930 research outputs found

    Evidence of a massive planet candidate orbiting the young active K5V star BD+20 1790

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO). DOI: 10.1051/0004-6361/200811000Context. BD+20 1790 is a young active, metal-rich, late-type K5Ve star. We have undertaken a study of stellar activity and kinematics for this star over the past few years. Previous results show a high level of stellar activity, with the presence of prominence-like structures, spots on the surface, and strong flare events, despite the moderate rotational velocity of the star. In addition, radial velocity variations with a semi-amplitude of up to 1 km s-1 were detected. Aims. We investigate the nature of these radial velocity variations, in order to determine whether they are due to stellar activity or the reflex motion of the star induced by a companion. Methods. We have analysed high-resolution echelle spectra by measuring stellar activity indicators and computing radial velocity (RV) and bisector velocity spans. Two-band photometry was also obtained to produce the light curve and determine the photometric period. Results. Based upon the analysis of the bisector velocity span, as well as spectroscopic indices of chromospheric indicators, Ca ii H & K, Hα, and taking the photometric analysis into account, we report that the best explanation for the RV variation is the presence of a substellar companion. The Keplerian fit of the RV data yields a solution for a close-in massive planet with an orbital period of 7.78 days. The presence of the close-in massive planet could also be an interpretation for the high level of stellar activity detected. Since the RV data are not part of a planet search programme, we can consider our results as a serendipitous evidence of a planetary companion. To date, this is the youngest main sequence star for which a planetary candidate has been reported.Peer reviewe

    Towards a novel carbon device for the treatment of sepsis

    Get PDF
    Sepsis is a systemic inflammatory response to infection in which the balance of pro- andanti-inflammatory mediators, which normally isolate and eliminate infection, is disrupted[1]. Gram negative sepsis is initiated by bacterial endotoxin release which activatesmacrophages and circulating monocytes to release TNF and IL-1β followed by IL-6 andother inflammatory cytokines [2]. As the disease progresses, an unregulatedinflammatory response results in, tissue injury, haematological dysfunction and organdysfunction. Severe sepsis, involving organ hypoperfusion may be further complicatedby hypotension that is unresponsive to adequate fluid replacement, resulting in septicshock and finally death [3].Despite improvements in anti-microbial and supportive therapies, sepsis remains asignificant cause of morbidity and mortality in ICUs worldwide [4]. The complexity ofprocesses mediating the progression of sepsis suggests that an extracorporeal devicecombining blood filtration with adsorption of a wide range of toxins, and inflammatorymediators offers the most comprehensive treatment strategy. However, no such deviceexists at present. A novel, uncoated, polymer pyrolysed synthetic carbon device isproposed which combines the superior adsorption properties of uncoated activatedcarbons with the capacity to manipulate porous structure for controlled adsorption oftarget plasma proteins and polypeptides [5]. Preliminary haemocompatibility andadsorptive capacity was assessed using a carbon matrix prototype

    DMRG Study of Critical Behavior of the Spin-1/2 Alternating Heisenberg Chain

    Full text link
    We investigate the critical behavior of the S=1/2 alternating Heisenberg chain using the density matrix renormalization group (DMRG). The ground-state energy per spin and singlet-triplet energy gap are determined for a range of alternations. Our results for the approach of the ground-state energy to the uniform chain limit are well described by a power law with exponent p=1.45. The singlet-triplet gap is also well described by a power law, with a critical exponent of p=0.73, half of the ground-state energy exponent. The renormalization group predictions of power laws with logarithmic corrections can also accurately describe our data provided that a surprisingly large scale parameter is present in the logarithm.Comment: 6 pages, 4 eps-figure

    Entanglement in SU(2)-invariant quantum spin systems

    Get PDF
    We analyze the entanglement of SU(2)-invariant density matrices of two spins S1\vec S_{1}, S2\vec S_{2} using the Peres-Horodecki criterion. Such density matrices arise from thermal equilibrium states of isotropic spin systems. The partial transpose of such a state has the same multiplet structure and degeneracies as the original matrix with eigenvalue of largest multiplicity being non-negative. The case S1=SS_{1}=S, S2=1/2S_{2}=1/2 can be solved completely and is discussed in detail with respect to isotropic Heisenberg spin models. Moreover, in this case the Peres-Horodecki ciriterion turns out to be a sufficient condition for non-separability. We also characterize SU(2)-invariant states of two spins of length 1.Comment: 5 page

    Benchmark low-mass objects in Moving Groups

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In order to compile a sample of ultracool dwarfs that will serve as benchmarks for testing theoretical formation and evolutionary models, we selected low-mass cool (>M7) objects that are potentially members of five known young Moving Groups in the solar neighbourhood. We have studied the kinematics of the sample, finding that 49 targets belong to the young disk area, from which 36 are kinematic member of one of the five moving groups under study. Some of the identified low-mass members have been spectroscopically characterised (T-eff, log g) and confirmed as young members through a detailed study of age indicators

    The Swinburne Intermediate Latitude Pulsar Survey

    Get PDF
    We have conducted a survey of intermediate Galactic latitudes using the 13-beam 21-cm multibeam receiver of the Parkes 64-m radio telescope. The survey covered the region enclosed by 5 deg < |b| < 15 deg and -100 deg < l < 50 deg with 4,702 processed pointings of 265 s each, for a total of 14.5 days of integration time. Thirteen 2x96-channel filterbanks provided 288 MHz of bandwidth at a centre frequency of 1374 MHz, one-bit sampled every 125 microsec and incurring ~DM/13.4 cm^-3 pc samples of dispersion smearing. The system was sensitive to slow and most millisecond pulsars in the region with flux densities greater than approximately 0.3--1.1 mJy. Offline analysis on the 64-node Swinburne workstation cluster resulted in the detection of 170 pulsars of which 69 were new discoveries. Eight of the new pulsars, by virtue of their small spin periods and period derivatives, may be recycled and have been reported elsewhere. The slow pulsars discovered are typical of those already known in the volume searched, being of intermediate to old age. Several pulsars experience pulse nulling and two display very regular drifting sub-pulses. We discuss the new discoveries and provide timing parameters for the 48 slow pulsars for which we have a phase-connnected solution.Comment: 19 pages, 11 figures, accepted to MNRA

    Quark exchange model for charmonium dissociation in hot hadronic matter

    Full text link
    A diagrammatic approach to quark exchange processes in meson-meson scattering is applied to the case of inelastic reactions of the type (Q\barQ)+(q\barq)\rightarrow (Q\barq) + (q\barQ), where QQ and qq refer to heavy and light quarks, respectively. This string-flip process is discussed as a microscopic mechanism for charmonium dissociation (absorption) in hadronic matter. The cross section for the reaction J/ψ+πD+DˉJ/\psi + \pi \to D+ \bar D is calculated using a potential model, which is fitted to the meson mass spectrum. The temperature dependence of the relaxation time for the \J/Psi distribution in a homogeneous thermal pion gas is obtained. The use of charmonium for the diagnostics of the state of hot hadronic matter produced in ultrarelativistic nucleus-nucleus collisions is discussed.Comment: 24 pages, 3 tables, 7 figure

    Elementary Excitations in Dimerized and Frustrated Heisenberg Chains

    Full text link
    We present a detailed numerical analysis of the low energy excitation spectrum of a frustrated and dimerized spin S=1/2S=1/2 Heisenberg chain. In particular, we show that in the commensurate spin--Peierls phase the ratio of the singlet and triplet excitation gap is a universal function which depends on the frustration parameter only. We identify the conditions for which a second elementary triplet branch in the excitation spectrum splits from the continuum. We compare our results with predictions from the continuum limit field theory . We discuss the relevance of our data in connection with recent experiments on CuGeO3CuGeO_{3}, NaV2O5NaV_2O_5, and (VO)2P2O7(VO)_2P_2O_7.Comment: Corrections to the text + 1 new figure, will appear in PRB (august 98

    A Study of the S=1/2 Alternating Chain using Multiprecision Methods

    Full text link
    In this paper we present results for the ground state and low-lying excitations of the S=1/2S=1/2 alternating Heisenberg antiferromagnetic chain. Our more conventional techniques include perturbation theory about the dimer limit and numerical diagonalization of systems of up to 28 spins. A novel application of multiple precision numerical diagonalization allows us to determine analytical perturbation series to high order; the results found using this approach include ninth-order perturbation series for the ground state energy and one magnon gap, which were previously known only to third order. We also give the fifth-order dispersion relation and third-order exclusive neutron scattering structure factor for one-magnon modes and numerical and analytical binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm

    Parallelization, Special Hardware and Post-Newtonian Dynamics in Direct N - Body Simulations

    Get PDF
    The formation and evolution of supermassive black hole (SMBH) binaries during and after galaxy mergers is an important ingredient for our understanding of galaxy formation and evolution in a cosmological context, e.g. for predictions of cosmic star formation histories or of SMBH demographics (to predict events that emit gravitational waves). If galaxies merge in the course of their evolution, there should be either many binary or even multiple black holes, or we have to find out what happens to black hole multiples in galactic nuclei, e.g. whether they come sufficiently close to merge resulting from emission of gravitational waves, or whether they eject each other in gravitational slingshot interactions
    corecore