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Entanglement in SU2)-invariant quantum spin systems
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We analyze the entanglement of @invariant density matrices of two spirél, §2 using the Peres-
Horodecki criterion. Such density matrices arise from thermal equilibrium states of isotropic-spin systems. The
partial transpose of such a state has the same multiplet structure and degeneracies as the original matrix with
the eigenvalue of largest multiplicity being non-negative. The &seS, S,=1/2 can be solved completely
and is discussed in detail with respect to isotropic Heisenberg spin models. Moreover, in this case the Peres-
Horodecki criterion turns out to be a sufficient condition for nonseparability. We also characteri2g SU
invariant states of two spins of length 1.
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[. INTRODUCTION quitrit (i.e., the case of two spins of length 1/2, and of a spin
1/2 and a spin 1, respectivelyFor larger dimensions of the
Entanglement is one of the most intriguing properties ofparties (sping involved, nonseparable states with positive
quantum physic$1,2] and the key ingredient of the emerg- partial transpose exiq26]. To apply the Peres-Horodecki
ing field of quantum information theory and processiBi criterion one can perform the partial transposition with re-
Recently, substantial interest has developed concerning tif@ect to either subsyste(spin), since both resulting matrices
question of quantum entang|ement in equi"brium states ohave the same Spectrum. For deﬁniteness, we will CPnSider in
quantum spin systeni¥—27] as often studied in condensed- the following the partial transpoge'2 with respect tcS,.
matter physics and statistical mechanics. More specifically, a SU(2)-invariant two-spin states were mentioned briefly al-
typical question arises: Tracing out from a many-body sys+eady by Vollbrecht and Werng27], where it was pointed
tem all degrees of freedom except for, say, two spins, is thigut that the cas&;=S,=1 corresponds to states invariant
reduced density matrix separable or not? underO® O with O being an @3) rotation. In this work, we
In the present work, we study $2J-invariant density ma-  will also give explicit criteria in terms of spin correlators for
trices of two spins. These states are defined to be invariarsuch states to have a positive partial transj@sg

under all uniform rotations) ;® U, of both spinsS; andS,,

whereU,=exp(7-S), ae{l2, are transformations Core- ;- g1 (2).INVARIANT STATES AND THEIR PARTIAL
sponding to the same set of real parametgrlis the repre- TRANSPOSE

sentation of S(R), appropriate for the spin lengtl$s andS, ) ) ) )
(f=1). In other words, such statgs, commute with all the Let us start with some general considerations. Since an

components of the total spid=S,+S,. SU2)-invariant SU(2)-invaria}nt state commutes with all components]pft .
density matrices arise from thermal equilibrium states of spirfiCts, according to Schur's Lemma, as a scalar on each irre-
systems with an rotationally invariant Hamiltonian by tracing ducible representatiomultiplet) of J. Therefore,p has the

out all degrees of freedom, except those two sp#8. Our  general from

results generalize the previous work on such systems

[7,8,13,14 to the case of higher spins, and we discuss our $+S, J

findings with respect to generic antiferromagnetic or ferri- _ AJ) E 13,3%00(J, 37 1)
magnetic Heisenberg spin-lattice models. These consider- P =18 s, 23+ = EEA

ations lead to the natural conclusion that pairwise quantum

entanglement in equilibrium states is the strongest in systems .

with small spin length and low spatial dimension. Moreover,Where the constan#(J) fulfill A(J)=0, >,A(J)=1. Here,

an inseparable, equilibrium, reduced, two-spin state can usid:J*)o denotes a state of total spinandz component®.
ally only be achieved for neighboring spins, but not for more Now let O be a general operator acting on a bipartite
distant lattice sites. Viewed in this manner, equilibrium state$ystem. IfO is transformed byu,®U,, O'2 transforms
of such systems do not appear to be a particularly stron§ovariantly undet;®U3

source of pairwise quantum entanglement.

To investigate the separability of this type of density ma-
trices in the case of higher spins we shall make use of th
Peres-Horodecki criteriof24,25. This criterion states that a
separable density matrix has necessarily a positive partial
transposg24]. Moreover, a positive partial transpose is alsoHere,U,, U, are general unitary transformations acting on
sufficient[25] for the separability of a given density matrix the subsystems and do not necessarily represe(®)$tans-
in the case of two qubits, and in the case of a qubit and formations. Relatiori2) can be derived readily by writin@

g<u1®UZ)O(UI®U;>]T2=<U1®U§)OTZ[UI@@(UE)*(].)
2
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in the form O, ;, ;.;,» Where the subscripts at the indices (2,112 p|S*+1,— 1/2)

refer to the different subsysterfiz7,29. In particular, it fol- > .

lows that if O is invariant undelU;®U,, O 2 is invariant _V(S=s)(s+s+) [ F1°F ®)
underU;®Us5 . 25+1 2S  2S+2)°

Now let U;, U, represent again S@) transformations. ) o
In the standard representations of their generators trelz The partial transpose'2 is diagonal on the subspﬁace
components are given by real matrices, while the matricespanned by|S,—1/2), |=S,+1/2) lying in the largestK
for they components are imaginary. Thus, a complex conju-multiplet with the eigenvaluex,:=(S,—1/2|p[S,—1/2)=
gation ofU,=exp(7-$) is equivalent to changing the sign (~S:1/2|p[—S,1/2), where
of S5, S%. Therefore,p™2 commutes with the operatoié 1
defined by K*=S{~ S5, KY=S/+S), K=S/~S5, and MT5571
these operators also furnish a representation af)su
[K*KF]=ig*$?K? (using standard notatignin the basis of  On the remaining Hilbert space, the partial transpose is block
tensor product states;,S;) of S, S5, p'z is block diago-  diagonal, where the blocks act on subspaces spanned by the

nal with respect given to the values &F. In particular, basis vector$S?, —1/2), |S*+1,1/2) and have the form
|+S,,+S,) are eigenstates @f 2 with the degenerate eigen-

value (£S;,+S,|p|£S;,+S,)=0. Now it follows from (SH,—12p|S%—112)  (S4112p|S*+1,—1/2)
the elementary representation theory th&t has actually an S 120l S 11 (11Dl 1 1/
SU(2) multiplet structure with respect to the operatdﬁs (5,272 ' ) | 1/2p] 1/2)

The multiplets are labeled by the value KF=K(K+1)  The eigenvalues of these submatrices are given jognd
with |S;—S,|<K=<(S,+S,). On these multipletsp "2 acts

| LoF
25+2

F . (6)

as a constant. As seen above, the eigenvalue corresponding 1 1 E 4
to the largesK multiplet is always non-negative. )‘2_25+ 1 2S5 (@)
Ill. THE CASE S,=1/2 These eigenvalues do not depend $n Therefore\; and

R N\, occur with the multiplicities 3+ 2 and 5, respectively,
Let us now consider a system consisting of a spirof  in accordance with the above general results. Moreowveis

arbitrary lengtiSand a spir§, of length 1/2. Here, a general always positive, whilex, becomes negative fd¥>2S/(2S

SU(2)-invariant density matrix has the form +1), or, equivalently,
S—-1/2 S
F ! ! (SS<-5 ®
p:_ 2 S__,JZ> <S_—,JZ 1 2
2S J2=—-S+1/2 2 00 2

Thus, our state has a nonpositive partial transpose if and only
. (3 if the correlator<§1'§2> is negative and larger in modulus

thanS/2. This is the maximum valug$; - S,)| an achieve in

) . S ) a separable state. This intuitive very reasonable criterion in-
The quantityF e[O,l]. is, in thermal e'qumbnum, a functhn cludes earlier results by Wang and Zandt] who inves-

of temperature and, in the casembeing a reduced density tigated the cas8,=S,= 1/2 by evaluating the entanglement

matrix of a larger system, it contains information about the¢ formation[30] using Wootters' concurrend@1]. Unfor-

gntire system which has been traced out except for the Spir{ﬁnately, this is not a viable route f&>1/2, since Woot-

S; andS,. By expressingF in terms of the projector onto the ters’ construction appears to be restricted to the case of two

J=S—1/2 multiplet one find$ = (S—2(S;-S,))/(25+1),  qubits. Moreover, with increasing, the states with a non-

where( ) denotes the expectation value with respecpto positive partial transpose have increasing weight in the

Thus, p is completely determined by the correlator smaller multiplet)=S—1/2, approaching unity fog— .

<§1. §2>_ If a given state has a negat_ive partial transppse i_t is nec-
In order to perform a partial transposition prit is con-  €ssarily entangled. Moreover, in the case off8unvariant

venient to express it in a basis of tensor product eigenstaté¥@tes withS,;=1/2 studied in this section, a positive partial

|S?,=1/2) of S} and S5. Using the well-known Clebsch- transpose, i.e{S;-S,)=—19/2, is also a sufficient criterion

Gordan coefficients for coupling a spfito a spin 1/2, the for separable states. We prove this fact by explicitly con-

S+1/2

1-F

>
25+2 .55 1

S+1 JZ> <S+1 J?
21 00 2!

nonvanishing matrix elements are given by structing a decomposition consisting of projectors on porduct
states. If a given state has a positive partial transpose, we can
1 [(S*+S)F write (S; - S,) = (S/2) cos) with some real angle.. Now let
Z Z —
(S, %112p|S", = 1/2) = 23+1( 23 |0) denote a spin-coherent stdt&2,33 of S, pointing in

, some arbitrary direction and/) denote a spin-coherent state
(S*S+1)(1-F) 4) of S, with its polarization direction forming anghg with the
25+2 ' polarization direction ofS;. In the pure product statf)
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®|y), we have by constructionél-§2>=(S/2)cos(y), and e_{3,5, b numericgl daté35] shows that ineql.JaIi.ty8)_ is
the value of this correlator is invariant under all uniform violated and, according to the Peres-Horodecki criterion, the

rotations of both spins. Now consider corresponding reduced density matrix is separable. The same
' statements apply to another typical antiferromagnetic spin-
1/2 wave function, the so-called Gutzwiller wave function

PZN(S)f d*{[U(n)@Uo(9)](|0)@]y)(0]@(y]) [36], where(S,,- S,y can be evaluated analytically for all
n[37].
X[Ui(n)eUy(n)]'}, (9 In summary, one-dimensional antiferromagnetic, isotro-

pic, Heisenberg models of spins 1/2 do not generically ap-
where the integration goes over all simultaneous rotationgear to be in thermal equilibrium a particularly strong source
parametrized aya:equ;y-i), ae{1,2, andN(S) is a of entanglement, since usually only the reduced density ma-
normalization constant. Thus, stai®) is a separable state trices of neigboring spins are inseparable, while all others are
which is obviously invariant under simultaneous rotations ofnonentangled. This result might appear somewhat surprising
both spins and fquiIIs<§1-§2>=(S/2)cos(y). Since such an Since such sy_stems are usually considered to have particu-
SU(2)-invariant state is uniquely determined by this cor- larly strong spin correlafuons_ beca_use of the small spin length
relator, we have constructed a decomposition of the originfﬁtS well as the low spatial dmensnﬁﬁi}]. However, as seen
state in terms of projectors on product states, which com€'€: these strong guantum correlations do not, in general,
pletes the proof. translate to Iong—rgnged entanglement in equilibrium, re-

Let us now discuss the above result with respect to isoguced densny matrices. C

tropic Heisenberg lattice-spin models as studied intensively AS Pointed out already, this finding cannot be expected to
in condensed-matter physics and statistical mechanics. Pr hange in t.he case 0f_h|ghe_r spat!al d'me”S'F’”- More;over,
vious studies have concentrated on one-dimensional syster{€/"imagnetic systems involving spir& >1/2 will generi-
This has on one hand the practical reason that for such sy§2lly have the same properties, since we have the same type

tems the body of exact results concerning correlations Q! criterion (8) for the partial transpose being nonpositive.

largest. On the other hand, this is due to the fact that quani S Criterion requires sufficiently strong quantum fluctua-
ons which are generically reduced with increasing spin

tum correlations can generically be expected to becom X . . :
weaker with increasing spatial dimension, i.e., with increas/€ngth. To illustrate these trends let us rewrite criteri@hin

ing number of neighbors to each spin. Therefore, onethe f9rm<§1-§z>/(31$z)<—_l- For a ferrimagnetic chain
dimensional systems are the most attractive to look for equiconsisting of alternating spirS, =1, S,=1/2, a numerical
librium quantum entanglement. estimate for the left-hand side of this inequality in the case of

Since quantum correlations such(&- S,) can generally neighboring spins is given by[38] (S;-S,)/($:S;)=
be expected to decay with increasing temperature, criteriorr 1.455. For a two-dimensional spin-1/2 antiferromagnet on
(8) defines implicitly a threshold temperature for the occur-the square lattice one find89] <§1- §2>/(Slsz)= —1.344.
rence of a nonpositive partial transpose, provided inequalityoth values are larger than the result for the spin-1/2 chain
(8) is fulfilled in the ground state at=0 [14]. This canonly 55 discussed abovéS,;-S,)/(S;S,) = —1.773, indicating
be the case in antiferromagnetic or, 8;>S,=1/2, ferri-  the suppression of pairwise entanglement with increasing

1/2 chain correlations are generically of the form

> IV. THE CASE S,=1
(Sm* Sm+n)=(=1)"x(n), (10)
We now turn to the cas&;=:S=1, S,=1. Here, the

wherem denotes some lattice site in the translationally in-general SW2)-invariant density matrix reads
variant chain,n is the number of lattice sites between the

spins considered, ang is a positive and monotonously de- G 521 , .

caying function. The alternating sign resembleNarder- P=%5-1 Pl |S=19%)00(S— 1.9

ing as it is present in the ground state of a classical antifer-

romagnet. It follows that the reduced, equilibrium, two-spin S

density matrix can only be entangled if the spins involved + 2S+1 22 S,3%)00( S, 7]

reside on different sublatticésorresponding to odd). This r=-s

intuitively clear finding also holds for generic antiferromag- 1-G—H S

nets or ferrimagnets on bipartite lattices in higher spatial di- +—sr3 > IS+19%0(S+13Y. (1)
mension. JE=—5-1

The spin-1/2 Heisenberg _chain w!th antife_:rromagnetic €XExpressing the quantitie® andH in terms of projectors onto
change between nearest neighbors is described by the Hamjf, multiplets on the total spidie {S—1,S,S+ 1} one finds

tonian H=3,5,Sn:1 Here, the correlato(S,,- S, 1) is

equal to the ground-state energy per spin and given by In2 B e e qvd & 2 2.9
—1/4~—0.443< —0.25[34]. Thus, criterion(8) is fulfilled C=g2s+nl S (S~ DS SH TS &),
[14]. However, for larger distances between the spims, (12
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Therefore,p is completely determined by the correlators
(5,-S,) and((S;-S,)?) and has three different eigenvalues

with degeneracies®-1, 2S+1, and 5+ 3, corresponding

to multiplets of the total spiﬁ. The three different eigenval-

ues of p'2 can be found in the subspaces spanned |55 (
+1,1),|$%,0),|S*—1—1)), |S*# S havingK?= S*. With re-
spect to this basig "2 reads

a(S) (S (S
8(S) B(S) 5(S) (14)

e(S) (S ¥S)

with

a(S)=(S*+1,1p|S*+ 1,1, (15
B(S)=(S"0/p|S",0), (16)
YS)=(S—1-1[p[S*~1,-1), 17
8(SH)=(S,1p|S+1,0), (18
8(S)=(S*+1,—1|p|S*—1,D), (19
7(S)=(S" ~1[p|$"~1,0. (20
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only if G>1/3 orH>1/2. Expressed in terms of correlators,
these conditions read

2<((S1-S,)?), (24)

1>(S,-$) +(($,5)?). (25
Similarly as in the previous cas® =S, S,=1/2, the two-
spin density matrix has a nonpositive partial transpose only if
the weight of the smaller multiplets is sufficiently large. We
note that, different from the cas =S, S,=1/2, an analo-
gous proof for the sufficiency of the Peres-Horodecki crite-
rion cannot be given fo6,=1 since such states are deter-
mined by more than just a single correlator.

V. CONCLUSIONS

We have analyzed the pairwise quantum entanglement in
SU(2)-invariant quantum spin systems by studying their be-
havior under partial transposition. As a general result, the
partial transpose of an §P)-invariant two-spin state has the
same multiplet structure and degeneracies as the original ma-
trix with eigenvalue of largest multiplicity being non-
negative. S(R)-invariant density matrices arise from ther-
mal equilibrium states of isotropic-spin systems in
sufficiently low spatial dimension. The caSg=S, S,=1/2
can be solved completely and is discussed in detail with
respect to the well-known Heisenberg spin models. More-
over, in this case the Peres-Horodecki ciriterion turns out to

tﬂ;ofrct;lrjnaetr?g’afr\l/zli\ézhégtfn% g; :an?;"S;')t(oeéin;iT:zr:]llEq'be a sufficient condition for nonseparability. As a general
9 y trend, low spatial dimension and small lengths of the spins

tedious because the form of the Clebsch-Gordan coefficienty e g tend to facilitate the occurrence of inseparable equi-

IS (_jrast|cally more .compllcated than in the previous CaS%ihrium states. However, inseparability occurs typically only
S,=1/2. For simplicity, we therefore concentrate on the cas etween neighboring spins in such spin-lattice systems. In

— Z
?61 Y\{Eere_ the oglg_bloclr otfh.formj14) corrﬁspor:ﬁs tc$ this sense, isotropic Heisenberg spin models do not appear to
Jal with =y and o=7. In this case we have the €igen- o 4 particularly strong source of quantum entanglement, at
values least as far as their equilibrium properties are concerned.

=5+ 3G+2&H, (21) Fmal!y, we have also cha.racterlzed the properties 9(2$U
invariant states of two spins of length 1 under partial trans-
wo=12—3G, (22) position.
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