602 research outputs found

    A Comment on the Strong Interactions of Color-Neutral Technibaryons

    Full text link
    We estimate the cross section for the scattering of a slow, color-neutral technibaryon made of colored constituents with nuclei. We find a cross section of order A2 1045A^2\ 10^{-45} cm2^2, where AA is the atomic number of the nucleus. Even if technibaryons constitute the dark matter in the galactic halo, this is too small to be detected in future underground detectors.Comment: 6 pages, BUHEP-92-36 and UCSD/PTH 92-3

    Molecular complexity on disc scales uncovered by ALMA: Chemical composition of the high-mass protostar AFGL 4176

    Get PDF
    Context. The chemical composition of high-mass protostars reflects the physical evolution associated with different stages of star formation. In addition, the spatial distribution and velocity structure of different molecular species provide valuable information on the physical structure of these embedded objects. Despite an increasing number of interferometric studies, there is still a high demand for high angular resolution data to study chemical compositions and velocity structures for these objects. Aims. The molecular inventory of the forming high-mass star AFGL 4176, located at a distance of ∼3.7 kpc, is studied in detail at a high angular resolution of ∼0.35′′, equivalent to ∼1285 au at the distance of AFGL 4176. This high resolution makes it possible to separate the emission associated with the inner hot envelope and disc around the forming star from that of its cool outer envelope. The composition of AFGL 4176 is compared with other high- and low-mass sources, and placed in the broader context of star formation. Methods. Using the Atacama Large Millimeter/submillimeter Array (ALMA) the chemical inventory of AFGL 4176 has been characterised. The high sensitivity of ALMA made it possible to identify weak and optically thin lines and allowed for many isotopologues to be detected, providing a more complete and accurate inventory of the source. For the detected species, excitation temperatures in the range 120-320 K were determined and column densities were derived assuming local thermodynamic equilibrium and using optically thin lines. The spatial distribution of a number of species was studied. Results. A total of 23 different molecular species and their isotopologues are detected in the spectrum towards AFGL 4176. The most abundant species is methanol (CH3OH) with a column density of 5.5 7 1018 cm-2 in a beam of ∼0.3″, derived from its 13C-isotopologue. The remaining species are present at levels between 0.003 and 15% with respect to methanol. Hints that N-bearing species peak slightly closer to the location of the peak continuum emission than the O-bearing species are seen. A single species, propyne (CH3C2H), displays a double-peaked distribution. Conclusions. AFGL 4176 comprises a rich chemical inventory including many complex species present on disc scales. On average, the derived column density ratios, with respect to methanol, of O-bearing species are higher than those derived for N-bearing species by a factor of three. This may indicate that AFGL 4176 is a relatively young source since nitrogen chemistry generally takes longer to evolve in the gas phase. Taking methanol as a reference, the composition of AFGL 4176 more closely resembles that of the low-mass protostar IRAS 16293-2422B than that of high-mass, star-forming regions located near the Galactic centre. This similarity hints that the chemical composition of complex species is already set in the cold cloud stage and implies that AFGL 4176 is a young source whose chemical composition has not yet been strongly processed by the central protostar

    Can a Satellite-Derived Estimate of the Fraction of PAR Absorbed by Chlorophyll (FAPAR(sub chl)) Improve Predictions of Light-Use Efficiency and Ecosystem Photosynthesis for a Boreal Aspen Forest?

    Get PDF
    Gross primary production (GPP) is a key terrestrial ecophysiological process that links atmospheric composition and vegetation processes. Study of GPP is important to global carbon cycles and global warming. One of the most important of these processes, plant photosynthesis, requires solar radiation in the 0.4-0.7 micron range (also known as photosynthetically active radiation or PAR), water, carbon dioxide (CO2), and nutrients. A vegetation canopy is composed primarily of photosynthetically active vegetation (PAV) and non-photosynthetic vegetation (NPV; e.g., senescent foliage, branches and stems). A green leaf is composed of chlorophyll and various proportions of nonphotosynthetic components (e.g., other pigments in the leaf, primary/secondary/tertiary veins, and cell walls). The fraction of PAR absorbed by whole vegetation canopy (FAPAR(sub canopy)) has been widely used in satellite-based Production Efficiency Models to estimate GPP (as a product of FAPAR(sub canopy)x PAR x LUE(sub canopy), where LUE(sub canopy) is light use efficiency at canopy level). However, only the PAR absorbed by chlorophyll (a product of FAPAR(sub chl) x PAR) is used for photosynthesis. Therefore, remote sensing driven biogeochemical models that use FAPAR(sub chl) in estimating GPP (as a product of FAPAR(sub chl x PAR x LUE(sub chl) are more likely to be consistent with plant photosynthesis processes

    Design of a split Hopkinson pressure bar with partial lateral confinement

    Get PDF
    This paper presents the design of a modified split Hopkinson pressure bar (SHPB) where partial lateral con- finement of the specimen is provided by the inertia of a fluid annulus contained in a long steel reservoir. In contrast to unconfined testing, or a constant cell pressure applied before axial loading, lateral restraint is permitted to develop throughout the axial loading: this enables the high-strain-rate shear behaviour of soils to be characterised under conditions which are more representative of buried explosive events. A pressure transducer located in the wall of the reservoir allows lateral stresses to be quantified, and a dispersion-correction technique is used to provide accurate measurements of axial stress and strain. Preliminary numerical modelling is utilised to inform the experimental design, and the capability of the apparatus is demonstrated with specimen results for a dry quartz sand

    High-resolution SOFIA/EXES Spectroscopy of Water Absorption Lines in the Massive Young Binary W3 IRS 5

    Get PDF
    We present in this paper mid-infrared (5-8~μ\mum) spectroscopy toward the massive young binary W3~IRS~5, using the EXES spectrometer in high-resolution mode (RR\sim50,000) from the NASA Stratospheric Observatory for Infrared Astronomy (SOFIA). Many (\sim180) ν2\nu_2=1--0 and (\sim90) ν2\nu_2=2-1 absorption rovibrational transitions are identified. Two hot components over 500 K and one warm component of 190 K are identified through Gaussian fittings and rotation diagram analysis. Each component is linked to a CO component identified in the IRTF/iSHELL observations (RR=88,100) through their kinematic and temperature characteristics. Revealed by the large scatter in the rotation diagram, opacity effects are important, and we adopt two curve-of-growth analyses, resulting in column densities of 1019\sim10^{19} cm2^{-2}. In one analysis, the model assumes a foreground slab. The other assumes a circumstellar disk with an outward-decreasing temperature in the vertical direction. The disk model is favored because fewer geometry constraints are needed, although this model faces challenges as the internal heating source is unknown. We discuss the chemical abundances along the line of sight based on the CO-to-H2_2O connection. In the hot gas, all oxygen not locked in CO resides in water. In the cold gas, we observe a substantial shortfall of oxygen and suggest that the potential carrier could be organics in solid ice.Comment: Accepted for publication in ApJ. 34 pages, 13 figures, and 14 tables. Comments are more than welcome

    Association of EWS-FLI1 Type 1 Fusion with Lower Proliferative Rate in Ewing’s Sarcoma

    Get PDF
    The Ewing's sarcoma (ES) family of tumors, including peripheral neuroectodermal tumor (PNET), is defined genetically by specific chromosomal translocations resulting in fusion of the EWS gene with a member of the ETS family of transcription factors, either FLI1 (90-95%) or ERG (5-10%). A second level of molecular genetic heterogeneity stems from the variation in the location of the translocation breakpoints, resulting in the inclusion of different combinations of exons from EWS and FLI1 (or ERG) in the fusion products. The most common type of EWS-FLI1 fusion transcript, type 1, is associated with a favorable prognosis and appears to encode a functionally weaker transactivator, compared to other fusion types. We sought to determine whether the observed covariation of structure, function, and clinical course correlates with tumor cell kinetic parameters such as proliferative rate and apoptosis, and with expression of the receptor for insulin-like growth factor I (IGF-1R). In a group of 86 ES/PNET with defined EWS-ETS fusions (45 EWS-FLI1 type 1, 27 EWS-FLI1 non-type 1, 14 EWS-ERG), we assessed proliferation rate by immunostaining for Ki-67 using MIB1 antibody (n = 85), apoptosis by TUNEL assay (n = 66), and IGF-1R expression by immunostaining with antibody 1H7 (n = 78). Ki-67 proliferative index was lower in tumors with EWS-FLI1 type 1 than those with non-type 1 EWS-FLI1, whether analyzed as a continuous (P = 0.049) or categorical (P = 0.047) variable. Logistic regression analysis suggests that this association was secondary to the association of type 1 EWS-FLI1 and lower IGF-1R expression (P = 0.04). Comparing EWS-FLI1 to EWS-ERG cases, Ki-67 proliferative index was higher in the latter (P = 0.01, Mann-Whitney test; P = 0.02, Fisher's exact test), but there was no significant difference in IGF-1R. TUNEL results showed no significant differences between groups. Our results suggest that clinical and functional differences between alternative forms of EWS-FLI1 are paralleled by differences in proliferative rate, possibly mediated by differential regulation of the IGF-1R pathway

    Radiative forcing of natural forest disturbances

    Get PDF
    Forest disturbances are major sources of carbon dioxide to the atmosphere, and therefore impact global climate. Biogeophysical attributes, such as surface albedo (reflectivity), further control the climate-regulating properties of forests. Using both tower-based and remotely sensed data sets, we show that natural disturbances from wildfire, beetle outbreaks, and hurricane wind throw can significantly alter surface albedo, and the associated radiative forcing either offsets or enhances the CO2 forcing caused by reducing ecosystem carbon sequestration over multiple years. In the examined cases, the radiative forcing from albedo change is on the same order of magnitude as the CO2 forcing. The net radiative forcing resulting from these two factors leads to a local heating effect in a hurricane-damaged mangrove forest in the subtropics, and a cooling effect following wildfire and mountain pine beetle attack in boreal forests with winter snow. Although natural forest disturbances currently represent less than half of gross forest cover loss, that area will probably increase in the future under climate change, making it imperative to represent these processes accurately in global climate models
    corecore