116 research outputs found

    Intrafamilial Phenotypic Variability and Consequences of Non-Compliance with Treatment in Congenital Adrenal Hyperplasia and Congenital Hypothyroidism within a Single Family

    Get PDF
    BACKGROUND: Coexistence of congenital adrenal hyperplasia (CAH) and congenital hypothyroidism (CH) due to TG mutation in the same non-consanguineous family is rare. Case Series: We report 4 siblings born to unrelated parents, the father being an asymptomatic carrier of homozygous p.V281L and heterozygous p.I172N CYP21A2 mutations. Sibling 1 had salt-wasting CAH (CYP21A2 genotype Intron 2 splice/p.I172N and p.V281L). She also had CH (TG genotype p.R296/ p.T1416Rfs*30) and learning difficulties. Poor compliance and morbid obesity resulted in short stature, precocious puberty, hirsutism, amenorrhoea, insulin insensitivity and a possible adrenal adenoma. Sibling 3 (CYP21A2 and TG genotype similar to sibling 1) is a boy presenting with salt-wasting CAH, CH, and developmental delay. He was overweight and underwent precocious puberty. Although siblings 2 and 4 (both females) share the same CYP21A2 genotype (Intron 2 splice/p.V281L), the former only had biochemical evidence of CAH, while the latter presented at 9.8 years of age with a history of pubarche at 7 years and advanced bone age. CONCLUSIONS: We report the unusual occurrence of 2 rare autosomal recessive diseases, CAH and CH. Our cases highlight the phenotypic variability of CAH and CH due to TG mutations, even within a single family, and illustrate the importance of optimal disease control

    Leslie McCracken and Charles Bethune Horsbrugh: collecting birds’ eggs in Northern Ireland in the 1920s and early 1930s.

    Get PDF
    This paper is a case-study of a school-boy’s egg collection in Northern Ireland in the 1920s and early 1930s. The collection and Leslie McCracken’s friendship with Charles Bethune Horsbrugh, an established naturalist, not only expanded McCracken’s consciousness far beyond the boundaries of his rural existence but also reveal, through the specimens given to McCracken by Captain Horsbrugh, the considerable extent of amateur egg-collecting and the interchange of eggs both within Ireland and Great Britain, and further afield, then and in previous generations. A socio-historic sketch is provided, together with an account of the more interesting bird’s eggs, their collectors, and the location of collection

    Targeted Next-Generation Sequencing Analysis of 1,000 Individuals with Intellectual Disability.

    Get PDF
    To identify genetic causes of intellectual disability (ID), we screened a cohort of 986 individuals with moderate to severe ID for variants in 565 known or candidate ID-associated genes using targeted next-generation sequencing. Likely pathogenic rare variants were found in ∼11% of the cases (113 variants in 107/986 individuals: ∼8% of the individuals had a likely pathogenic loss-of-function [LoF] variant, whereas ∼3% had a known pathogenic missense variant). Variants in SETD5, ATRX, CUL4B, MECP2, and ARID1B were the most common causes of ID. This study assessed the value of sequencing a cohort of probands to provide a molecular diagnosis of ID, without the availability of DNA from both parents for de novo sequence analysis. This modeling is clinically relevant as 28% of all UK families with dependent children are single parent households. In conclusion, to diagnose patients with ID in the absence of parental DNA, we recommend investigation of all LoF variants in known genes that cause ID and assessment of a limited list of proven pathogenic missense variants in these genes. This will provide 11% additional diagnostic yield beyond the 10%-15% yield from array CGH alone.Action Medical Research (SP4640); the Birth Defect Foundation (RG45448); the Cambridge National Institute for Health Research Biomedical Research Centre (RG64219); the NIHR Rare Diseases BioResource (RBAG163); Wellcome Trust award WT091310; The Cell lines and DNA bank of Rett Syndrome, X-linked mental retardation and other genetic diseases (member of the Telethon Network of Genetic Biobanks (project no. GTB12001); the Genetic Origins of Congenital Heart Disease Study (GO-CHD)- funded by British Heart Foundation (BHF)This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/humu.2290

    Microstructural evolution and trace element mobility in Witwatersrand pyrite

    Get PDF
    Microstructural analysis of pyrite from a single sample of Witwatersrand conglomerate indicates a complex deformation history involving components of both plastic and brittle deformation. Internal deformation associated with dislocation creep is heterogeneously developed within grains, shows no systematic relationship to bulk rock strain or the location of grain boundaries and is interpreted to represent an episode of pyrite deformation that predates the incorporation of detrital pyrite grains into the Central Rand conglomerates. In contrast, brittle deformation, manifest by grain fragmentation that transects dislocation-related microstructures, is spatially related to grain contacts and is interpreted to represent post-depositional deformation of the Central Rand conglomerates. Analysis of the low-angle boundaries associated with the early dislocation creep phase of deformation indicates the operation of {100} slip systems. However, some orientation boundaries have geometrical characteristics that are not consistent with simple {100} deformation.These boundaries may represent the combination of multiple slip systems or the operation of the previously unrecognized {120} slip system. These boundaries are associated with order of magnitude enrichments in As, Ni and Co that indicate a deformation control on the remobilization of trace elements within pyrite and a potential slip system control on the effectiveness of fast-diffusion pathways. The results confirm the importance of grain-scale elemental remobilization within pyrite prior to their incorporation into the Witwatersrand gold-bearing conglomerates. Since the relationship between gold and pyrite is intimately related to the trace element geochemistry of pyrite, the results have implications for the application of minor element geochemistry to ore deposit formation, suggest a reason for heterogeneous conductivity and localized gold precipitation in natural pyrite and provide a framework for improving mineral processing

    Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia.

    Get PDF
    Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.Funding for the project was provided by the Wellcome Trust for UK10K (WT091310) and DDD Study. The DDD study presents independent research commissioned by the Health Innovation Challenge Fund [grant number HICF-1009-003] - see www.ddduk.org/access.html for full acknowledgement. This work was supported in part by the Intramural Research Program of the National Human Genome Research Institute and the Common Fund, NIH Office of the Director. This work was supported in part by the German Ministry of Research and Education (grant nos. 01GS08160 and 01GS08167; German Mental Retardation Network) as part of the National Genome Research Network to A.R. and D.W. and by the Deutsche Forschungsgemeinschaft (AB393/2-2) to A.R. Brain expression data was provided by the UK Human Brain Expression Consortium (UKBEC), which comprises John A. Hardy, Mina Ryten, Michael Weale, Daniah Trabzuni, Adaikalavan Ramasamy, Colin Smith and Robert Walker, affiliated with UCL Institute of Neurology (J.H., M.R., D.T.), King’s College London (M.R., M.W., A.R.) and the University of Edinburgh (C.S., R.W.)

    Prevalence and architecture of de novo mutations in developmental disorders.

    Get PDF
    The genomes of individuals with severe, undiagnosed developmental disorders are enriched in damaging de novo mutations (DNMs) in developmentally important genes. Here we have sequenced the exomes of 4,293 families containing individuals with developmental disorders, and meta-analysed these data with data from another 3,287 individuals with similar disorders. We show that the most important factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and the parental ages. We identified 94 genes enriched in damaging DNMs, including 14 that previously lacked compelling evidence of involvement in developmental disorders. We have also characterized the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences; approximately half of these DNMs disrupt gene function and the remainder result in altered protein function. We estimate that developmental disorders caused by DNMs have an average prevalence of 1 in 213 to 1 in 448 births, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year

    Prevalence, phenotype and architecture of developmental disorders caused by de novo mutation: The Deciphering Developmental Disorders Study

    Get PDF
    Individuals with severe, undiagnosed developmental disorders (DDs) are enriched for damaging de novo mutations (DNMs) in developmentally important genes. We exome sequenced 4,293 families with individuals with DDs, and meta-analysed these data with published data on 3,287 individuals with similar disorders. We show that the most significant factors influencing the diagnostic yield of de novo mutations are the sex of the affected individual, the relatedness of their parents and the age of both father and mother. We identified 94 genes enriched for damaging de novo mutation at genome-wide significance (P < 7 × 10−7), including 14 genes for which compelling data for causation was previously lacking. We have characterised the phenotypic diversity among these genetic disorders. We demonstrate that, at current cost differentials, exome sequencing has much greater power than genome sequencing for novel gene discovery in genetically heterogeneous disorders. We estimate that 42% of our cohort carry pathogenic DNMs (single nucleotide variants and indels) in coding sequences, with approximately half operating by a loss-of-function mechanism, and the remainder resulting in altered-function (e.g. activating, dominant negative). We established that most haplo insufficient developmental disorders have already been identified, but that many altered-function disorders remain to be discovered. Extrapolating from the DDD cohort to the general population, we estimate that developmental disorders caused by DNMs have an average birth prevalence of 1 in 213 to 1 in 448 (0.22-0.47% of live births), depending on parental age

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)
    • …
    corecore