42 research outputs found

    Poorly differentiated thyroid carcinoma: a retrospective clinicopathological study

    Get PDF
    Poorly differentiated thyroid carcinoma (PDTC) is an independent thyroid cancer histotype. In spite of its scarcity, it represents the main cause of death from non-anaplastic follicular cell-derived thyroid cancer. However, given the newness of this entity, few data are available on its clinical behaviour and no explicit consensus sets its treatment. To report the experience of a tertiary medical centre in morocco with PDTC over a period of 7 years. Retrospective study selecting all patients treated for thyroid carcinoma in Nuclear Medicine Department of a tertiary medical centre in Casablanca over seven years period. Patient's files were reviewed for background data, clinico-pathological characteristics, treatment and outcome. Seven patients were included in the study. Patient's average age was 60 years old (30-81) including six women and one man. All patients underwent a total thyroidectomy completed by cervical lymph node dissection in 57% of cases. Mean primary tumour size was 4cm (1-9cm). Patients were classified pT3 in 70% of cases, pT1 and pT2 in 15% each. Vascular invasion was found in 85% of cases. Pathological subtypes found were "insular carcinoma" in 85% of cases. Radioiodine therapy (RIT) was indicated in all cases. Follow-up period ranged between 10 months and 6 years. It showed a complete remission in 57% of cases, persistent disease in 28% of cases and a progressive disease in 15% of cases with a local recurrence. To date, the survival rate is 85%. PDTC is an aggressive thyroid cancer histotype. Treatment remains surgical followed by RIT if the tumour is radioavid. Multimodality therapy is indicated depending on the case and close monitoring is always indicated given the high risk of relapse

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    MiR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth

    Get PDF
    The synergism between c-MYC and miR-17-19b, a truncated version of the miR-17-92 cluster, is well-documented during tumor initiation. However, little is known about miR-17-19b function in established cancers. Here we investigate the role of miR-17-19b in c-MYC-driven lymphomas by integrating SILAC-based quantitative proteomics, transcriptomics and 3′ untranslated region (UTR) analysis upon miR-17-19b overexpression. We identify over one hundred miR-17-19b targets, of which 40% are co-regulated by c-MYC. Downregulation of a new miR-17/20 target, checkpoint kinase 2 (Chek2), increases the recruitment of HuR to c-MYC transcripts, resulting in the inhibition of c-MYC translation and thus interfering with in vivo tumor growth. Hence, in established lymphomas, miR-17-19b fine-tunes c-MYC activity through a tight control of its function and expression, ultimately ensuring cancer cell homeostasis. Our data highlight the plasticity of miRNA function, reflecting changes in the mRNA landscape and 3' UTR shortening at different stages of tumorigenesis

    Malaria endemicity and co-infection with tissue-dwelling parasites in Sub-Saharan Africa: a review

    Get PDF

    Hydrothermalism Associeted To Ediacarian Volcanism Of Ait Sawn And Tissouktai (Eastern Anti- Atlas, Morocco)

    Get PDF
    In the South East of Ouarzazate (south west of the Saghro massif, Anti Atlas) outcrop the geological formations of Ait Sawn and Tissouktai. These, attributed to the Ediacaran (or terminal Neoproterozoic), consist of basic volcanic facies, intermediate and acid intercalated with pyroclastics and epiclastic levels. This set is traversed locally by acidic veins. The rocks studied suffered intense weathering processes marked by the development of secondary minerals which are also formed in the hydrothermal veins and at the expense of the primary magmatic minerals and mesostasis. The main paragenesis of mineralisation consists of hematite, malachite, chalcocite, pyrite, barite, epidote, quartz, chlorite, calcite, albite, sericite and iron oxides. Paleogeography sector is governed by inherited active faults of the Pan African base. Magmatism studied seems to be guided by these tectonic lineaments during the terminal Proterozoic extension. The reactivation of these tectonic structures, after the Cambrian, and probably during the Variscan and / or Atlasic, is certain. Field investigations, supplemented by microscopic and geochemical study, indicate that much of the mineralization associated with volcanic Southwest Massif Saghro, is related to a hydrothermalisme contemporary with the stage of fault reactivation

    Structure and properties of α-NaFeO<sub>2</sub>-type ternary sodium iridates

    No full text
    The synthesis, structure, and elementary magnetic and electronic properties are reported for layered compounds of the type Na3-xMIr2O6 and Na3-xM2IrO6, where M is a transition metal from the 3d series (M=Zn, Cu, Ni, Co, Fe and Mn). The rhombohedral structures, in space group R-3m, were determined by refinement of neutron and synchrotron powder diffraction data. No clear evidence for long range 2:1 or 1:2 honeycomb-like M/Ir ordering was found in the neutron powder diffraction patterns except in the case of M=Zn, and thus in general the compounds are best designated as sodium deficient alpha-NaFeO2-type Phases with formulas Na1-xM1/3Ir2/3O2 or Na1-xM2/3Ir1/3O2. Synchrotron powder diffraction patterns indicate that several of the compounds likely have honeycomb in-plane metal-iridium ordering with disordered stacking of the layers. All the compounds are sodium deficient under our synthetic conditions and are black and insulating. Weiss constants derived from magnetic susceptibility measurements indicate that Na0.62Mn0.61Ir0.39O2, Na0.80Fe2/3Ir1/3O2, Na0.92Ni1/3Ir2/3O2, Na0.86Cu1/3Ir2/3O2, and Na0.89Zn1/3Ir2/3O2 display dominant antiferromagnetic interactions. For Na0.90Co1/3Ir2/3O2 the dominant magnetic interactions at low temperature are ferromagnetic while at high temperatures they are antiferromagnetic; there is also a change in the effective moment. Low temperature specific heat measurements (to 2 K) on Na0.32Ni1/3Ir2/3O2 indicate the presence of a broad magnetic ordering transition. X-ray absorption spectroscopy shows that iridium is at or close to the 4+ oxidation state in all compounds. Na-23 nuclear magnetic resonance measurements comparing Na2IrO3 to Na0.92Ni1/3Ir2/3O2 and Na0.89Zn1/3Ir2/3O2 provide strong indications that the electron spins are short-range ordered in the latter two materials. Na0.62Mn0.61Ir0.39O2, Na0.80Fe2/3Ir1/3O2, Na0.90Co1/3Ir2/3O2, Na0.92Ni1/3Ir2/3O2, Na0.86Cu1/3Ir2/3O2 and Na0.89Zn1/3Ir2/3O2 are spin glasses. (CSD-numbers: Na0.62Mn0,61Ir0.39O2: 426657, Na0.80Fe2/3Ir1/3O2: 426659, Na0.90Co1/3Ir2/3O2: 426658, Na0.92Ni1/3Ir2/3O2: 426656, Na0.86Cu1/3Ir2/3O2: 426655, and Na2.8ZnIr2O6: 426660.) (C) 2013 Elsevier Inc. All rights reserved
    corecore