620 research outputs found

    Radiative corrections to theta term in the left-right supersymmetric models

    Get PDF
    We calculate the radiative correction to the theta term in the generic left-right supersymmetric model due to the Kobayashi-Maskawa source of CP-violation. We found that the value of ξˉ\bar{\theta} is very sensitive to the relations between vacuum expectation values of bidoublet scalars =diag(Îș1,Îș1â€Č) = diag(\kappa_1, \kappa_1') and =diag(Îș2â€Č,Îș2) = diag(\kappa_2', \kappa_2). The minimal value of ξˉ\bar{\theta} in the model is found to be of order 10−910^{-9} for Îș1/Îș2∌1\kappa_1/\kappa_2\sim 1, Îș1â€Č=Îș2â€Č=0\kappa_1'=\kappa_2'=0 in agreement with the experimental constraint without an axion mechanism or fine tuning. In other regions of the parameter space, the radiatively induced ξˉ\bar{\theta} gives unacceptably large contributions to the electric dipole moment of the neutron.Comment: 6 pages, latex, no figure

    Enhancement factor for the electron electric dipole moment in francium and gold atoms

    Get PDF
    If electrons had an electric dipole moment (EDM) they would induce EDMs of atoms. The ratio of the atomic EDM to the electron EDM for a particular atom is called the enhancement factor, R. We calculate the enhancement factor for the francium and gold atoms, with the results 910 plus/minus 5% for Fr and 260 plus/minus 15% for Au. The large values of these enhancement factors make these atoms attractive for electron EDM measurements, and hence the search for time-reversal invariance violation.Comment: 6 pages, no figures, uses RevTex, reference adde

    Probing CP Violation with the Deuteron Electric Dipole Moment

    Full text link
    We present an analysis of the electric dipole moment (EDM) of the deuteron as induced by CP-violating operators of dimension 4, 5 and 6 including theta QCD, the EDMs and color EDMs of quarks, four-quark interactions and the Weinberg operator. We demonstrate that the precision goal of the EDM Collaboration's proposal to search for the deuteron EDM, (1-3)\times 10^{-27} e cm, will provide an improvement in sensitivity to these sources of one-two orders of magnitude relative to the existing bounds. We consider in detail the level to which CP-odd phases can be probed within the MSSM.Comment: 5 pages, 4 figures; precision estimates clarified, to appear in Phys. Rev.

    CP Violation in a Multi-Higgs Doublet Model

    Get PDF
    We study CP violation in a multi-Higgs doublet model based on a S3×Z3S_3 \times Z_3 horizontal symmetry. We consider two mechanisms for CP violation in this model: a) CP violation due to complex Yukawa couplings; and b) CP violation due to scalar-pseudoscalar mixings. We find that the predictions for Ï”â€Č/Ï”\epsilon'/\epsilon, CP violation in B decays and the electric dipole moments of neutron and electron are different between these two mechanisms. These predictions are also dramatically different from the minimal Standard Model predictions.Comment: 17 pages + one figure, Revtex. Talk presented by Deshpande at the Conference WHEPP-3, December 199

    Precise Calculation of the Relic Density of Kaluza-Klein Dark Matter in Universal Extra Dimensions

    Full text link
    We revisit the calculation of the relic density of the lightest Kaluza-Klein particle (LKP) in the model of Universal Extra Dimensions. The Kaluza-Klein (KK) particle spectrum at level one is rather degenerate, and various coannihilation processes may be relevant. We extend the calculation of hep-ph/0206071 to include coannihilation processes with all level one KK particles. In our computation we consider a most general KK particle spectrum, without any simplifying assumptions. In particular, we do not assume a completely degenerate KK spectrum and instead retain the dependence on each individual KK mass. As an application of our results, we calculate the Kaluza-Klein relic density in the Minimal UED model, turning on coannihilations with all level one KK particles. We then go beyond the minimal model and discuss the size of the coannihilation effects separately for each class of level 1 KK particles. Our results provide the basis for consistent relic density computations in arbitrarily general models with Universal Extra Dimenions.Comment: 44 pages, 19 figures, typeset in JHEP styl

    Supersymmetry and a rationale for small CP violating phases

    Full text link
    We analyse the CP problem in the context of a supersymmetric extension of the standard model with universal strength of Yukawa couplings. A salient feature of these models is that the CP phases are constrained to be very small by the hierarchy of the quark masses, and the pattern of CKM mixing angles. This leads to a small amount of CP violation from the usual KM mechanism and a significant contribution from supersymmetry is required. Due to the large generation mixing in some of the supersymmetric interactions, the electric dipole moments impose severe constraints on the parameter space, forcing the trilinear couplings to be factorizable in matrix form. We find that the LL mass insertions give the dominant gluino contribution to saturate epsilon_K. The chargino contributions to epsilon'/epsilon are significant and can accommodate the experimental results. In this framework, the standard model gives a negligible contribution to the CP asymmetry in B-meson decay, a_{J/\psi K_s}. However, due to supersymmetric contributions to B_d-\bar{B}_d mixing, the recent large value of a_{J/\psi K_s} can be accommodated.Comment: 30 pages, 5 figures. Version to appear in Nucl. Phys.

    Constrained Supersymmetric Flipped SU(5) GUT Phenomenology

    Full text link
    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, MinM_{in}, above the GUT scale, MGUTM_{GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino and the lighter stau is sensitive to MinM_{in}, as is the relationship between the neutralino mass and the masses of the heavier Higgs bosons. For these reasons, prominent features in generic (m1/2,m0)(m_{1/2}, m_0) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to MinM_{in}, as we illustrate for several cases with tan(beta)=10 and 55. However, these features do not necessarily disappear at large MinM_{in}, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses.Comment: 23 pages, 8 figures; (v2) added explanations and corrected typos, version to appear in EPJ

    CP violation in a multi-Higgs doublet model with flavor changing neutral current

    Full text link
    We study CP violation in a multi-Higgs doublet model based on a S3×Z3S_3 \times Z_3 horizontal symmetry where CKM phase is not the principal source of CP violation. We consider two mechanisms for CP violation in this model: a) CP violation due to complex Yukawa couplings; and b) CP violation due to scalar-pseudoscalar Higgs boson mixings. Both mechanisms can explain the observed CP violation in the neutral Kaon system. Ï”â€Č/Ï”\epsilon'/\epsilon due to neutral Higgs boson exchange is small in both mechanisms, but charged Higgs boson con- tributions can be as large as 10−310^{-3} for a), and 10−410^{-4} for b). CP violation in the neutral B system is, however, quite different from the Minimal Standard Model. The neutron Electric Dipole Moment can be as large as the present ex- perimental bound, and can be used to constrain charged Higgs boson masses. The electron EDM is one order of magnitude below the experimental bound in case b) and smaller in case a).Comment: 22 pages, Revtex, OITS-52

    Gravitational Coupling and Dynamical Reduction of The Cosmological Constant

    Full text link
    We introduce a dynamical model to reduce a large cosmological constant to a sufficiently small value. The basic ingredient in this model is a distinction which has been made between the two unit systems used in cosmology and particle physics. We have used a conformal invariant gravitational model to define a particular conformal frame in terms of large scale properties of the universe. It is then argued that the contributions of mass scales in particle physics to the vacuum energy density should be considered in a different conformal frame. In this manner, a decaying mechanism is presented in which the conformal factor appears as a dynamical field and plays a key role to relax a large effective cosmological constant. Moreover, we argue that this model also provides a possible explanation for the coincidence problem.Comment: To appear in GR

    Standard Model Confronting New Results for epsilon'/epsilon

    Full text link
    We analyze the CP violating ratio \epe=epsilon'/epsilon in the Standard Model in view of the new KTeV results. We review the present status of the most important non-perturbative parameters B_6, B_8, B_K and of the strange quark mass m_s. We also briefly discuss the issues of final state interactions and renormalization scheme dependence. Updating the values of the CKM parameters, of m_t and Lambda (MSbar) and using Gaussian errors for the experimental input and flat distributions for the theoretical parameters we find \epe substantially below the NA31 and KTeV data: \epe= (7.7^{+6.0}_{-3.5}) 10^{-4} and \epe= (5.2^{+4.6}_{-2.7}) 10^{-4} in the NDR and HV renormalization schemes respectively. A simple scanning of all input parameters gives on the other hand 1.05 10^{-4} < \epe < 28.8 10^{-4} and 0.26 10^{-4} < \epe < 22.0 10^{-4} respectively. Analyzing the dependence on various parameters we find that only for extreme values of B_6, B_8 and m_s and suitable values of CKM parameters and Lambda(MSbar), the ratio \epe can be made consistent with data. We analyze the impact of these data on the lower bounds for Im(V_{td}V_{ts}^*), Br(K_L to pi^0 nu barnu), Br(K_L to pi^0e^+e^-)_{dir} and on tan(beta) in the Two Higgs Doublet Model II.Comment: main latex-file, 4 figures and related latex files, 47 page
    • 

    corecore