196 research outputs found
Stellar explosion in the weak field approximation of the Brans-Dicke theory
We treat a very crude model of an exploding star, in the weak field
approximation of the Brans-Dicke theory, in a scenario that resembles some
characteristics data of a Type Ia Supernova. The most noticeable feature, in
the electromagnetic component, is the relationship between the absolute
magnitude at maximum brightness of the star and the decline rate in one
magnitude from that maximum. This characteristic has become one of the most
accurate method to measure luminosity distances to objects at cosmological
distances. An interesting result is that the active mass associated with the
scalar field is totally radiated to infinity, representing a mass loss in the
ratio of the "tensor" component to the scalar component of 1 to ( is the Brans-Dicke parameter), in agreement with a general result
of Hawking. Then, this model shows explicitly, in a dynamical case, the
mechanism of radiation of scalar field, which is necessary to understand the
Hawking result.Comment: 11 pages, no figures. Published in Class. Quantum Gravity V22 (2005
Equilibrium hydrostatic equation and Newtonian limit of the singular f(R) gravity
We derive the equilibrium hydrostatic equation of a spherical star for any
gravitational Lagrangian density of the form . The Palatini
variational principle for the Helmholtz Lagrangian in the Einstein gauge is
used to obtain the field equations in this gauge. The equilibrium hydrostatic
equation is obtained and is used to study the Newtonian limit for
. The same procedure is carried out for the more
generally case giving a good
Newtonian limit.Comment: Revised version, to appear in Classical and Quantum Gravity
Accelerated Cosmological Models in Ricci squared Gravity
Alternative gravitational theories described by Lagrangians depending on
general functions of the Ricci scalar have been proven to give coherent
theoretical models to describe the experimental evidence of the acceleration of
universe at present time. In this paper we proceed further in this analysis of
cosmological applications of alternative gravitational theories depending on
(other) curvature invariants. We introduce Ricci squared Lagrangians in minimal
interaction with matter (perfect fluid); we find modified Einstein equations
and consequently modified Friedmann equations in the Palatini formalism. It is
striking that both Ricci scalar and Ricci squared theories are described in the
same mathematical framework and both the generalized Einstein equations and
generalized Friedmann equations have the same structure. In the framework of
the cosmological principle, without the introduction of exotic forms of dark
energy, we thus obtain modified equations providing values of w_{eff}<-1 in
accordance with the experimental data. The spacetime bi-metric structure plays
a fundamental role in the physical interpretation of results and gives them a
clear and very rich geometrical interpretation.Comment: New version: 26 pages, 1 figure (now included), Revtex
Relativistic dynamics of cylindrical shells of counter-rotating particles
Although infinite cylinders are not astrophysical entities, it is possible to
learn a great deal about the basic qualitative features of generation of
gravitational waves and the behavior of the matter conforming such shells in
the limits of very small radius. We describe the analytical model using kinetic
theory for the matter and the junction conditions through the shell to obtain
its equation of motion. The nature of the static solutions are analyzed, both
for a single shell as well as for two concentric shells. In this second case,
for a time dependent external shell, we integrate numerically the equation of
motion for several values of the constants of the system. Also, a brief
description in terms of the Komar mass is given to account for the
gravitational wave energy emitted by the system.Comment: 19 pages, 8 figure
Inflation and Transition to a Slowly Accelerating Phase from S.S.B. of Scale Invariance
We consider the effects of adding a scale invariant term to the
action of the scale invariant model (SIM) studied previously by one of us
(E.I.G., Mod. Phys. Lett. A14, 1043 (1999)). The SIM belongs to the general
class of theories, where an integration measure independent of the metric is
introduced. To implement scale invariance (S.I.), a dilaton field is
introduced. The integration of the equations of motion associated with the new
measure gives rise to the spontaneous symmetry breaking (S.S.B) of S.I.. After
S.S.B. of S.I. in the model with the term, it is found that a non
trivial potential for the dilaton is generated. This potential contains two
flat regions: one associated with the Planck scale and with an inflationary
phase, while the other flat region is associated to a very small vacuum energy
(V.E.) and is associated to the present slowly accelerated phase of the
universe (S.A.PH). The smallness of the V.E. in the S.A.PH. is understood
through the see saw mechanism introduced in S.I.M.Comment: 22 pages, latex, three figures now in separate file
Accelerated Cosmological Models in First-Order Non-Linear Gravity
The evidence of the acceleration of universe at present time has lead to
investigate modified theories of gravity and alternative theories of gravity,
which are able to explain acceleration from a theoretical viewpoint without the
need of introducing dark energy. In this paper we study alternative
gravitational theories defined by Lagrangians which depend on general functions
of the Ricci scalar invariant in minimal interaction with matter, in view of
their possible cosmological applications. Structural equations for the
spacetimes described by such theories are solved and the corresponding field
equations are investigated in the Palatini formalism, which prevents
instability problems. Particular examples of these theories are also shown to
provide, under suitable hypotheses, a coherent theoretical explanation of
earlier results concerning the present acceleration of the universe and
cosmological inflation. We suggest moreover a new possible Lagrangian,
depending on the inverse of sinh(R), which gives an explanation to the present
acceleration of the universe.Comment: 23 pages, Revtex4 fil
Spherical symmetry in -gravity
Spherical symmetry in gravity is discussed in details considering also
the relations with the weak field limit. Exact solutions are obtained for
constant Ricci curvature scalar and for Ricci scalar depending on the radial
coordinate. In particular, we discuss how to obtain results which can be
consistently compared with General Relativity giving the well known
post-Newtonian and post-Minkowskian limits. Furthermore, we implement a
perturbation approach to obtain solutions up to the first order starting from
spherically symmetric backgrounds. Exact solutions are given for several
classes of theories in both constant and .Comment: 13 page
Prevalence and predictors of complementary and alternative medicine use among people with coronary heart disease or at risk for this in the sixth Tromsø study: a comparative analysis using protection motivation theory
Background
Engagement in healthy lifestyle behaviors, such as healthy diet and regular physical activity, are known to reduce the risk of developing coronary heart disease (CHD). Complementary and alternative medicine (CAM) is known to be associated with having a healthy lifestyle. The primary aim of this study was to examine the prevalence and predictors of CAM use in CHD patients, and in those without CHD but at risk for developing CHD, using Protection Motivation Theory (PMT) as a guiding conceptual framework.
Method
Questionnaire data were collected from 12,981 adult participants in the cross-sectional sixth Tromsø Study (2007–8). Eligible for analyses were 11,103 participants who reported whether they had used CAM or not. Of those, 830 participants reported to have or have had CHD (CHD group), 4830 reported to have parents, children or siblings with CHD (no CHD but family risk), while 5443 reported no CHD nor family risk of CHD. We first compared the patterns of CAM use in each group, and then examined the PMT predictors of CAM use. Health vulnerability from the threat appraisal process of PMT was assessed by self-rated health and expectations for future health. Response efficacy from the coping appraisal process of PMT was assessed as preventive health beliefs and health behavior frequency.
Results
Use of CAM was most commonly seen in people with no CHD themselves, but family risk of developing CHD (35.8%), compared to people already diagnosed with CHD (30.2%) and people with no CHD nor family risk (32.1%). All four of the PMT factors; self-rated health, expectations for future health, preventive health beliefs, and the health behavior index – were predictors for CAM use in the no CHD but family risk group.
Conclusion
These findings suggest that people use CAM in response to a perceived risk of developing CHD, and to prevent disease and to maintain health
An Examination of the Most Recent Episode of Molly Use Among College Students
OBJECTIVE--The current study examined event-level characteristics (e.g., contextual factors, risk behaviors) during the most recent episode of Molly use among a sample of college students who reported previously using Molly.
PARTICIPANTS--Participants (N = 151; 66.7% female) were drinkers aged 18 to 25. Data were collected from October to November 2014, February to April 2015, and September to November 2015.
METHOD--Participants completed measures regarding typical Molly use and items related to context and behaviors during their most recent episode of Molly use.
RESULTS--Findings revealed that our sample most commonly reported using Molly earlier in the evening while hanging out with friends or at a party. Additionally, sexual and other drug use behaviors commonly occurred when using Molly.
CONCLUSIONS--Findings provide preliminary information in guiding future work exploring Molly use and potential substance-related issues associated with the context of when and how Molly is consumed
Biobased supramolecular ionic networks with optimized crystallinity and mechanical properties as promising dynamic materials for eutectogels design
Ionic supramolecular networks are attractive materials for technological applications with unique properties such as ionic conductivity, stimuli-responsiveness, recyclability, and self-healing. Herein, new semicrystalline supramolecular ionic networks are designed from fully biobased building blocks such as tartaric acid, phytic acid, sebacic acid, and a fatty dimer diamine (Priamine™ 1071). The combination of tartaric acid with Priamine™ 1071 results in a crystalline and brittle polymer, but its molecular regularity can be controlled by incorporating sebacic acid or phytic acid, affording tough materials with appropriate mechanical properties (elastic moduli ranging 19–42 MPa). Furthermore, the ionic polymers show network-to-liquid phase transitions between 75 and 127 °C, and in the liquid state, they were found to be miscible with a lithium-based deep eutectic solvent, yielding flexible and conductive eutectogels. Altogether, these dynamic networks could open new prospects for developing fully green soft ionic materials from their combination with other innovative and low-cost eutectic mixtures.Open Access funding provided by the University of Basque Country. The financial support received from CONICET and ANPCyT (PICT 2018-01032) (Argentina) is gratefully acknowledged
- …
