
PHYSICAL REVIEW A 68, 012309 ~2003!

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Regensburg Publication Server
Entanglement in SU„2…-invariant quantum spin systems
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We analyze the entanglement of SU~2!-invariant density matrices of two spinsSW 1 , SW 2 using the Peres-
Horodecki criterion. Such density matrices arise from thermal equilibrium states of isotropic-spin systems. The
partial transpose of such a state has the same multiplet structure and degeneracies as the original matrix with
the eigenvalue of largest multiplicity being non-negative. The caseS15S, S251/2 can be solved completely
and is discussed in detail with respect to isotropic Heisenberg spin models. Moreover, in this case the Peres-
Horodecki criterion turns out to be a sufficient condition for nonseparability. We also characterize SU~2!-
invariant states of two spins of length 1.
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I. INTRODUCTION

Entanglement is one of the most intriguing properties
quantum physics@1,2# and the key ingredient of the emerg
ing field of quantum information theory and processing@3#.
Recently, substantial interest has developed concerning
question of quantum entanglement in equilibrium states
quantum spin systems@7–22# as often studied in condense
matter physics and statistical mechanics. More specifical
typical question arises: Tracing out from a many-body s
tem all degrees of freedom except for, say, two spins, is
reduced density matrix separable or not?

In the present work, we study SU~2!-invariant density ma-
trices of two spins. These states are defined to be invar
under all uniform rotationsU1^ U2 of both spinsSW 1 andSW 2,
whereUa5exp(ihW•SWa), aP$1,2%, are transformations corre
sponding to the same set of real parametershW in the repre-
sentation of SU~2!, appropriate for the spin lengthsS1 andS2
(\51). In other words, such states,r, commute with all the
components of the total spinJW5SW 11SW 2. SU~2!-invariant
density matrices arise from thermal equilibrium states of s
systems with an rotationally invariant Hamiltonian by traci
out all degrees of freedom, except those two spins@23#. Our
results generalize the previous work on such syste
@7,8,13,14# to the case of higher spins, and we discuss
findings with respect to generic antiferromagnetic or fe
magnetic Heisenberg spin-lattice models. These consi
ations lead to the natural conclusion that pairwise quan
entanglement in equilibrium states is the strongest in syst
with small spin length and low spatial dimension. Moreov
an inseparable, equilibrium, reduced, two-spin state can
ally only be achieved for neighboring spins, but not for mo
distant lattice sites. Viewed in this manner, equilibrium sta
of such systems do not appear to be a particularly str
source of pairwise quantum entanglement.

To investigate the separability of this type of density m
trices in the case of higher spins we shall make use of
Peres-Horodecki criterion@24,25#. This criterion states that a
separable density matrix has necessarily a positive pa
transpose@24#. Moreover, a positive partial transpose is al
sufficient @25# for the separability of a given density matr
in the case of two qubits, and in the case of a qubit an
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qutrit ~i.e., the case of two spins of length 1/2, and of a s
1/2 and a spin 1, respectively!. For larger dimensions of the
parties ~spins! involved, nonseparable states with positi
partial transpose exist@26#. To apply the Peres-Horodeck
criterion one can perform the partial transposition with
spect to either subsystem~spin!, since both resulting matrice
have the same spectrum. For definiteness, we will conside
the following the partial transposerT2 with respect toSW 2.

SU~2!-invariant two-spin states were mentioned briefly
ready by Vollbrecht and Werner@27#, where it was pointed
out that the caseS15S251 corresponds to states invaria
underO^ O with O being an O~3! rotation. In this work, we
will also give explicit criteria in terms of spin correlators fo
such states to have a positive partial transpose@28#.

II. SU„2…-INVARIANT STATES AND THEIR PARTIAL
TRANSPOSE

Let us start with some general considerations. Since
SU~2!-invariant state commutes with all components ofJW , it
acts, according to Schur’s Lemma, as a scalar on each
ducible representation~multiplet! of JW . Therefore,r has the
general from

r5 (
J5uS12S2u

S11S2 A~J!

2J11 (
Jz52J

J

uJ,Jz&00^J,Jzu, ~1!

where the constantsA(J) fulfill A(J)>0, (JA(J)51. Here,
uJ,Jz&0 denotes a state of total spinJ andz componentJz.

Now let O be a general operator acting on a bipart
system. If O is transformed byU1^ U2 , O T2 transforms
covariantly underU1^ U2* ,

@~U1^ U2!O~U1
1

^ U2
1!#T25~U1^ U2* !O T2@U1

1
^ ~U2* !1#.

~2!

Here,U1 , U2 are general unitary transformations acting
the subsystems and do not necessarily represent SU~2! trans-
formations. Relation~2! can be derived readily by writingO
©2003 The American Physical Society09-1
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in the form Oi 1i 2 , j 1 j 2
, where the subscripts at the indice

refer to the different subsystems@27,29#. In particular, it fol-
lows that if O is invariant underU1^ U2 , O T2 is invariant
underU1^ U2* .

Now let U1 , U2 represent again SU~2! transformations.
In the standard representations of their generators thex andz
components are given by real matrices, while the matri
for the y components are imaginary. Thus, a complex con
gation ofU25exp(ihW•SW2) is equivalent to changing the sig
of S2

x , S2
z . Therefore,rT2 commutes with the operatorsKW

defined by Kx5S1
x2S2

x , Ky5S1
y1S2

y , Kz5S1
z2S2

z , and
these operators also furnish a representation of su~2!,
@Ka,Kb#5 i«abgKg ~using standard notation!. In the basis of
tensor product statesuS1

z ,S2
z& of S1

z , S2
z , rT2 is block diago-

nal with respect given to the values ofKz. In particular,
u6S1 ,7S2& are eigenstates ofrT2 with the degenerate eigen
value ^6S1 ,7S2uru6S1 ,7S2&>0. Now it follows from
the elementary representation theory thatrT2 has actually an
SU~2! multiplet structure with respect to the operatorsKW .
The multiplets are labeled by the value ofKW 25K(K11)
with uS12S2u<K<(S11S2). On these multiplets,rT2 acts
as a constant. As seen above, the eigenvalue correspon
to the largestK multiplet is always non-negative.

III. THE CASE S2Ä1Õ2

Let us now consider a system consisting of a spinSW 1 of
arbitrary lengthSand a spinSW 2 of length 1/2. Here, a genera
SU~2!-invariant density matrix has the form

r5
F

2S (
Jz52S11/2

S21/2 US2
1

2
,JzL

00
K S2

1

2
,JzU

1
12F

2S12 (
Jz52S21/2

S11/2 US1
1

2
,JzL

00
K S1

1

2
,JzU. ~3!

The quantityFP@0,1# is, in thermal equilibrium, a function
of temperature and, in the case ofr being a reduced densit
matrix of a larger system, it contains information about t
entire system which has been traced out except for the s
SW 1 andSW 2. By expressingF in terms of the projector onto th
J5S21/2 multiplet one findsF5(S22^SW 1•SW 2&)/(2S11),
where ^ & denotes the expectation value with respect tor.
Thus, r is completely determined by the correlat

^SW 1•SW 2&.
In order to perform a partial transposition onr it is con-

venient to express it in a basis of tensor product eigenst
uSz,61/2& of S1

z and S2
z . Using the well-known Clebsch

Gordan coefficients for coupling a spinS to a spin 1/2, the
nonvanishing matrix elements are given by

^Sz,61/2uruSz,61/2&5
1

2S11 S ~S7Sz!F

2S

1
~S6Sz11!~12F !

2S12 D , ~4!
01230
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^Sz,1/2uruSz11,21/2&

5
A~S2Sz!~S1Sz11!

2S11 S 2
F

2S
1

12F

2S12D . ~5!

The partial transposerT2 is diagonal on the subspac
spanned byuS,21/2&, u2S,11/2& lying in the largestKW
multiplet with the eigenvaluel1ª^S,21/2uruS,21/2&5
^2S,1/2uru2S,1/2&, where

l15
1

2S11 S F1
12F

2S12D . ~6!

On the remaining Hilbert space, the partial transpose is bl
diagonal, where the blocks act on subspaces spanned b
basis vectorsuSz,21/2&, uSz11,1/2& and have the form

S ^Sz,21/2uruSz,21/2& ^Sz,1/2uruSz11,21/2&

^Sz,1/2uruSz11,21/2& ^Sz11,1/2uruSz11,1/2&
D .

The eigenvalues of these submatrices are given byl1 and

l25
1

2S11
2

1

2S
F. ~7!

These eigenvalues do not depend onSz. Therefore,l1 and
l2 occur with the multiplicities 2S12 and 2S, respectively,
in accordance with the above general results. Moreover,l1 is
always positive, whilel2 becomes negative forF.2S/(2S
11), or, equivalently,

^SW 1•SW 2&,2
S

2
. ~8!

Thus, our state has a nonpositive partial transpose if and
if the correlator^SW 1•SW 2& is negative and larger in modulu
thanS/2. This is the maximum valueu^SW 1•SW 2&u an achieve in
a separable state. This intuitive very reasonable criterion
cludes earlier results by Wang and Zanardi@14# who inves-
tigated the caseS15S251/2 by evaluating the entangleme
of formation @30# using Wootters’ concurrence@31#. Unfor-
tunately, this is not a viable route forS1.1/2, since Woot-
ters’ construction appears to be restricted to the case of
qubits. Moreover, with increasingS, the states with a non
positive partial transpose have increasing weight in
smaller multipletJ5S21/2, approaching unity forS→`.

If a given state has a negative partial transpose it is n
essarily entangled. Moreover, in the case of SU~2!-invariant
states withS251/2 studied in this section, a positive parti
transpose, i.e.,̂SW 1•SW 2&>2S/2, is also a sufficient criterion
for separable states. We prove this fact by explicitly co
structing a decomposition consisting of projectors on pord
states. If a given state has a positive partial transpose, we
write ^SW 1•SW 2&5(S/2)cos(g) with some real angleg. Now let
u0& denote a spin-coherent state@32,33# of S1 pointing in
some arbitrary direction andug& denote a spin-coherent sta
of S2 with its polarization direction forming angleg with the
polarization direction ofS1. In the pure product stateu0&
9-2
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^ug&, we have by construction̂SW 1•SW 2&5(S/2)cos(g), and
the value of this correlator is invariant under all unifor
rotations of both spins. Now consider

r5N~S!E d3h$@U1~h! ^ U2~h!#~ u0& ^ ug&^0u ^ ^gu!

3@U1~h! ^ U2~h!#1%, ~9!

where the integration goes over all simultaneous rotati
parametrized asUa5exp(ihW•SWa), aP$1,2%, and N(S) is a
normalization constant. Thus, state~9! is a separable stat
which is obviously invariant under simultaneous rotations
both spins and fulfillŝ SW 1•SW 2&5(S/2)cos(g). Since such an
SU~2!-invariant state is uniquely determined by this co
relator, we have constructed a decomposition of the orig
state in terms of projectors on product states, which co
pletes the proof.

Let us now discuss the above result with respect to
tropic Heisenberg lattice-spin models as studied intensiv
in condensed-matter physics and statistical mechanics.
vious studies have concentrated on one-dimensional syst
This has on one hand the practical reason that for such
tems the body of exact results concerning correlations
largest. On the other hand, this is due to the fact that qu
tum correlations can generically be expected to beco
weaker with increasing spatial dimension, i.e., with incre
ing number of neighbors to each spin. Therefore, o
dimensional systems are the most attractive to look for e
librium quantum entanglement.

Since quantum correlations such as^SW 1•SW 2& can generally
be expected to decay with increasing temperature, crite
~8! defines implicitly a threshold temperature for the occ
rence of a nonpositive partial transpose, provided inequa
~8! is fulfilled in the ground state atT50 @14#. This can only
be the case in antiferromagnetic or, forS1.S251/2, ferri-
magnetic systems. In particular, in an antiferromagnetic s
1/2 chain correlations are generically of the form

^SW m•SW m1n&5~21!nx~n!, ~10!

wherem denotes some lattice site in the translationally
variant chain,n is the number of lattice sites between t
spins considered, andx is a positive and monotonously de
caying function. The alternating sign resembles Ne´el order-
ing as it is present in the ground state of a classical anti
romagnet. It follows that the reduced, equilibrium, two-sp
density matrix can only be entangled if the spins involv
reside on different sublattices~corresponding to oddn). This
intuitively clear finding also holds for generic antiferroma
nets or ferrimagnets on bipartite lattices in higher spatial
mension.

The spin-1/2 Heisenberg chain with antiferromagnetic
change between nearest neighbors is described by the H
tonian H5(mSW mSW m11 Here, the correlator̂ SW m•SW m11& is
equal to the ground-state energy per spin and given by
21/4'20.443,20.25 @34#. Thus, criterion~8! is fulfilled
@14#. However, for larger distances between the spinsn
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P$3,5, . . .%, numerical data@35# shows that inequality~8! is
violated and, according to the Peres-Horodecki criterion,
corresponding reduced density matrix is separable. The s
statements apply to another typical antiferromagnetic sp
1/2 wave function, the so-called Gutzwiller wave functio
@36#, where^SW m•SW m1n& can be evaluated analytically for a
n @37#.

In summary, one-dimensional antiferromagnetic, isot
pic, Heisenberg models of spins 1/2 do not generically
pear to be in thermal equilibrium a particularly strong sou
of entanglement, since usually only the reduced density
trices of neigboring spins are inseparable, while all others
nonentangled. This result might appear somewhat surpri
since such systems are usually considered to have par
larly strong spin correlations because of the small spin len
as well as the low spatial dimension@33#. However, as seen
here, these strong quantum correlations do not, in gene
translate to long-ranged entanglement in equilibrium,
duced density matrices.

As pointed out already, this finding cannot be expected
change in the case of higher spatial dimension. Moreo
ferrimagnetic systems involving spinsS1.1/2 will generi-
cally have the same properties, since we have the same
of criterion ~8! for the partial transpose being nonpositiv
This criterion requires sufficiently strong quantum fluctu
tions which are generically reduced with increasing s
length. To illustrate these trends let us rewrite criterion~8! in
the form ^SW 1•SW 2&/(S1S2),21. For a ferrimagnetic chain
consisting of alternating spinsS151, S251/2, a numerical
estimate for the left-hand side of this inequality in the case
neighboring spins is given by@38# ^SW 1•SW 2&/(S1S2)5
21.455. For a two-dimensional spin-1/2 antiferromagnet
the square lattice one finds@39# ^SW 1•SW 2&/(S1S2)521.344.
Both values are larger than the result for the spin-1/2 ch
as discussed above,^SW 1•SW 2&/(S1S2)521.773, indicating
the suppression of pairwise entanglement with increas
spatial dimension and lengths of spins involved.

IV. THE CASE S2Ð1

We now turn to the caseS15..S>1, S251. Here, the
general SU~2!-invariant density matrix reads

r5
G

2S21 (
Jz52S11

S21

uS21,Jz&00^S21,Jzu

1
H

2S11 (
Jz52S

S

uS,Jz&00^S,Jzu

1
12G2H

2S13 (
Jz52S21

S11

uS11,Jz&00^S11,Jzu. ~11!

Expressing the quantitiesG andH in terms of projectors onto
the multiplets on the total spinJP$S21,S,S11% one finds

G5
1

S~2S11!
@2S2~S21!^SW 1•SW 2&1^~SW 1•SW 2!2&#,

~12!
9-3
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H512
1

S~S11!
@^SW 1•SW 2&1^~SW 1•SW 2!2&#. ~13!

Therefore,r is completely determined by the correlato

^SW 1•SW 2& and ^(SW 1•SW 2)2& and has three different eigenvalu
with degeneracies 2S21, 2S11, and 2S13, corresponding
to multiplets of the total spinJW . The three different eigenval
ues ofrT2 can be found in the subspaces spanned byuSz

11,1&,uSz,0&,uSz2121&), uSzuÞS havingKz5Sz. With re-
spect to this basis,rT2 reads

S a~Sz! d~Sz! «~Sz!

d~Sz! b~Sz! h~Sz!

«~Sz! h~Sz! g~Sz!
D ~14!

with

a~Sz!5^Sz11,1uruSz11,1&, ~15!

b~Sz!5^Sz,0uruSz,0&, ~16!

g~Sz!5^Sz2121uruSz21,21&, ~17!

d~Sz!5^Sz,1uruSz11,0&, ~18!

«~Sz!5^Sz11,21uruSz21,1&, ~19!

h~Sz!5^Sz,21uruSz21,0&. ~20!

Unfortunately, the evaluation of the matrix elements in E
~14! for general values ofSandSz turns out to be extremely
tedious because the form of the Clebsch-Gordan coeffici
is drastically more complicated than in the previous c
S251/2. For simplicity, we therefore concentrate on the c
S51 where the only block of form~14! corresponds toSz

50 with a5g and d5h. In this case we have the eigen
values

m15 1
30 1 3

10 G1 2
15 H, ~21!

m25 1
6 2 1

2 G, ~22!

m35 1
3 2 2

3 H. ~23!

The eigenvaluem1 is always positive and corresponds to t
largestK multiplet. Thus,rT2 has negative eigenvalues if an
.L
n

cz

01230
.

ts
e
e

only if G.1/3 orH.1/2. Expressed in terms of correlator
these conditions read

2,^~SW 1•SW 2!2&, ~24!

1.^SW 1•SW 2&1^~SW 1SW 2!2&. ~25!

Similarly as in the previous caseS15S, S251/2, the two-
spin density matrix has a nonpositive partial transpose on
the weight of the smaller multiplets is sufficiently large. W
note that, different from the caseS15S, S251/2, an analo-
gous proof for the sufficiency of the Peres-Horodecki cri
rion cannot be given forS2>1 since such states are dete
mined by more than just a single correlator.

V. CONCLUSIONS

We have analyzed the pairwise quantum entanglemen
SU~2!-invariant quantum spin systems by studying their b
havior under partial transposition. As a general result,
partial transpose of an SU~2!-invariant two-spin state has th
same multiplet structure and degeneracies as the original
trix with eigenvalue of largest multiplicity being non
negative. SU~2!-invariant density matrices arise from the
mal equilibrium states of isotropic-spin systems
sufficiently low spatial dimension. The caseS15S, S251/2
can be solved completely and is discussed in detail w
respect to the well-known Heisenberg spin models. Mo
over, in this case the Peres-Horodecki ciriterion turns ou
be a sufficient condition for nonseparability. As a gene
trend, low spatial dimension and small lengths of the sp
involved tend to facilitate the occurrence of inseparable eq
librium states. However, inseparability occurs typically on
between neighboring spins in such spin-lattice systems
this sense, isotropic Heisenberg spin models do not appe
be a particularly strong source of quantum entanglemen
least as far as their equilibrium properties are concern
Finally, we have also characterized the properties of SU~2!-
invariant states of two spins of length 1 under partial tra
position.
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