New insights into the formation of interstellar formamide, a species of great
relevance in prebiotic chemistry, are provided by electronic structure and
kinetic calculations for the reaction NH2 + H2CO -> NH2CHO + H. Contrarily to
what previously suggested, this reaction is essentially barrierless and can,
therefore, occur under the low temperature conditions of interstellar objects
thus providing a facile formation route of formamide. The rate coefficient
parameters for the reaction channel leading to NH2CHO + H have been calculated
to be A = 2.6x10^{-12} cm^3 s^{-1}, beta = -2.1 and gamma = 26.9 K in the range
of temperatures 10-300 K. Including these new kinetic data in a refined
astrochemical model, we show that the proposed mechanism can well reproduce the
abundances of formamide observed in two very different interstellar objects:
the cold envelope of the Sun-like protostar IRAS16293-2422 and the molecular
shock L1157-B2. Therefore, the major conclusion of this Letter is that there is
no need to invoke grain-surface chemistry to explain the presence of formamide
provided that its precursors, NH2 and H2CO, are available in the gas-phase.Comment: MNRAS Letters, in pres