3,861 research outputs found
Radii and Binding Energies of Nuclei in the Alpha-Cluster Model
The alpha-cluster model is based on two assumptions that the proton-neutron
pair interactions are responsible for adherence between alpha-clusters and that
the NN-interaction in the alpha-clusters is isospin independent. It allows one
to estimate the Coulomb energy and the short range inter-cluster bond energy in
dependence on the number of clusters. The charge radii are calculated on the
number of alpha-clusters too. Unlike the Weizsacker formula in this model the
binding energies of alpha-clusters and excess neutrons are estimated
separately. The calculated values are in a good agreement with the experimental
data.Comment: Latex2e 2.09, 13 pages, 4 figure
Application of wavelets to singular integral scattering equations
The use of orthonormal wavelet basis functions for solving singular integral
scattering equations is investigated. It is shown that these basis functions
lead to sparse matrix equations which can be solved by iterative techniques.
The scaling properties of wavelets are used to derive an efficient method for
evaluating the singular integrals. The accuracy and efficiency of the wavelet
transforms is demonstrated by solving the two-body T-matrix equation without
partial wave projection. The resulting matrix equation which is characteristic
of multiparticle integral scattering equations is found to provide an efficient
method for obtaining accurate approximate solutions to the integral equation.
These results indicate that wavelet transforms may provide a useful tool for
studying few-body systems.Comment: 11 pages, 4 figure
Top Quark Spin Polarization in ep Collision
We discuss the degree of spin polarization of single top quarks produced via
fusion process in collision at TESLA+HERAp and CLIC+LHC energies
and 5.3 TeV. For subprocess we show that
the top quark spin is completely polarized when the spin basis is chosen in the
direction of the incoming positron beam in the rest frame of top quark. A
description on how to combine the cross sections of and
processes is given. -beam direction is
taken to be the favorite top quark spin decomposition axis in its rest frame
and it is found to be comparable with the ones in collision. It is argued
that theoretical simplicity and experimental clearness are the advantage of
collision.Comment: Revised version of Phys. Rev. D69 (2004)03401
Effect of the Equivalence Between Topological and Electric Charge on the Magnetization of the Hall Ferromagnet
The dependence on temperature of the spin magnetization of a two-dimensional
electron gas at filling factor unity is studied. Using classical Monte Carlo
simulations we analyze the effect that the equivalence between topological and
electrical charge has on the the behavior of the magnetization. We find that at
intermediate temperatures the spin polarization increases in a thirty per cent
due to the Hartree interaction between charge fluctuations.Comment: 4 pages. Submitted to Phys.Rev.
Behavior of the diffractive cross section in hadron-nucleus collisions
A phenomenological analysis of diffractive dissociation of nuclei in
proton-nucleus and meson-nucleus collisions is presented. The theoretical
approach employed here is able to take into account at once data of the HELIOS
and EHS/NA22 collaborations that exhibit quite different atomic mass
dependences. Possible extensions of this approach to hard diffraction in
nuclear processes are also discussed.Comment: 5 pages, 2 figure
The ECLAIRs micro-satellite mission for gamma-ray burst multi-wavelength observations
Gamma-ray bursts (GRB), at least those with a duration longer than a few
seconds are the most energetic events in the Universe and occur at cosmological
distances. The ECLAIRs micro-satellite, to be launched in 2009, will provide
multi-wavelength observations of GRB, to study their astrophysics and to use
them as cosmological probes. Furthermore in 2009 ECLAIRs is expected to be the
only space borne instrument capable of providing a GRB trigger in near
real-time with sufficient localization accuracy for GRB follow-up observations
with the powerful ground based spectroscopic telescopes available by then. A
"Phase A study" of the ECLAIRs project has recently been launched by the French
Space Agency CNES, aiming at a detailed mission design and selection for flight
in 2006. The ECLAIRs mission is based on a CNES micro-satellite of the
"Myriade" family and dedicated ground-based optical telescopes. The satellite
payload combines a 2 sr field-of-view coded aperture mask gamma-camera using
6400 CdTe pixels for GRB detection and localization with 10 arcmin precision in
the 4 to 50 keV energy band, together with a soft X-ray camera for onboard
position refinement to 1 arcmin. The ground-based optical robotic telescopes
will detect the GRB prompt/early afterglow emission and localize the event to
arcsec accuracy, for spectroscopic follow-up observations.Comment: 7 pages, 1 figure, proceedings of the conference "New Developments in
Photodetection", Beaune (France), June 25005. Submitted to NIM-A (Elsevier
Science
Genome sequence of the necrotrophic plant pathogen Alternaria brassicicola Abra43
Alternaria brassicicola causes dark spot (or black spot) disease, which is one of the most common and destructive fungal diseases of Brassicaceae spp. worldwide. Here, we report the draft genome sequence of strain Abra43. The assembly comprises 29 scaffolds, with an N50 value of 2.1Â Mb. The assembled genome was 31,036,461Â bp in length, with a G+C content of 50.85%
The Burst and Transient Source Experiment Earth Occultation Technique
An Earth orbiting detector sensitive to gamma ray photons will see step-like
occultation features in its counting rate when a gamma ray point source crosses
the Earth's limb. This is due to the change in atmospheric attenuation of the
gamma rays along the line of sight. In an uncollimated detector, these
occultation features can be used to locate and monitor astrophysical sources
provided their signals can be individually separated from the detector
background. We show that the Earth occultation technique applied to the Burst
and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory
(CGRO) is a viable and flexible all-sky monitor in the low energy gamma ray and
hard X-ray energy range (20 keV - 1 MeV). The method is an alternative to more
sophisticated photon imaging devices for astronomy, and can serve well as a
cost-effective science capability for monitoring the high energy sky.
Here we describe the Earth occultation technique for locating new sources and
for measuring source intensity and spectra without the use of complex
background models. Examples of transform imaging, step searches, spectra, and
light curves are presented. Systematic uncertainties due to source confusion,
detector response, and contamination from rapid background fluctuations are
discussed and analyzed for their effect on intensity measurements. A sky
location-dependent average systematic error is derived as a function of
galactic coordinates. The sensitivity of the technique is derived as a function
of incident photon energy and also as a function of angle between the source
and the normal to the detector entrance window. Occultations of the Crab Nebula
by the Moon are used to calibrate Earth occultation flux measurements
independent of possible atmospheric scattering effects.Comment: 39 pages, 24 figures. Accepted for publication in the Astrophysical
Journal Supplement
- …