176 research outputs found

    Environmental niches and metabolic diversity in Neoarchean lakes

    Get PDF
    Financial support for this study came from the NASA postdoctoral program (EES, REA), the NSF-FESD program (RB, TWL), the NASA Astrobiology Institute (TWL, NJP, and RB), and the NASA Exobiology program (grant NNX16AI37G to RB).The diversification of macro-organisms over the last 500 million years often coincided with the development of new environmental niches. Microbial diversification over the last 4 billion years likely followed similar patterns. However, linkages between environmental settings and microbial ecology have so far not been described from the ancient rock record. In this study, we investigated carbon, nitrogen, and molybdenum isotopes, and iron speciation in five non-marine stratigraphic units of the Neoarchean Fortescue Group, Western Australia, that are similar in age (2.78–2.72 Ga) but differ in their hydro-geologic setting. Our data suggest that the felsic-dominated and hydrologically open lakes of the Bellary and Hardey formations were probably dominated by methanogenesis (δ13Corg = −38.7 ± 4.2‰) and biologic N2 fixation (δ15Nbulk =−0.6 ± 1.0‰), whereas the Mt. Roe, Tumbiana and Kylena Formations, with more mafic siliciclastic sediments, preserve evidence of methanotrophy (δ13Corg as low as −57.4‰, δ13Ccarb as low as −9.2‰) and NH3 loss under alkaline conditions. Evidence of oxygenic photosynthesis is recorded only in the closed evaporitic Tumbiana lakes marked by abundant stromatolites, limited evidence of Fe and S cycling, fractionated Mo isotopes (δ98/95Mo = +0.4 ± 0.4‰), and the widest range in δ13Corg (−57‰ to −15‰), suggesting oxidative processes and multiple carbon fixation pathways. Methanotrophy in the three mafic settings was probably coupled to a combination of oxidants, including O2 and SO42-. Overall, our results may indicate that early microbial evolution on the Precambrian Earth was in part influenced by geological parameters. We speculate that expanding habitats, such as those linked to continental growth, may have been an important factor in the evolution of life.PostprintPeer reviewe

    A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem

    Get PDF
    <div><p>A nearly complete genome sequence of <em>Candidatus</em> ‘Acetothermum autotrophicum’, a presently uncultivated bacterium in candidate division OP1, was revealed by metagenomic analysis of a subsurface thermophilic microbial mat community. Phylogenetic analysis based on the concatenated sequences of proteins common among 367 prokaryotes suggests that <em>Ca.</em> ‘A. autotrophicum’ is one of the earliest diverging bacterial lineages. It possesses a folate-dependent Wood-Ljungdahl (acetyl-CoA) pathway of CO<sub>2</sub> fixation, is predicted to have an acetogenic lifestyle, and possesses the newly discovered archaeal-autotrophic type of bifunctional fructose 1,6-bisphosphate aldolase/phosphatase. A phylogenetic analysis of the core gene cluster of the acethyl-CoA pathway, shared by acetogens, methanogens, some sulfur- and iron-reducers and dechlorinators, supports the hypothesis that the core gene cluster of <em>Ca.</em> ‘A. autotrophicum’ is a particularly ancient bacterial pathway. The habitat, physiology and phylogenetic position of <em>Ca.</em> ‘A. autotrophicum’ support the view that the first bacterial and archaeal lineages were H<sub>2</sub>-dependent acetogens and methanogenes living in hydrothermal environments.</p> </div

    Linkages between mineralogy, fluid chemistry, and microbial communities within hydrothermal chimneys from the Endeavor Segment, Juan de Fuca Ridge

    Get PDF
    Rock and fluid samples were collected from three hydrothermal chimneys at the Endeavour Segment, Juan de Fuca Ridge to evaluate linkages among mineralogy, fluid chemistry, and microbial community composition within the chimneys. Mössbauer, midinfrared thermal emission, and visible-near infrared spectroscopies were utilized for the first time to characterize vent mineralogy, in addition to thin-section petrography, X-ray diffraction, and elemental analyses. A 282°C venting chimney from the Bastille edifice was composed primarily of sulfide minerals such as chalcopyrite, marcasite, and sphalerite. In contrast, samples from a 300°C venting chimney from the Dante edifice and a 321°C venting chimney from the Hot Harold edifice contained a high abundance of the sulfate mineral anhydrite. Geochemical modeling of mixed vent fluids suggested the oxic-anoxic transition zone was above 100°C at all three vents, and that the thermodynamic energy available for autotrophic microbial redox reactions favored aerobic sulfide and methane oxidation. As predicted, microbes within the Dante and Hot Harold chimneys were most closely related to mesophilic and thermophilic aerobes of the Betaproteobacteria and Gammaproteobacteria and sulfide-oxidizing autotrophic Epsilonproteobacteria. However, most of the microbes within the Bastille chimney were most closely related to mesophilic and thermophilic anaerobes of the Deltaproteobacteria, especially sulfate reducers, and anaerobic hyperthermophilic archaea. The predominance of anaerobes in the Bastille chimney indicated that other environmental factors promote anoxic conditions. Possibilities include the maturity or fluid flow characteristics of the chimney, abiotic Fe2+ and S2− oxidation in the vent fluids, or O2 depletion by aerobic respiration on the chimney outer wall

    Taxing the Informal Economy: The Current State of Knowledge and Agendas for Future Research

    Get PDF
    This paper reviews the literature on taxation of the informal economy, taking stock of key debates and drawing attention to recent innovations. Conventionally, the debate on whether to tax has frequently focused on the limited revenue potential, high cost of collection, and potentially adverse impact on small firms. Recent arguments have increasingly emphasised the more indirect benefits of informal taxation in relation to economic growth, broader tax compliance, and governance. More research is needed, we argue, into the relevant costs and benefits for all, including quasi-voluntary compliance, political and administrative incentives for reform, and citizen-state bargaining over taxation

    Computational Analysis of Whole-Genome Differential Allelic Expression Data in Human

    Get PDF
    Allelic imbalance (AI) is a phenomenon where the two alleles of a given gene are expressed at different levels in a given cell, either because of epigenetic inactivation of one of the two alleles, or because of genetic variation in regulatory regions. Recently, Bing et al. have described the use of genotyping arrays to assay AI at a high resolution (∼750,000 SNPs across the autosomes). In this paper, we investigate computational approaches to analyze this data and identify genomic regions with AI in an unbiased and robust statistical manner. We propose two families of approaches: (i) a statistical approach based on z-score computations, and (ii) a family of machine learning approaches based on Hidden Markov Models. Each method is evaluated using previously published experimental data sets as well as with permutation testing. When applied to whole genome data from 53 HapMap samples, our approaches reveal that allelic imbalance is widespread (most expressed genes show evidence of AI in at least one of our 53 samples) and that most AI regions in a given individual are also found in at least a few other individuals. While many AI regions identified in the genome correspond to known protein-coding transcripts, others overlap with recently discovered long non-coding RNAs. We also observe that genomic regions with AI not only include complete transcripts with consistent differential expression levels, but also more complex patterns of allelic expression such as alternative promoters and alternative 3′ end. The approaches developed not only shed light on the incidence and mechanisms of allelic expression, but will also help towards mapping the genetic causes of allelic expression and identify cases where this variation may be linked to diseases

    GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers

    Get PDF
    We describe methods with enhanced power and specificity to identify genes targeted by somatic copy-number alterations (SCNAs) that drive cancer growth. By separating SCNA profiles into underlying arm-level and focal alterations, we improve the estimation of background rates for each category. We additionally describe a probabilistic method for defining the boundaries of selected-for SCNA regions with user-defined confidence. Here we detail this revised computational approach, GISTIC2.0, and validate its performance in real and simulated datasets

    Metagenomic Comparison of Two Thiomicrospira Lineages Inhabiting Contrasting Deep-Sea Hydrothermal Environments

    Get PDF
    Background: The most widespread bacteria in oxic zones of carbonate chimneys at the serpentinite-hosted Lost City hydrothermal field, Mid-Atlantic Ridge, belong to the Thiomicrospira group of sulfur-oxidizing chemolithoautotrophs. It is unclear why Thiomicrospira-like organisms thrive in these chimneys considering that Lost City hydrothermal fluids are notably lacking in hydrogen sulfide and carbon dioxide. Methodology/Principal Findings: Here we describe metagenomic sequences obtained from a Lost City carbonate chimney that are highly similar to the genome of Thiomicrospira crunogena XCL-2, an isolate from a basalt-hosted hydrothermal vent in the Pacific Ocean. Even though T. crunogena and Lost City Thiomicrospira inhabit different types of hydrothermal systems in different oceans, their genomic contents are highly similar. For example, sequences encoding the sulfur oxidation and carbon fixation pathways (including a carbon concentration mechanism) of T. crunogena are also present in the Lost City metagenome. Comparative genomic analyses also revealed substantial genomic changes that must have occurred since the divergence of the two lineages, including large genomic rearrangements, gene fusion events, a prophage insertion, and transposase activity. Conclusions/Significance: Our results show significant genomic similarity between Thiomicrospira organisms inhabiting different kinds of hydrothermal systems in different oceans, suggesting that these organisms are widespread and highl

    Home-based isometric exercise training induced reductions resting blood pressure

    Get PDF
    Purpose: Isometric exercise training (IET) reduces resting blood pressure (BP). Most previous protocols impose exercise barriers which undermine its effectiveness as a potential physical therapy for altering BP. An inexpensive, home-based programme would promote IET as a valuable tool in the fight against hypertension. The aims of this study were: (a) to investigate whether home-based wall squat training could successfully reduce resting BP, and (b) to explore the physiological variables that might mediate a change in resting BP. Methods: Twenty-eight healthy normotensive males were randomly assigned to a control and a 4 week home-based IET intervention using a crossover design with a 4 week ‘washout’ period in-between. Wall squat training was completed 3x weekly over 4 weeks with 48 hours between sessions. Each session comprised 4x 2 minute bouts of wall squat exercise performed at a participant-specific knee joint angle relative to a target HR of 95% HRpeak, with 2 minutes rest between bouts. Resting heart rate, BP, cardiac output, total peripheral resistance and stroke volume were taken at baseline and post each condition. Results: Resting BP (systolic = -4 ± 5, diastolic = -3 ± 3 and mean arterial = -3 ± 3 mmHg), cardiac output (-0.54 ± 0.66 L∙min-1) and heart rate (-5 ± 7 beats∙min-1) were all reduced following IET, with no change in total peripheral resistance or stroke volume compared to the control. Conclusion: These findings suggest the wall squat provides an effective method for reducing resting BP in the home resulting primarily from a reduction in resting heart rate

    A Biomedically Enriched Collection of 7000 Human ORF Clones

    Get PDF
    We report the production and availability of over 7000 fully sequence verified plasmid ORF clones representing over 3400 unique human genes. These ORF clones were derived using the human MGC collection as template and were produced in two formats: with and without stop codons. Thus, this collection supports the production of either native protein or proteins with fusion tags added to either or both ends. The template clones used to generate this collection were enriched in three ways. First, gene redundancy was removed. Second, clones were selected to represent the best available GenBank reference sequence. Finally, a literature-based software tool was used to evaluate the list of target genes to ensure that it broadly reflected biomedical research interests. The target gene list was compared with 4000 human diseases and over 8500 biological and chemical MeSH classes in ∼15 Million publications recorded in PubMed at the time of analysis. The outcome of this analysis revealed that relative to the genome and the MGC collection, this collection is enriched for the presence of genes with published associations with a wide range of diseases and biomedical terms without displaying a particular bias towards any single disease or concept. Thus, this collection is likely to be a powerful resource for researchers who wish to study protein function in a set of genes with documented biomedical significance
    corecore