornithine decarboxylation pathway

generates both a DpH and a DW. The process of precur-

sor ⁄ product exchange coupled to decarboxylation does

not involve the net translocation of protons across the

membrane as in the case with true proton pumps, like

the F0F1ATPase. By compartmentalization of the decar-

boxylation pathway, the energy of the decarboxylation

reaction can be converted into a PMF. In the ornithine

decarboxylation reaction, protons are taken up from the

cytoplasm, resulting in an increase of the cytoplasmic pH,

and consequently generate a transmembrane pH gradient.

In addition, in the physiological conditions studied in this

work, putrescine bears a +2 net charge compared to orni-

thine (+1). As described, a precursor ⁄ product exchange

in which a net positive charge is translocated from inside

to outside can generate an electrical potential across the

membrane.

The fact that ADI pathway was inhibited by DCCD,

whereas in the same cells ornithine decarboxylation was

not, suggest the existence of two transporters, one

mediating arginine uptake (in antiport with ornithine
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extrusion) and another catalysing ornithine uptake (in

antiport with putrescine extrusion). Moreover, when cells

were energized with glucose, arginine uptake was inhibi-

ted, whereas ornithine uptake was not. Again, these

results point towards the existence of two different trans-

porters.

Moreover, ATP produced in the pathway can be used

for other metabolic energy requiring processes in the cell

(Poolman 1993; Konings et al. 1995, 1997). Under

energy-limited conditions, arginine metabolism supplies

additional metabolic energy and prevents a drop of the

PMF below viable levels (Richard and Foster 2004).

Because ATP is a product of ADI pathway, it is not sur-

prising that an energy source, like glucose, would inhibit

the ADI pathway. This evidences the role of ADI pathway

as an alternative physiological pathway to produce ATP

in energy-deficient conditions. Metabolism of arginine to

ornithine, ammonia and CO2 (in the ratio 1 : 2 : 1) via

the ADI pathway, as referred previously, provides various

LAB with an additional substrate-level phosphorylation

process (Abdelal 1979).

Arginine in the cytoplasm is rapidly converted to

ornithine, the internal arginine concentration is very

low, and the arginine gradient remains directed from

outside to inside. Ornithine, on the other hand, is pro-

duced internally which leads to high concentrations

inside, while the concentration of ornithine in the med-

ium will be low. Consequently, the ornithine concentra-

tion gradient is directed from in to out. Results

obtained in this study show that in W22 cells, ornithine

uptake is more efficient than arginine uptake, which is

in accordance with the results reported (Driessen et al.

1988), evidencing that many LAB maintain high intracel-

lular concentrations of ornithine. Therefore, lower

uptake rates for ornithine compared to arginine, in cells

grown in the presence of arginine, are not surprising.

We believe that the arginine ⁄ ornithine antiporter expres-

sion is enhanced, and therefore extrusion of ornithine in

exchange for arginine uptake results in lower net

uptakes of ornithine. The presence of arginine in the

growth medium also stimulates the activity of other

enzymes of the ADI pathway.

Although it has always been described that argi-

nine ⁄ ornithine antiport is electroneutral (Konings et al.

1997; Fernandez and Zúñiga 2006; Lucas et al. 2007)

(because at the pH conditions of the assay, both arginine

and ornithine bear a net positive charge of +1), DpH

measurement assays showed an initial decrease in intra-

cellular pH immediately after arginine addition. This

effect can be attributed to the metabolism of arginine by

W22 cells. Both gradients of arginine and ornithine there-

fore contribute to the driving force for the electroneutral

arginine ⁄ ornithine exchange process, and additional met-

abolic energy is not needed.

Results obtained in this study during the arginine

uptake experiments suggest the presence of an antiport

arginine ⁄ putrescine. Several facts support this hypothesis:

(i) arginine transport seems to be more active than the

ornithine transporter; (ii) when cells were loaded with

putrescine, arginine uptake was stimulated; and (iii) chase

experiments showed that putrescine is also a subtract for

the transporter that mediates arginine uptake.

However, these results need to be carefully interpreted.

In fact, a question remains: Does arginine also exchange

with putrescine as might be anticipated when both path-

ways are present at the same time? Figure 6 appears to

confirm this, but what is really exchanging? Is it the pool

inside still arginine, or is it converted to ornithine and we

are looking at ornithine ⁄ putrescine exchange?

The best system for a detailed clarification of these

results of transport processes would be an isolated mem-

brane vesicles system. However, so far, preparing functional

vesicles for these bacteria has not been possible, and the

clarification of this hypothesis remains to be elucidated.

Nevertheless, unlike reported previously for other species

of LAB (Alberto et al. 2007; Konings 1994; Konings 2006;

Marques et al. 2008; Salema et al. 1996), besides increasing

intracellular pH and producing ATP, ADI pathway in

W. halotolerans W22 provides ornithine, which is used as a

substrate for another metabolic pathway: ornithine decar-

boxylation. For the first time, the coexistence of two differ-

ent types of amino acid catabolic pathways in the same

strain of LAB is shown. Also, up-to-date and as far as we

are aware of, this is the first time such decarboxylation

pathways are described for a strain of the Weissella genera.
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