14,671 research outputs found

    New quantum chemical computations of formamide deuteration support a gas-phase formation of this prebiotic molecule

    Full text link
    Based on recent work, formamide might be a potentially very important molecule in the emergence of terrestrial life. Although detected in the interstellar medium for decades, its formation route is still debated, whether in the gas phase or on the dust grain surfaces. Molecular deuteration has proven to be, in other cases, an efficient way to identify how a molecule is synthesised. For formamide, new published observations towards the IRAS16293-2422 B hot corino show that its three deuterated forms have all the same deuteration ratio, 2--5%, and that this is a factor 3--8 smaller than that measured for H2CO towards the IRAS16293-2422 protostar. Following a previous work on the gas-phase formamide formation via the reaction NH2 + H2CO -> HCONH2 + H, we present here new calculations of the rate coefficients for the production of monodeuterated formamide through the same reaction, starting from monodeuterated NH2 or H2CO. Some misconceptions regarding our previous treatment of the reaction are also cleared up. The results of the new computations show that, at the 100 K temperature of the hot corino, the rate of deuteration of the three forms is the same, within 20%. On the contrary, the reaction between non-deuterated species proceeds three times faster than that with deuterated ones. These results confirm that a gas-phase route for the formation of formamide is perfectly in agreement with the available observations.Comment: MNRAS in pres

    Rutherford scattering with radiation damping

    Full text link
    We study the effect of radiation damping on the classical scattering of charged particles. Using a perturbation method based on the Runge-Lenz vector, we calculate radiative corrections to the Rutherford cross section, and the corresponding energy and angular momentum losses.Comment: Latex, 11 pages, 4 eps figure

    Gas phase formation of the prebiotic molecule formamide: insights from new quantum computations

    Full text link
    New insights into the formation of interstellar formamide, a species of great relevance in prebiotic chemistry, are provided by electronic structure and kinetic calculations for the reaction NH2 + H2CO -> NH2CHO + H. Contrarily to what previously suggested, this reaction is essentially barrierless and can, therefore, occur under the low temperature conditions of interstellar objects thus providing a facile formation route of formamide. The rate coefficient parameters for the reaction channel leading to NH2CHO + H have been calculated to be A = 2.6x10^{-12} cm^3 s^{-1}, beta = -2.1 and gamma = 26.9 K in the range of temperatures 10-300 K. Including these new kinetic data in a refined astrochemical model, we show that the proposed mechanism can well reproduce the abundances of formamide observed in two very different interstellar objects: the cold envelope of the Sun-like protostar IRAS16293-2422 and the molecular shock L1157-B2. Therefore, the major conclusion of this Letter is that there is no need to invoke grain-surface chemistry to explain the presence of formamide provided that its precursors, NH2 and H2CO, are available in the gas-phase.Comment: MNRAS Letters, in pres

    Analytic continuation of the Hurwitz Zeta Function with physical application

    Full text link
    A new formula relating the analytic continuation of the Hurwitz zeta function to the Euler gamma function and a polylogarithmic function is presented. In particular, the values of the first derivative of the real part of the analytic continuation of the Hurwitz zeta function for even negative integers and the imaginary one for odd negative integers are explicitly given. The result can be of interest both on mathematical and physical side, because we are able to apply our new formulas in the context of the Spectral Zeta Function regularization, computing the exact pair production rate per space-time unit of massive Dirac particles interacting with a purely electric background field.Comment: Replaced version, minor changes. 9 pages, to be published in J. Math. Phy

    Observation of a New Fluxon Resonant Mechanism in Annular Josephson Tunnel Structures

    Full text link
    A novel dynamical state has been observed in the dynamics of a perdurbed sine-Gordon system. This resonant state, has been experimentally observed as a singularity in the dc current voltage characteristic of an annular Josephson tunnel junction, excited in the presence of a magnetic field. With this respect, it can be assimilated to self-resonances known as Fiske steps. Differently from these, however, we demonstrate, on the basis of numerical simulations, that its detailed dynamics involves rotating fluxon pairs, a mechanism associated, so far, to self-resonances known as zero-field steps.Comment: 4 pages, 2 figures, submitted to Physical Review Letter

    N-particle sector of quantum field theory as a quantum open system

    Full text link
    We give an exposition of a technique, based on the Zwanzig projection formalism, to construct the evolution equation for the reduced density matrix corresponding to the n-particle sector of a field theory. We consider the case of a scalar field with a gϕ3g \phi^3 interaction as an example and construct the master equation at the lowest non-zero order in perturbation theory.Comment: 12 pages, Late

    Diagnostics for specific PAHs in the far-IR: searching neutral naphthalene and anthracene in the Red Rectangle

    Get PDF
    Context. In the framework of the interstellar polycyclic aromatic hydrocarbons (PAHs) hypothesis, far-IR skeletal bands are expected to be a fingerprint of single species in this class. Aims. We address the question of detectability of low energy PAH vibrational bands, with respect to spectral contrast and intensity ratio with ``classical'' Aromatic Infrared Bands (AIBs). Methods. We extend our extablished Monte-Carlo model of the photophysics of specific PAHs in astronomical environments, to include rotational and anharmonic band structure. The required molecular parameters were calculated in the framework of the Density Functional Theory. Results. We calculate the detailed spectral profiles of three low-energy vibrational bands of neutral naphthalene, and four low-energy vibrational bands of neutral anthracene. They are used to establish detectability constraints based on intensity ratios with ``classical'' AIBs. A general procedure is suggested to select promising diagnostics, and tested on available Infrared Space Observatory data for the Red Rectangle nebula. Conclusions. The search for single, specific PAHs in the far-IR is a challenging, but promising task, especially in view of the forthcoming launch of the Herschel Space Observatory.Comment: 13 pages, 13 figures, accepted for publication in A&

    Spin analog of the controlled Josephson charge current

    Full text link
    We propose a controlled Josephson spin current across the junction of two non-centrosymmetric superconductors like CePt_3Si. The Josephson spin current arises due to direction dependent tunneling matrix element and different momentum dependent phases of the triplet components of the gap function. Its modulation with the angle \xi between the noncentrosymmetric axes of two superconductors is proportional to \sin \xi. This particular dependence on \xi may find application of the proposed set-up in making a Josephson spin switch.Comment: 4 pages, 1 figure; title is changed; article is rewritte

    Measurement of the current-phase relation of superconducting atomic contacts

    Get PDF
    We have probed the current-phase relation of an atomic contact placed with a tunnel junction in a small superconducting loop. The measurements are in quantitative agreement with the predictions of a resistively shunted SQUID model in which the Josephson coupling of the contact is calculated using the independently determined transmissions of its conduction channels.Comment: to be published in Physical Review Letter
    corecore