4,603 research outputs found

    Homological Localisation of Model Categories

    Get PDF
    One of the most useful methods for studying the stable homotopy category is localising at some spectrum E. For an arbitrary stable model category we introduce a candidate for the E–localisation of this model category. We study the properties of this new construction and relate it to some well–known categories

    The Ages of Elliptical Galaxies in a Merger Model

    Full text link
    The tightness of the observed colour-magnitude and Mg2_{2}- velocity dispersion relations for elliptical galaxies has often been cited as an argument against a picture in which ellipticals form by the merging of spiral disks. A common view is that merging would mix together stars of disparate ages and produce a large scatter in these relations. Here I use semi-analytic models of galaxy formation to derive the distribution of the mean ages, colours and metallicities of the stars in elliptical galaxies formed by mergers in a flat CDM universe. It is seen that most of the stars in ellipticals form at relatively high redshift (z > 1.9) and that the predicted scatter in the colour-magnitude and Mg_2 - sigma relations falls within observational bounds. I conclude that the apparent homogeneity in the properties of the stellar populations of ellipticals is not inconsistent with a merger scenario for the origin of these systems.Comment: latex file, figures available upon reques

    Extraction of visual motion information for the control of eye and head movement during head-free pursuit

    Get PDF
    We investigated how effectively briefly presented visual motion could be assimilated and used to track future target motion with head and eyes during target disappearance. Without vision, continuation of eye and head movement is controlled by internal (extra-retinal) mechanisms, but head movement stimulates compensatory vestibulo-ocular reflex (VOR) responses that must be countermanded for gaze to remain in the direction of target motion. We used target exposures of 50–200 ms at the start of randomised step-ramp stimuli, followed by >400 ms of target disappearance, to investigate the ability to sample target velocity and subsequently generate internally controlled responses. Subjects could appropriately grade gaze velocity to different target velocities without visual feedback, but responses were fully developed only when exposure was >100 ms. Gaze velocities were sustained or even increased during target disappearance, especially when there was expectation of target reappearance, but they were always less than for controls, where the target was continuously visible. Gaze velocity remained in the direction of target motion throughout target extinction, implying that compensatory (VOR) responses were suppressed by internal drive mechanisms. Regression analysis revealed that the underlying compensatory response remained active, but with gain slightly less than unity (0.85), resulting in head-free gaze responses that were very similar to, but slightly greater than, head-fixed. The sampled velocity information was also used to grade head velocity, but in contrast to gaze, head velocity was similar whether the target was briefly or continuously presented, suggesting that head motion was controlled by internal mechanisms alone, without direct influence of visual feedback

    Which feedback mechanisms dominate in the high-pressure environment of the Central Molecular Zone?

    Get PDF
    Supernovae (SNe) dominate the energy and momentum budget of stellar feedback, but the efficiency with which they couple to the interstellar medium (ISM) depends strongly on how effectively early, pre-SN feedback clears dense gas from star-forming regions. There are observational constraints on the magnitudes and timescales of early stellar feedback in low ISM pressure environments, yet no such constraints exist for more cosmologically typical high ISM pressure environments. In this paper, we determine the mechanisms dominating the expansion of HII regions as a function of size-scale and evolutionary time within the high-pressure (P/k_\rm{B}~107−810^{7-8}K cm−3^{-3}) environment in the inner 100pc of the Milky Way. We calculate the thermal pressure from the warm ionised (P_\rm{HII}; 104^{4}K) gas, direct radiation pressure (P_\rm{dir}), and dust processed radiation pressure (P_\rm{IR}). We find that (1) P_\rm{dir} dominates the expansion on small scales and at early times (0.01-0.1pc; 0.10.1pc; >1>1Myr); (3) during the first ~1Myr of growth, but not thereafter, either PIRP_{\rm IR} or stellar wind pressure likely make a comparable contribution. Despite the high confining pressure of the environment, natal star-forming gas is efficiently cleared to radii of several pc within ~2Myr, i.e. before the first SNe explode. This `pre-processing' means that subsequent SNe will explode into low density gas, so their energy and momentum will efficiently couple to the ISM. We find the HII regions expand to a radius of 3pc, at which point they have internal pressures equal with the surrounding external pressure. A comparison with HII regions in lower pressure environments shows that the maximum size of all HII regions is set by pressure equilibrium with the ambient ISM

    The impact of Arctic warming on the midlatitude jetstream: Can it? Has it? Will it?

    Get PDF
    Copyright © 2015 John Wiley & Sons, LtdThe Arctic lower atmosphere has warmed more rapidly than that of the globe as a whole, and this has been accompanied by unprecedented sea ice melt. Such large environmental changes are already having profound impacts on the flora, fauna, and inhabitants of the Arctic region. An open question, however, is whether these Arctic changes have an effect on the jet-stream and thereby influence weather patterns farther south. This broad question has recently received a lot of scientific and media attention, but conclusions appear contradictory rather than consensual. We argue that one point of confusion has arisen due to ambiguities in the exact question being posed. In this study, we frame our inquiries around three distinct questions: Can Arctic warming influence the midlatitude jet-stream? Has Arctic warming significantly influenced the midlatitude jet-stream? Will Arctic warming significantly influence the midlatitude jet-stream? We argue that framing the discussion around the three questions: Can it?, Has it?, and Will it? provides insight into the common themes emerging in the literature as well as highlights the challenges ahead

    Birth, life and survival of Tidal Dwarf Galaxies

    Full text link
    Advances on the formation and survival of the so-called Tidal Dwarf Galaxies (TDGs) are reviewed. The understanding on how objects of the mass of dwarf galaxies may form in debris of galactic collisions has recently benefited from the coupling of multi-wavelength observations with numerical simulations of galaxy mergers. Nonetheless, no consensual scenario has yet emerged and as a matter of fact the very definition of TDGs remains elusive. Their real cosmological importance is also a matter of debate, their presence in our Local Group of galaxies as well. Identifying old, evolved, TDGs among the population of regular dwarf galaxies and satellites may not be straightforward. However a number of specific properties (location, dark matter and metal content) that objects of tidal origin should have are reminded here. Examples of newly discovered genuine old TDGs around a nearby elliptical galaxy are finally presented.Comment: 9 pages, 5 figures, invited talk at JENAM 2010 symposium on "Dwarf Galaxies", v2:reference and acknowledgements update

    Investigating the structure and fragmentation of a highly filamentary IRDC

    Get PDF
    We present 3.7 arcsec (~0.05 pc) resolution 3.2 mm dust continuum observations from the IRAM PdBI, with the aim of studying the structure and fragmentation of the filamentary Infrared Dark Cloud G035.39-00.33. The continuum emission is segmented into a series of 13 quasi-regularly spaced (~0.18pc) cores, following the major axis of the IRDC. We compare the spatial distribution of the cores with that predicted by theoretical work describing the fragmentation of hydrodynamic fluid cylinders, finding a significant (factor of ~8) discrepancy between the two. Our observations are consistent with the picture emerging from kinematic studies of molecular clouds suggesting that the cores are harboured within a complex network of independent sub-filaments. This result emphasises the importance of considering the underlying physical structure, and potentially, dynamically important magnetic fields, in any fragmentation analysis. The identified cores exhibit a range in (peak) beam-averaged column density (3.6x1023cm−2<NH,c<8.0x1023cm−23.6{\rm x}10^{23}{\rm cm}^{-2}<N_{H,c}<8.0{\rm x}10^{23}{\rm cm}^{-2}), mass (8.1M⊙<Mc<26.1M⊙8.1M_{\odot}<M_{c}<26.1M_{\odot}), and number density (6.1x105cm−3<nH,c,eq<14.7x105cm−36.1{\rm x}10^{5}{\rm cm}^{-3}<n_{H, c, eq}<14.7{\rm x}10^{5}{\rm cm}^{-3}). Two of these cores, dark in the mid-infrared, centrally-concentrated, monolithic (with no traceable substructure at our PdBI resolution), and with estimated masses of the order ~20-25M⊙M_{\odot}, are good candidates for the progenitors of intermediate-to-high-mass stars. Virial parameters span a range 0.2<αvir<1.30.2<\alpha_{\rm vir}<1.3. Without additional support, possibly from dynamically important magnetic fields with strengths of the order 230ÎŒ\muG<B<670ÎŒ\muG, the cores are susceptible to gravitational collapse. These results may imply a multi-layered fragmentation process, which incorporates the formation of sub-filaments, embedded cores, and the possibility of further fragmentation

    Radon: a universal baseline indicator at sites with contrasting physical settings

    Get PDF
    The primary goal of World Meteorological Organisation Global Atmosphere Watch (WMO‐GAW) baseline stations is systematic global monitoring of chemical composition of the atmosphere, requiring a reliable, consistent and unambiguous approach for the identification of baseline air. Premier stations in the GAW baseline network span a broad range of physical settings, from remote marine to high‐altitude continental sites, necessitating carefully tailored site‐specific requirements for baseline sampling, data selection, and analysis. Radon‐222 is a versatile and unambiguous terrestrial tracer, widely‐used in transport and mixing studies. Since the majority of anthropogenic pollution sources also have terrestrial origins, radon has become a popular addition to the ‘baseline selection toolkit’ at numerous GAW stations as a proxy for ‘pollution potential’. In the past, detector performance and postprocessing methods necessitated the adoption of a relaxed (e.g. 100 mBq m‐3) radon threshold for minimal terrestrial influence, intended to be used in conjunction with other baseline criteria and analysis procedures, including wind speed, wind direction, particle number, outlier rejection and filtering. However, recent improvements in detector sensitivity, stability and post‐processing procedures have reduced detection limits below 10 mBq m‐3 at Cape Grim and to 25 mBq m‐3 at other baseline stations. Consequently, for suitably sensitive instruments (such as the ANSTO designed and built two‐filter dual‐flow‐loop detectors), radon concentrations alone can be used to unambiguously identify air masses that have been removed from terrestrial sources (at altitude or over ice), or in equilibrium with the ocean surface, for periods of >2‐3 weeks (radon ≀ 40 mBq m‐3). Potentially, radon observations alone can thus provide a consistent and universal (site independent) means for baseline identification. Furthermore, for continental sites with complex topography and meteorology, where true ‘baseline’ conditions may never occur, radon can be used to indicate the least terrestrially‐perturbed air masses, and provide a means by which to apply limits to the level of ‘acceptable terrestrial influence’ for a given application. We demonstrate the efficacy of the radon‐based selection at a range of sites in contrasting physical settings, including: Cape Grim (Tasmania), Cape Point (South Africa), Mauna Loa (Hawaii), Jungfraujoch (Switzerland) and Schneefernerhaus (Germany).Bureau of Meteorology and CSIRO Oceans and Atmosphere,Climate Science Centre

    The Nearby QSO Host I Zw 1: NIR Probing of Structural Properties and Stellar Populations

    Full text link
    The likely merger process and the properties of the stellar populations in the I Zw 1 host galaxy are analyzed on the basis of multi-wavelength observations (with the ISAAC camera at the Very Large Telescope (VLT/UT1) of the European Southern Observatory (ESO), Chile (Paranal), with the interferometer of the Berkeley-Illinois-Maryland Association (BIMA), USA (Hat Creek/California), and with the IRAM Plateau de Bure Interferometer (PdBI), France) and N-body simulations. The data give a consistent picture of I Zw 1, with properties between those of ultra-luminous infrared galaxies (ULIRGs) and QSOs as displayed by transition objects in the evolutionary sequence of active galaxies.Comment: 4 pages, 2 figures, to be published in "The Dense Interstellar Medium in Galaxies", proceedings of the 4th Cologne-Bonn-Zermatt-Symposium held September 22-26, 2003, in Zermatt, Switzerlan

    Ultraluminous Infrared Galaxies

    Full text link
    At luminosities above ~10^{11} L_sun, infrared galaxies become the dominant population of extragalactic objects in the local Universe (z < 0.5), being more numerous than optically selected starburst and Seyfert galaxies, and QSOs at comparable bolometric luminosity. At the highest luminosities, ultraluminous infrared galaxies (ULIGs: L_ir > 10^{12} L_sun), outnumber optically selected QSOs by a factor of ~1.5-2. All of the nearest ULIGs (z < 0.1) appear to be advanced mergers that are powered by both a circumnuclear starburst and AGN, both of which are fueled by an enormous concentration of molecular gas (~10^{10} M_sun) that has been funneled into the merger nucleus. ULIGs may represent a primary stage in the formation of massive black holes and elliptical galaxy cores. The intense circumnuclear starburst that accompanies the ULIG phase may also represent a primary stage in the formation of globular clusters, and the metal enrichment of the intergalactic medium by gas and dust expelled from the nucleus due to the combined forces of supernova explosions and powerful stellar winds.Comment: LaTex, 6 pages with 4 embedded .eps figures. Postscript version plus color plates available at http://www.ifa.hawaii.edu/users/sanders/astroph/s186/plates.html To appear in "Galaxy Interactions at Low and High Redshift" IAU Symposium 186, Kyoto, Japan, eds. J.E. Barnes and D.B. Sander
    • 

    corecore